
Ansible Tower API Guide
Release Ansible Tower 2.2.1

Ansible, Inc.

August 12, 2015

CONTENTS

1 Tools 2

2 Browseable API 3

3 Conventions 6

4 Sorting 7

5 Filtering 8

6 Pagination 9

7 Read-only Fields 10

8 tower-cli 11
8.1 Capabilities . 11
8.2 Installation . 11

9 Index 12

Index 13

i

Ansible Tower API Guide, Release Ansible Tower 2.2.1

Thank you for your interest in Ansible Tower, the open source IT orchestration engine. Whether sharing operations
tasks with your team or integrating with Ansible through the Tower REST API, Tower provides many powerful tools
to make your automation life easier.

The Ansible Tower API Guide focuses on helping you understand the Ansible Tower API. This document has been
updated to include information for the latest release of Ansible Tower 2.2.1.

Ansible Tower Version 2.2.1; Aug 12, 2015; http://support.ansible.com/

CONTENTS 1

http://support.ansible.com/

CHAPTER

ONE

TOOLS

This document offers a basic understanding of the REST API used by Ansible Tower.

REST stands for Representational State Transfer and is sometimes spelled as “ReST”. It relies on a stateless, client-
server, and cacheable communications protocol, usually the HTTP protocol.

You may find it helpful see which API calls Tower makes in sequence. To do this, you can use the UI from Firebug or
Chrome with developer plugins.

Another alternative is Charles Proxy (http://www.charlesproxy.com/), which offers a visualizer that you may find
helpful. While it is commercial software, it can insert itself as an OS X proxy, for example, and intercept both requests
from web browsers as well as curl and other API consumers.

Other alternatives include:

• Fiddler (http://www.telerik.com/fiddler)

• mitmproxy (https://mitmproxy.org/)

• Live HTTP headers FireFox extension (https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/)

• Paros (http://sourceforge.net/projects/paros/)

2

http://www.charlesproxy.com/
http://www.telerik.com/fiddler
https://mitmproxy.org/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
http://sourceforge.net/projects/paros/

CHAPTER

TWO

BROWSEABLE API

REST APIs provide access to resources (data entities) via URI paths. You can visit the Ansible Tower REST API in a
browser at: http://<Tower server name>/api/

Clicking on various links in the API allows you to explore related resources.

3

Ansible Tower API Guide, Release Ansible Tower 2.2.1

Clicking on the next to the page name (toward the top of the screen) for an API endpoint gives you documen-
tation on the access methods for that particular API endpoint and what data is returned when using those methods.

4

Ansible Tower API Guide, Release Ansible Tower 2.2.1

You can also use PUT and POST verbs on the specific API pages by formatting JSON in the various text fields.

5

CHAPTER

THREE

CONVENTIONS

Tower uses a standard REST API, rooted at /api/ on the server. The API is versioned for compatibility reasons, but
only /api/v1/ is currently available. You can see information about what API versions are available by querying
/api/.

You may have to specify the content/type on POST or PUT requests accordingly.

• PUT: Update a specific resource (by an identifier) or a collection of resources. PUT can also be used to create a
specific resource if the resource identifier is know before-hand.

• POST: Create a new resource. Also acts as a catch-all verb for operations that do not fit into the other categories.

All URIs not ending with "/" receive a 301 redirect.

Note: Ansible Tower 2.2.1 API change: Formatting of extra_vars attached to Job Template records is preserved.
Previously, YAML would be converted to JSON and returned as JSON. In 2.2.0 and newer, YAML is returned as
YAML with formatting and comments preserved, and JSON is returned as JSON.

6

CHAPTER

FOUR

SORTING

Assume the following URL, http://<Tower server name>/api/v1/groups/

In order to sort the groups by name, access the following URL variation:

http://<Tower server name>/api/v1/groups/?order_by=name

You can order by any field in the object.

7

CHAPTER

FIVE

FILTERING

Any collection is what the system calls a “queryset” and can be filtered via various operators.

For example, to find the groups that contain the name “foo”:

http://<Tower server name>/api/v1/groups/?name__contains=foo

To do an exact match:

http://<Tower server name>/api/v1/groups/?name=foo

If a resource is of an integer type, you must add “__int” to the end to cast your string input value to an integer, like so:

http://<Tower server name>/api/v1/arbitrary_resource/?x__int=5

Related resources can also be queried, like so:

http://<Tower server name>/api/v1/groups/?user__firstname__icontains=john

This will return all groups with users with names that include the string “John” in them.

You can also filter against more than one field at once:

http://<Tower server name>/api/v1/groups/?user__firstname__icontains=john&group__name__icontains__foo

This will find all groups containing a user whose name contains John where the group contains the string foo.

For more about what types of operators are available, see:

https://docs.djangoproject.com/en/dev/ref/models/querysets/

You may also wish to watch the API as the UI is being used to see how it is filtering on various criteria.

8

https://docs.djangoproject.com/en/dev/ref/models/querysets/

CHAPTER

SIX

PAGINATION

Responses for collections in the API are paginated. This means that while a collection may contain tens or hundreds of
thousands of objects, in each web request, only a limited number of results are returned for API performance reasons.

When you get back the result for a collection you will see something like:

{’count’: 25, ’next’: ’http://testserver/api/v1/some_resource?page=2’,
’previous’: None, ’results’: [...] }

To get the next page, simply request the page given by the ‘next’ sequential URL.

To request more items per page, pass the page size query string:

http://<Tower server name>/api/v1/some_resource?page_size=50

The serializer is quite efficient, but you should probably not request page sizes beyond a couple of hundred.

The user interface uses smaller values to avoid the user having to do a lot of scrolling.

9

CHAPTER

SEVEN

READ-ONLY FIELDS

Certain fields in the REST API are marked read-only. These usually include the URL of a resource, the ID, and
occasionally some internal fields. For instance, the ’created_by’ attribute of each object indicates which user
created the resource, and cannot be edited.

If you post some values and notice that they are not changing, these fields may be read-only.

10

CHAPTER

EIGHT

TOWER-CLI

tower-cli is a command line tool for Ansible Tower. It allows Tower commands to be easily run from the UNIX
command line. It can also be used as a client library for other python apps, or as a reference for others developing API
interactions with Tower’s REST API.

8.1 Capabilities

tower-cli sends commands to the Tower API. It is capable of retrieving, creating, modifying, and deleting most objects
within Tower.

A few potential uses include:

• Launching playbook runs (for instance, from Jenkins, TeamCity, Bamboo, etc)

• Checking on job statuses

• Rapidly creating objects like organizations, users, teams, and more

8.2 Installation

tower-cli is available as a package on PyPI

The preferred way to install is through pip:

$ pip install ansible-tower-cli

The main branch of this project may also be consumed directly from source.

For more information on tower-cli, refer to the project page at:

https://github.com/ansible/tower-cli/

11

https://pypi.python.org/pypi/ansible-tower-cli
https://github.com/ansible/tower-cli/

CHAPTER

NINE

INDEX

• genindex

This document is Copyright © 2015 Ansible, Inc. All rights reserved.

Ansible and Ansible Tower are trademarks of Ansible, Inc.

If you distribute this document, or a modified version of it, you must provide attribution to Ansible, Inc. and provide
a link to the original version.

Third Party Rights

Red Hat and Red Hat Enterprise Linux are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Rackspace trademarks, service marks, logos and domain names are either common-law trademarks/service marks or
registered trademarks/service marks of Rackspace US, Inc., or its subsidiaries, and are protected by trademark and
other laws in the United States and other countries.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

12

INDEX

A
API

browseable, 3
JSON, 5
POST, 5
PUT, 5
root directory, 6

B
browseable API, 3

C
content type

JSON, 6
conventions, 6

F
filtering, 8

J
JSON

API, 5
content type, 6

P
pagination, 9
POST

API, 5
PUT

API, 5

Q
queryset, 8

R
read-only fields, 10

S
serializer, 9
sorting, 7

T
tools, 2

tower-cli, 11
tower-cli, 11

capabilities, 11
installation, 11

13

	Tools
	Browseable API
	Conventions
	Sorting
	Filtering
	Pagination
	Read-only Fields
	tower-cli
	Capabilities
	Installation

	Index
	Index

