
Ansible Tower Administration Guide
Release Ansible Tower 2.4.3

Red Hat, Inc.

Jun 06, 2017

CONTENTS

1 Tower Licensing, Updates, and Support 2
1.1 Support . 2
1.2 Trial Licenses . 2
1.3 License Types . 2
1.4 License Features . 3
1.5 Tower Component Licenses . 3

2 Starting, Stopping, and Restarting Tower 5

3 Custom Inventory Scripts 6
3.1 Writing Inventory Scripts . 7

4 Management Jobs 8
4.1 Removing Old Job History . 8
4.2 Removing Data Scheduled for Deletion . 10
4.3 Removing Old Activity Stream Data . 11
4.4 Removing Old System Tracking Data . 13

5 High Availability 16
5.1 Setup Considerations . 16
5.2 Differences between Primary and Secondary Instances . 17
5.3 Post-Installation Changes to Primary Instances . 18
5.4 Examining the HA configuration of Tower . 18
5.5 Promoting a Secondary Instance/Failover . 19
5.6 Decommissioning Secondary instances . 19

6 Proxy Support 20

7 Tower Logfiles 21

8 The tower-manage Utility 22
8.1 Inventory Import . 22
8.2 Cleanup of old data . 22
8.3 HA management . 23

9 Setting up Authentication 24
9.1 Basic Authentication Settings: . 24
9.2 Google OAuth2 Settings . 24
9.3 Github OAuth2 Settings . 25
9.4 SAML Authentication Settings . 26
9.5 RADIUS Authentication Settings . 27

i

9.6 Using LDAP with Tower . 28
9.7 Organization and Team Mapping . 28

10 Changing the Default Timeout for Authentication 31

11 Working with Session Limits 33

12 Backing Up and Restoring Tower 34
12.1 Backup/Restore Playbooks . 34
12.2 Backup and Restoration Considerations . 35

13 Using Custom Logos in Ansible Tower 36

14 Troubleshooting, Tips, and Tricks 38
14.1 Error logs . 38
14.2 Problems connecting to your host . 38
14.3 Problems running a playbook . 38
14.4 Problems when running a job . 38
14.5 View a listing of all ansible_ variables . 39
14.6 Locate and configure the configuration file . 39
14.7 Playbooks aren’t showing up in the “Job Template” drop-down . 39
14.8 Playbook stays in pending . 39
14.9 Cancel a Tower job . 39
14.10 View Ansible outputs for JSON commands when using Tower . 40
14.11 Reusing an external HA database causes installations to fail . 40
14.12 PRoot functionality and variables . 40
14.13 Changing the WebSockets port for live events . 40
14.14 Private EC2 VPC Instances in Tower Inventory . 41
14.15 Using the Tower CLI Tool . 41
14.16 Changing the Tower Admin Password . 41
14.17 Setting up a jump host to use with Tower . 42

15 Usability Analytics and Data Collection 43

16 Postface 44

17 Index 47

Index 48

ii

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

Thank you for your interest in Ansible Tower, the open source IT orchestration engine. Whether sharing operations
tasks with your team or integrating with Ansible through the Tower REST API, Tower provides powerful tools to make
your automation life easier.

The Ansible Tower Administration Guide documents the administration of Ansible Tower through custom scripts, man-
agement jobs, and more. Written for DevOps engineers and administrators, the Ansible Tower Administration Guide
assumes a basic understanding of the systems requiring management with Tower’s easy-to-use graphical interface.
This document has been updated to include information for the latest release of Ansible Tower 2.4.3.

Ansible Tower Version 2.4.3; December 18, 2015; https://access.redhat.com/

CONTENTS 1

https://access.redhat.com/

CHAPTER

ONE

TOWER LICENSING, UPDATES, AND SUPPORT

Tower is a proprietary software product and is licensed on an annual subscription basis.

Ansible is an open source software project and is licensed under the GNU General Public License version 3, as detailed
in the Ansible source code: https://github.com/ansible/ansible/blob/devel/COPYING

1.1 Support

Ansible offers support for paid Enterprise customers seeking help with the Tower product. If you or you company
has paid for a license of Ansible Tower, you can contact Ansible’s support team via the Red Hat Customer Portal at
https://access.redhat.com/. To better understand the levels of support which match your Tower license, refer to License
Types.

If you are using Ansible core and are having issues, you should reach out to the “ansible-devel” mailing list or file an
issue on the Github project page at https://github.com/ansible/ansible/issues/.

All of Ansible’s community and OSS info can be found here: https://docs.ansible.com/ansible/community.html

1.2 Trial Licenses

While a license is required for Tower to run, there is no fee for managing up to 10 hosts. Additionally, trial licenses
are available for exploring Tower with a larger number of hosts.

Trial licenses for Tower are available at: http://ansible.com/license

To acquire a license for additional servers, visit: http://www.ansible.com/pricing/

1.3 License Types

Tower is licensed at various levels as an annual subscription. Whether you have a small business or a mission-critical
environment, Ansible is ready to simplify your IT work-flow.

• Basic

– Manage smaller environments (up to 250 nodes)

– 30 days of initial web support through https://access.redhat.com/, for installation and setup

– Maintenance and upgrades included

• Enterprise

2

https://github.com/ansible/ansible/blob/devel/COPYING
https://access.redhat.com/
https://github.com/ansible/ansible/issues/
https://docs.ansible.com/ansible/community.html
http://ansible.com/license
http://www.ansible.com/pricing/
https://access.redhat.com/

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

– Manage any size environment

– Enterprise 8x5 support and SLA (4 hour critical incident response)

– Phone and web support

– Support for Ansible core included

– Maintenance and upgrades included

• Premium

– Manage any size environment, including mission-critical environments

– Premium 24x7 support and SLA (4 hour critical incident response, 8 hour non-critical incident re-
sponse)

– Phone and web support

– Support for Ansible core included

– Maintenance and upgrades included

All subscriptions include regular updates and releases of both Ansible Tower and Ansible core.

For more information, contact Ansible via the Red Hat Customer Portal at https://access.redhat.com/ or at http://www.
ansible.com/pricing/.

1.4 License Features

Note: Ansible Tower version 2.2 introduced a separation of features for Basic versus Enterprise or Premium licenses.

The following list of features are available for all new Enterprise or Premium license users:

• Custom rebranding for login (added in Ansible Tower 2.4.0)

• SAML and RADIUS Authentication Support (added in Ansible Tower 2.4.0)

• Multi-Organization Support

• Activity Streams

• Surveys

• LDAP Support

• High Availability

• System Tracking (added in Ansible Tower 2.2.0)

Enterprise license users with versions of Ansible Tower prior to 2.2 must import a new license file to enable System
Tracking.

1.5 Tower Component Licenses

Ansible Tower includes some open source components. Ansible, Inc. supports Tower’s use of and interactions with
these components for both development and production purposes, subject to applicable terms and conditions. Unless
otherwise agreed to in writing, the use of Ansible Tower is subject to the Ansible Software Subscription and Services
Agreement located at http://www.ansible.com/subscription-agreement. Ansible Tower is a proprietary product offered
by Ansible, Inc. and its use is not intended to prohibit the rights under any open source license.

1.4. License Features 3

https://access.redhat.com/
http://www.ansible.com/pricing/
http://www.ansible.com/pricing/
http://www.ansible.com/subscription-agreement

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

To view the license information for the components included within Ansible Tower, refer to /usr/share/doc/
ansible-tower-<version>/README where <version> refers to the version of Ansible Tower you have
installed.

To view a specific license, refer to /usr/share/doc/ansible-tower-<version>/*.txt, where * is re-
placed by the license file name to which you are referring.

1.5. Tower Component Licenses 4

CHAPTER

TWO

STARTING, STOPPING, AND RESTARTING TOWER

Ansible Tower now ships with an admin utility script, ansible-tower-service, that can start, stop, and
restart the full tower infrastructure (including the database and message queue components). The services script
resides in /usr/bin/ansible-tower-service and can be invoked as follows:

root@localhost:~$ ansible-tower-service restart

You can also invoke it via distribution-specific service management commands. Distribution packages often provide a
similar script, sometimes as an init script, to manage services. Refer to your distribution-specific service management
system for more information.

Note: Beginning with version 2.2.0, Ansible Tower has moved away from using an init script in favor of using an
admin utility script. Previous versions of Ansible Tower shipped with a standard ansible-tower init script that
could be used to start, stop, and query the full Tower infrastructure. It was evoked via the service command:
/etc/init.d/ansible-tower script. For those using a 2.2.0 or later version of Ansible Tower, the new
admin utility script, ansible-tower-service, should be used instead.

5

CHAPTER

THREE

CUSTOM INVENTORY SCRIPTS

Tower includes built-in support for syncing dynamic inventory from cloud sources such as Amazon AWS, Google
Compute Engine, and Rackspace, among others. Tower also offers the ability to use a custom script to pull from your
own inventory source.

Note: With the release of Ansible Tower 2.4.0, edits and additions to Inventory host variables now persist beyond an
inventory sync as long as --overwrite_vars is not set. To have inventory syncs behave as they did before, it is
now required that both --overwrite and --overwrite_vars are set.

To manage the custom inventory scripts available in Tower, choose Inventory Scripts from the Setup () menu.

To add a new custom inventory script, click the button.

6

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

Enter the name for the script, plus an optional description. Then select the Organization that this script belongs to.

You can then either drag and drop a script on your local system into the Custom Script text box, or cut and paste the
contents of the inventory script there.

3.1 Writing Inventory Scripts

You can write inventory scripts in any dynamic language that you have installed on the Tower machine (such as shell
or python). They must start with a normal script shebang line such as #!/bin/bash or #!/usr/bin/python.
They run as the awx user. The inventory script invokes with '--list' to list the inventory, which returns in a JSON
hash/dictionary.

Generally, they connect to the network to retrieve the inventory from other sources. When enabling multi-tenancy
security (refer to Security for details), the inventory script will not be able to access most of the Tower machine. If this
access to the local Tower machine is necessary, configure it in /etc/tower/settings.py.

For more information on dynamic inventory scripts and how to write them, refer to the Intro to Dynamic Inventory
and Developing Dynamic Inventory Sources sections of the Ansible documentation, or review the example dynamic
inventory scripts on GitHub.

3.1. Writing Inventory Scripts 7

http://docs.ansible.com/ansible-tower/2.4.3/html/userguide/security.html#ug-security
http://docs.ansible.com/intro_dynamic_inventory.html
http://docs.ansible.com/developing_inventory.html
https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/inventory
https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/inventory

CHAPTER

FOUR

MANAGEMENT JOBS

Management Jobs assist in the cleaning of old data, old system tracking information, old job histories, and old activity
streams from Tower. You can use this if you have specific retention policies or need to decrease the storage used by

your Tower database. From the Setup () menu, click on Management Jobs.

Several job types are available for you to schedule and launch:

• Cleanup Job Details: Remove job history older than a specified number of days

• Cleanup Deleted Data: Remove deleted object history older than a specified number days

• Cleanup Activity Stream: Remove activity stream history older than a specified number of days

• Cleanup Fact Details: Remove system tracking history

4.1 Removing Old Job History

To remove job history older than a specified number of days, click on the button beside Cleanup Job Details.

8

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

Enter the number of days of data you would like to save and click Launch.

To set a schedule for cleaning up old job history information, click on the button.

Enter the appropriate details for:

• Name: populated by default to match the management job type and can be left alone

• Days of data to keep: Enter the number of days of data you would like to retain.

• Start Date: Enter the date for which you want data cleanup to start (month/day/year format)

• Start Time: Enter the time to start data cleanup in hours, minutes, and seconds.

4.1. Removing Old Job History 9

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

• Local Time Zone: Select your preferred time zone.

• UTC Start Time: Review the UTC Start time which is based on the Start Time and Local Time Zone you select.

• Repeat Frequency: Select how often you want the cleanup job to run. You can enter cleanups to occur once or
every X minutes, hours, days, weeks, months, or years.

The View Details link at the bottom displays a description of the schedule and a list of the scheduled occurrences in
the selected Local Time Zone.

4.2 Removing Data Scheduled for Deletion

To remove object history which has been marked for deletion (much like emptying your trashcan in a desktop envi-

ronment), click on the button beside Cleanup Deleted Data.

Enter the number of days of data you would like to save and click Launch.

To set a schedule for purging data marked for deletion, click on the button.

4.2. Removing Data Scheduled for Deletion 10

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

Enter the appropriate details for:

• Name: populated by default to match the management job type and can be left alone

• Days of data to keep: Enter the number of days of data you would like to retain.

• Start Date: Enter the date for which you want data cleanup to start (month/day/year format)

• Start Time: Enter the time to start data cleanup in hours, minutes, and seconds.

• Local Time Zone: Select your preferred time zone.

• UTC Start Time: Review the UTC Start time which is based on the Start Time and Local Time Zone you select.

• Repeat Frequency: Select how often you want the cleanup job to run. You can enter cleanups to occur once or
every X minutes, hours, days, weeks, months, or years.

The View Details link at the bottom displays a description of the schedule and a list of the scheduled occurrences in
the selected Local Time Zone.

4.3 Removing Old Activity Stream Data

To remove older activity stream data, click on the button beside Cleanup Activity Stream.

4.3. Removing Old Activity Stream Data 11

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

Enter the number of days of data you would like to save and click Launch.

To set a schedule for purging data marked for deletion, click on the button.

Enter the appropriate details for:

• Name: populated by default to match the management job type and can be left alone

• Days of data to keep: Enter the number of days of data you would like to retain.

• Start Date: Enter the date for which you want data cleanup to start (month/day/year format)

• Start Time: Enter the time to start data cleanup in hours, minutes, and seconds.

4.3. Removing Old Activity Stream Data 12

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

• Local Time Zone: Select your preferred time zone.

• UTC Start Time: Review the UTC Start time which is based on the Start Time and Local Time Zone you select.

• Repeat Frequency: Select how often you want the cleanup job to run. You can enter cleanups to occur once or
every X minutes, hours, days, weeks, months, or years.

The View Details link at the bottom displays a description of the schedule and a list of the scheduled occurrences in
the selected Local Time Zone.

4.4 Removing Old System Tracking Data

To remove system tracking data, click on the button beside Cleanup Fact Details.

Select the time period after which you want to remove old data as well as the frequency for snapshot retention.

For facts collected older than the time period specified, you can choose to save one fact scan (or snapshot) per period
of time(frequency). For example, facts older than 30 days could be purged, while one weekly fact scan is retained.

Warning: Setting both numerical variables to “0” will delete all facts.

To help clarify this purge and retention schedule, consider the following timeline:

4.4. Removing Old System Tracking Data 13

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

For this timeline example, consider that you have been running Tower for 17 days (since Jan 1st) and have collected 17
days of fact scans . On Jan 17, you decide to remove all fact scans older than 3 days while keeping a weekly snapshot.
The most recent scan and a scan from one week earlier remains, along with the most recent data to be kept.

To set a schedule for cleaning up system tracking information, click on the button.

Enter the appropriate details for:

4.4. Removing Old System Tracking Data 14

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

• Name: populated by default to match the management job type and can be left alone

• Select a time period after which to remove old facts: Select the number of days/weeks/years, after which old
data will be removed.

• Select a frequency for snapshot retention: Select how often (days/weeks/years) to keep snapshots of your
data.

• Start Date: Enter the date for which you want data cleanup to start (month/day/year format)

• Start Time: Enter the time to start data cleanup in hours, minutes, and seconds.

• Local Time Zone: Select your preferred time zone.

• UTC Start Time: Review the UTC Start time which is based on the Start Time and Local Time Zone you select.

• Repeat Frequency: Select how often you want the cleanup job to run. You can enter cleanups to occur once or
every X minutes, hours, days, weeks, months, or years.

The View Details link at the bottom displays a description of the schedule and a list of the scheduled occurrences in
the selected Local Time Zone.

4.4. Removing Old System Tracking Data 15

CHAPTER

FIVE

HIGH AVAILABILITY

Note: High Availability support is only available to those with Enterprise-level licenses.

Tower installations can occur in a High Availability (HA) configuration. In this configuration, Tower runs with a single
active node, called the Primary instance, and any number of inactive nodes, called Secondary instances. Secondary
instances can become Primary at any time, with certain caveats. Running in a high-availability setup requires any
database that Tower uses to be external–Postgres and MongoDB must be installed on a machine that is not one of the
primary or secondary tower nodes.

Tower’s HA mode offers a standby Tower infrastructure that can become active in case of infrastructure failure–
avoiding single points of failure. HA mode is not meant to run in an active/active or multi-master mode, and is not a
mechanism for horizontally scaling the Tower service. Further, failover to a secondary instance is not automatic and
must be user triggered.

For instructions on how to install into a HA configuration, refer to the Ansible Tower Installation and Reference Guide.

5.1 Setup Considerations

When creating a HA deployment of Tower, consider the following factors:

• Tower is designed as a unit.

Only those parts explicitly mentioned as being supported as external services are swappable for external versions
of those services. Just as Tower does not support swapping out Django for Flask, Apache for lighttpd, or
PostgreSQL for Oracle or MSSQL, it does not support replacing MongoDB with a different component.

• Tower servers need isolation.

If the primary and secondary Tower services share a physical host, a network, or potentially a datacenter, your
infrastructure has a single point of failure. You should locate the Tower servers such that distribution occurs in a
manner consistent with other services that you make available across your infrastructure. If your infrastructure
is already using features such as Availability Zones in your cloud provider, having Tower distributed across
Zones as well makes sense.

• The database require replication.

If Tower runs in an HA mode, but the database is not run in an HA or replicated mode, you still have a single
point of failure for your Tower infrastructure. The Tower installer will not set up database replication; instead,
it prompts for database connection details to an existing database (which needs replication).

Choose a database replication strategy that is appropriate for your deployment.

– For the general case of PostgreSQL, refer to the PostgreSQL documentation or the PostgreSQL Wiki.

16

http://docs.ansible.com/ansible-tower/2.4.3/html/installandreference/index.html#ir-start
http://www.postgresql.org/docs/current/static/high-availability.html
https://wiki.postgresql.org/wiki/Detailed_installation_guides

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

– For deployments using Amazon’s RDS, refer to the Amazon documentation.

– For deployments using MongoDB, refer to the MongoDB Manual.

• Tower instances must maintain reasonable connections to the database.

Tower both queries and writes to the database frequently; good locality between the Tower server and the
database replicas is critical to ensure performance.

• Source Control is necessary.

To use playbooks stored locally on the Tower server (rather than set to check out from source control), you must
ensure synchronization between the primary and secondary Tower instances. Using playbooks in source control
alleviates this problem.

When using SCM Projects, a best practices approach is setting the Update on Launch flag on the job template.
This ensures that checkouts occur each time the playbook launches and that newly promoted secondary instances
have up-to-date copies of the project content. When a secondary instance is promoted, a project_update for all
SCM managed projects in the database is triggered. This provides Tower with copies of all project playbooks.

• A consistent Tower hostname for clients and users.

Between Tower users’ habits, Tower provisioning callbacks, and Tower API integrations, keep the Tower host-
name that users and clients use constant. In a HA deployment, use a reverse proxy or a DNS CNAME. The
CNAME is strongly preferred due to the websocket connection Tower uses for real-time output.

• When in HA mode, the remote Postgres and MongoDB version requirements are Postgresql 9.4.x and mongodb
3.0.x.

Postgresql 9.4.x and Mongodb 3.0.x are also required if Tower is running locally. With local setups, Tower
handles the installation of these services. You should ensure that these are setup correctly if working in a remote
setup.

For help allowing remote access to your Postgresql server, refer to: http://www.thegeekstuff.com/2014/02/
enable-remote-postgresql-connection/

For example, an HA configuration for an infrastructure consisting of three datacenters places a Tower server and a
replicated database in each datacenter. Clients accessing Tower use a DNS CNAME which points to the address of the
current primary Tower instance.

For information determining size requirements for a MongoDB setup, refer to Requirements in the Ansible Tower
Installation and Reference Guide.

Note: Instances have been reported where reusing the external DB during subsequent HA installations causes instal-
lation failures.

For example, say that you performed an HA installation. Next, say that you needed to do this again and performed a
second HA installation reusing the same external database, only this subsequent installation failed.

When setting up an external HA database which has been used in a prior installation, the HA database must be
manually cleared before any additional installations can succeed.

5.2 Differences between Primary and Secondary Instances

The Tower service runs on both primary and secondary instances. The primary instance accepts requests or run jobs,
while the secondary instances do not.

Connection attempts to the web interface or API of a secondary Tower server redirect to the primary Tower instance.

5.2. Differences between Primary and Secondary Instances 17

http://aws.amazon.com/rds/postgresql/
http://docs.mongodb.org/manual/installation/
http://www.thegeekstuff.com/2014/02/enable-remote-postgresql-connection/
http://www.thegeekstuff.com/2014/02/enable-remote-postgresql-connection/
http://docs.ansible.com/ansible-tower/2.4.3/html/installandreference/requirements_refguide.html#ir-requirements

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

5.3 Post-Installation Changes to Primary Instances

When changing the configuration of a primary instance after installation, apply these changes to the secondary in-
stances as well.

Examples of these changes would be:

• Updates to /etc/tower/conf.d/ha.py

If you have configured LDAP or customized logging in /etc/tower/conf.d/ldap.py, you will need to
reflect these changes in /etc/tower/conf.d/ldap.py on your secondary instances as well.

• Updating the Tower license

Any secondary instance of Tower requires a valid license to run properly when promoted to a primary instance.
Copy the license from the primary node at any time or install it via the normal license installation mechanism
after the instance promotes to primary status.

Note: Users of older versions of Tower should update /etc/tower/settings.py instead of files within /etc/
tower/conf.d/.

5.4 Examining the HA configuration of Tower

To see the HA configuration of Tower, you can query the ping endpoint of the Tower REST API. To do this via
Tower’s built in API browser, go to https://<Tower server name>/api/v1/ping. You can go to this
specific URL on either the primary or secondary nodes.

An example return from this API call would be (in JSON format):

HTTP 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS
X-API-Time: 0.008s
{

"instances": {
"primary": "192.168.122.158",
"secondaries": [

"192.168.122.109",
"192.168.122.26"

]
},
"ha": true,
"role": "primary",
"version": "2.1.4"

}

It contains the following fields.

• Instances

– Primary: The primary Tower instance (hostname or IP address)

– Secondaries: The secondary Tower instances (hostname or IP address)

• HA: Whether Tower is running in HA mode

5.3. Post-Installation Changes to Primary Instances 18

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

• Role: Whether this specific instance is a primary or secondary

• Version: The Tower version in use

5.5 Promoting a Secondary Instance/Failover

To promote a secondary instance to be the new primary instance (also known as initiating failover), use the
tower_manage command.

To make a running secondary node the primary node, log on to the desired new primary node and run the
update_instance command of tower_manage as follows:

root@localhost:~$ tower-manage update_instance --primary
Successfully updated instance role (uuid="ec2dc2ac-7c4b-9b7e-b01f-0b7c30d0b0ab",
↪→hostname="localhost",role="primary")

The current primary instance changes to be a secondary.

Note: Secondary nodes need a valid Tower license at /etc/tower/license to function as a proper primary
instance. Copy the license from the primary node at any time or install it via the normal license installation mechanism
after the instance promotes to primary status.

On failover, queued or running jobs in the database are marked as failed.

Tower does not attempt any health checks between primary or secondary nodes to do automatic failover in case of the
loss of the primary node. You should use an external monitoring or heartbeat tool combined with tower_manage
for these system health checks. Use of the /ping API endpoint could help.

Caution: HA setup has been designed and tested only for LAN-connected configurations. If you are confident
about the quality of your WAN, and research the downsides and possible failure scenarios of a replicated postgresql
environment across a WAN, there is nothing technically stopping you from doing it this way. That said, this is
outside of our tested configuration, it not recommended, and is unsupported.

5.6 Decommissioning Secondary instances

You cannot decommission a current primary Tower instance without first selecting a new primary.

If you need to decommission a secondary instance of Tower, log onto the secondary node and run the
remove_instance command of tower_manage as follows:

root@localhost:~$ tower-manage remove_instance --hostname tower2.example.com
Instance removed (changed: True).

Replace tower2.example.com with the registered name (IP address or hostname) of the Tower instance you are
removing from the list of secondaries.

You can then shutdown the Tower service on the decommissioned secondary node.

5.5. Promoting a Secondary Instance/Failover 19

CHAPTER

SIX

PROXY SUPPORT

Proxy servers act as an intermediary for requests from clients seeking resources from other servers. A client connects
to the proxy server, requesting some service or available resource from a different server, and the proxy server evaluates
the request as a way to simplify and control its complexity.

Sessions in Tower associate an IP address upon creation. Tower policy requires that any use of the session match the
original associated IP address.

To provide proxy server support, Tower handles proxied requests (such as ELB in front of Tower, HAProxy,
Squid, and tinyproxy) via the REMOTE_HOST_HEADERS list variable in Tower settings (/etc/tower/conf.
d/remote_host_headers.py). By default REMOTE_HOST_HEADERS is set to ['REMOTE_ADDR',
'REMOTE_HOST'].

Tower determines the remote host’s IP address by searching through the list of headers in REMOTE_HOST_HEADERS
until the FIRST IP address is located.

Note: Header names are constructed using the following logic:

With the exception of CONTENT_LENGTH and CONTENT_TYPE, any HTTP headers in the request are converted
to META keys by converting all characters to uppercase, replacing any hyphens with underscores, and adding
an HTTP_ prefix to the name. For example, a header called X-Barkley would be mapped to the META key
HTTP_X_Barkley.

For more information on HTTP request and response objects, refer to: https://docs.djangoproject.com/en/1.8/ref/
request-response/#django.http.HttpRequest.META

If you are behind a reverse proxy, you may want to setup a header field for HTTP_X_FORWARDED_FOR. The
X-Forwarded-For (XFF) HTTP header field identifies the originating IP address of a client connecting to a web
server through an HTTP proxy or load balancer.

20

https://docs.djangoproject.com/en/1.8/ref/request-response/#django.http.HttpRequest.META
https://docs.djangoproject.com/en/1.8/ref/request-response/#django.http.HttpRequest.META

CHAPTER

SEVEN

TOWER LOGFILES

Tower logfiles have been consolidated and can be easily accessed from two centralized locations:

• /var/log/tower/

• /var/log/supervisor/

In the /var/log/tower/ directory, you can view logfiles related to:

• callback_receiver.log

• fact_receiver.log

• setup-XX-XX-XX-XX.log

• socketio_service.log

• task_system.log

• tower.log

In the /var/log/supervisor/ directory, you can view logfiles related to:

• awx-celery.log

• supervisord.log

The /var/log/supervisor/ directory include stdout files for all services as well.

"Mooving around: Consolidated logfiles for easier access!"
\
\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

21

CHAPTER

EIGHT

THE TOWER-MANAGE UTILITY

The tower-manage (formerly awx-manage) utility is used to access detailed internal information of Tower. Com-
mands for tower-manage should run as the awx or root user.

8.1 Inventory Import

tower-manage is a mechanism by which a Tower administrator can import inventory directly into Tower, for those
who cannot use Custom Inventory Scripts.

tower-manage inventory_import [--help]

The inventory_import command synchronizes a Tower inventory object with a text-based inventory file, dy-
namic inventory script, or a directory of one or more of the above as supported by core Ansible.

When running this command, specify either an --inventory-id or --inventory-name, and the path to the
Ansible inventory source (--source).

By default, inventory data already stored in Tower blends with data from the external source. To use only the external
data, specify --overwrite. To specify that any existing hosts get variable data exclusively from the --source,
specify --overwrite_vars. The default behavior adds any new variables from the external source, overwriting
keys that do not already exist, but preserves any variables that were not sourced from the external data source.

Note: With the release of Ansible Tower 2.4.0, edits and additions to Inventory host variables now persist beyond an
inventory sync as long as --overwrite_vars is not set. To have inventory syncs behave as they did before, it is
now required that both --overwrite and --overwrite_vars are set.

8.2 Cleanup of old data

tower-manage has a variety of commands used to clean old data from Tower. Tower administrators can use the
Tower Management Jobs interface for access or use the command line.

• tower-manage cleanup_jobs [--help]

This permanently deletes the job details and job output for jobs older than a specified number of days.

• tower-manage cleanup-deleted [--help]

This permanently deletes any deleted Tower objects that are older than a specified number of days.

• tower-manage cleanup_activitystream [--help]

This permanently deletes any activity stream data older than a specific number of days.

22

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

8.3 HA management

Refer to the High Availability section for details on the tower-manage register_instance and
tower-manage remove_instance commands.

Note: Do not run other tower-manage commands unless instructed by Ansible Support.

8.3. HA management 23

CHAPTER

NINE

SETTING UP AUTHENTICATION

Ansible Tower version 2.4.0 added authentication methods to help simplify logins for end users–offering single sign-
ons using existing login information to sign into a third party website rather than creating a new login account specifi-
cally for that website.

Social authentication in Ansible Tower can be configured to centrally use OAuth2, while enterprise-level authentication
can be configured for SAML, RADIUS, or even LDAP as a source for authentication information.

For websites, such as Google or GitHub, that offer social functionality to users, social login is often implemented
using the OAuth standard. OAuth is a secure authorization protocol which is commonly used in conjunction with
authentication to grant 3rd party applications a “session token” allowing them to make API calls to providers on the
user’s behalf.

SAML (Security Assertion Markup Language) is an XML-based, open-standard data format for exchanging authenti-
cation and authorization data between an identity provider and a service provider.

The RADIUS distributed client/server system allows you to secure networks against unauthorized access and can be
implemented in network environments requiring high levels of security while maintaining network access for remote
users.

9.1 Basic Authentication Settings:

To enable or disable HTTP basic authentication as used in the API browser, edit the sessions.py file, setting the
following line as either True or False:

AUTH_BASIC_ENABLED = False

After saving your changes, run the ansible-tower-service restart command to ensure your changes take
effect.

9.2 Google OAuth2 Settings

Create a project at https://console.developers.google.com/ and obtain an OAuth2 key and secret for a web application.
You will also need to provide the following callback URL for your application, replacing “tower.example.com” with
the FQDN to your Tower server: https://tower.example.com/sso/complete/google-oauth2/

Ensure that the Google+ API is enabled.

Edit the /etc/tower/conf.d/social_auth.py file and enter in the appropriate values:

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = ''
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = ''

24

https://console.developers.google.com/

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

To restrict the domains who are allowed to login using Google OAuth2, uncomment the following line.

SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_DOMAINS = ['example.com']

To only allow a single domain to authenticate using Google OAuth2, uncomment the following line; Google will not
display any other accounts if the user is logged in with multiple Google accounts.

SOCIAL_AUTH_GOOGLE_OAUTH2_AUTH_EXTRA_ARGUMENTS = {'hd': 'example.com'}

Refer to the Python Social Auth documentation for advanced settings: https://python-social-auth.readthedocs.org/en/
latest/backends/google.htmlgoogle-oauth2

Run ansible-tower-service restart on the Tower server to restart the instance and apply your changes.

9.3 Github OAuth2 Settings

Create a developer application at https://github.com/settings/developers and obtain an OAuth2 key (Client ID)
and secret (Client Secret). You will also need to provide the following callback URL for your application, re-
placing “tower.example.com” with the FQDN to your Tower server: https://tower.example.com/sso/
complete/github/

Edit the /etc/tower/conf.d/social_auth.py file and enter in the appropriate values:

SOCIAL_AUTH_GITHUB_KEY = ''
SOCIAL_AUTH_GITHUB_SECRET = ''

When defining authentication with either an organization or a team within an organization, you should use the specific
organization and team settings. Authentication can be limited by an organization as well as by a team within an
organization.

You can also choose to allow all by specifying non-organization or non-team based settings (as shown above).

To limit users who can login to Tower, in this case, to only those in an organization or on a team within an organization,
rather than using:

SOCIAL_AUTH_GITHUB_KEY

Use the following instead (depending on whether you are setting up for an organization or a team):

SOCIAL_AUTH_GITHUB_ORG_KEY

SOCIAL_AUTH_GITHUB_TEAM_KEY

To setup authentication for your organization, create an organization-owned application at https://github.
com/organizations/<yourorg>/settings/applications and obtain an OAuth2 key (Client ID) and
secret (Client Secret). Each key and secret must belong to a unique application and cannot be shared or reused
between different social authentication backends. Provide the following callback URL for your application, re-
placing “tower.example.com” with the FQDN to your Tower server: https://tower.example.com/sso/
complete/github-org/

SOCIAL_AUTH_GITHUB_ORG_KEY = ''
SOCIAL_AUTH_GITHUB_ORG_SECRET = ''
SOCIAL_AUTH_GITHUB_ORG_NAME = ''

To setup authentication for your team, create a team-owned application at https://github.com/
organizations/<yourorg>/settings/applications and obtain an OAuth2 key (Client ID) and secret

9.3. Github OAuth2 Settings 25

https://python-social-auth.readthedocs.org/en/latest/backends/google.htmlgoogle-oauth2
https://python-social-auth.readthedocs.org/en/latest/backends/google.htmlgoogle-oauth2
https://github.com/settings/developers

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

(Client Secret). Each key and secret must belong to a unique application and cannot be shared or reused between dif-
ferent social authentication backends. You will also need to provide the following callback URL for your application,
replacing “tower.example.com” with the FQDN to your Tower server: https://tower.example.com/sso/
complete/github-team/

Find the numeric team ID using the Github API: http://fabian-kostadinov.github.io/2015/01/16/
how-to-find-a-github-team-id/

SOCIAL_AUTH_GITHUB_TEAM_KEY = ''
SOCIAL_AUTH_GITHUB_TEAM_SECRET = ''
SOCIAL_AUTH_GITHUB_TEAM_ID = ''

Refer to Python Social Auth documentation for advanced settings: https://python-social-auth.readthedocs.org/en/
latest/backends/github.html

Run ansible-tower-service restart on the Tower server to restart the instance and apply your changes.

9.4 SAML Authentication Settings

Note: SAML authentication is a feature specific to Enterprise-level license holders.

To setup SAML authentication, edit the /etc/tower/conf.d/social_auth.py file and enter in the appropri-
ate values.

Set the SOCIAL_AUTH_SAML_SP_ENTITY_ID to a URL for a domain name you own (does not need to be a valid
URL as this value is only used as a unique ID).

SOCIAL_AUTH_SAML_SP_ENTITY_ID = 'https://tower.example.com'

Create a keypair for Tower to use as a service provider (SP) and include the certificate and private key contents:

SOCIAL_AUTH_SAML_SP_PUBLIC_CERT = ''
SOCIAL_AUTH_SAML_SP_PRIVATE_KEY = ''

As an example for public certs:

```SOCIAL_AUTH_SAML_SP_PUBLIC_CERT = '''

-----BEGIN CERTIFICATE----
... cert text ...
-----END CERTIFICATE----

As an example for private keys:

```SOCIAL_AUTH_SAML_SP_PRIVATE_KEY = '''
-----BEGIN PRIVATE KEY--
... key text ...
-----END PRIVATE KEY----
'''

Configure the following settings with information about your app and contact information:

SOCIAL_AUTH_SAML_ORG_INFO = {
'en-US': {

'name': 'example',

9.4. SAML Authentication Settings 26

http://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/
http://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/
https://python-social-auth.readthedocs.org/en/latest/backends/github.html
https://python-social-auth.readthedocs.org/en/latest/backends/github.html

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

'displayname': 'Example',
'url': 'http://www.example.com',

},
}
SOCIAL_AUTH_SAML_TECHNICAL_CONTACT = {

'givenName': 'Some User',
'emailAddress': 'suser@example.com',

}
SOCIAL_AUTH_SAML_SUPPORT_CONTACT = {

'givenName': 'Some User',
'emailAddress': 'suser@example.com',

}

Configure the entity ID, SSO URL and certificate for each identity provider (IdP) in use. Multiple SAML IdPs are
supported.

Some IdPs may provide user data using attribute names that differ from the default OIDs (https://github.com/omab/
python-social-auth/blob/master/social/backends/saml.pyL16). Attribute names may be overridden for each IdP as
shown below.

SOCIAL_AUTH_SAML_ENABLED_IDPS = {
'myidp': {

'entity_id': 'https://idp.example.com',
'url': 'https://myidp.example.com/sso',
'x509cert': '',

},
'onelogin': {

'entity_id': 'https://app.onelogin.com/saml/metadata/123456',
'url': 'https://example.onelogin.com/trust/saml2/http-post/sso/123456',
'x509cert': '',
'attr_user_permanent_id': 'name_id',
'attr_first_name': 'User.FirstName',
'attr_last_name': 'User.LastName',
'attr_username': 'User.email',
'attr_email': 'User.email',

},
}

Run ansible-tower-service restart on the Tower server to restart the instance and apply your changes.

Once configuration is complete, you will need to register your SP with each IdP. Provide the entity ID and the following
callback URL for your application, replacing “tower.example.com” with the FQDN to your Tower server: https:/
/tower.example.com/sso/complete/saml/

If your IdP allows uploading an XML metadata file, you can download one from your Tower installation customized
with the settings above: https://tower.example.com/sso/metadata/saml/

9.5 RADIUS Authentication Settings

Note: RADIUS authentication is a feature specific to Enterprise-level license holders.

Ansible Tower can be configured to centrally use RADIUS as a source for authentication information. If backed by
Active Directory, user access can be configured for RADIUS.

9.5. RADIUS Authentication Settings 27

https://github.com/omab/python-social-auth/blob/master/social/backends/saml.pyL16
https://github.com/omab/python-social-auth/blob/master/social/backends/saml.pyL16

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

Edit the /etc/tower/conf.d/radius.py file and enter in the appropriate RADIUS server settings (skipped
when RADIUS_SERVER is blank):

RADIUS_SERVER = ''
RADIUS_PORT = 1812
RADIUS_SECRET = ''

Run ansible-tower-service restart on the Tower server to restart the instance and apply your changes.

9.6 Using LDAP with Tower

Note: LDAP authentication is a feature specific to Enterprise-level license holders.

Administrators use LDAP as a source for authentication information for Tower users. User authentication is provided,
but not the synchronization of user permissions and credentials. Organization membership (as well as the organization
admin) and team memberships can be synchronized.

When so configured, a user who logs in with an LDAP username and password automatically gets a Tower account
created for them and they can be automatically placed into organizations as either regular users or organization admin-
istrators.

Users created via an LDAP login cannot change their username, first name, last name, or set a local password for
themselves. This is also tunable to restrict editing of other field names.

LDAP integration for Tower is configured in the file /etc/tower/conf.d/ldap.py. No configuration is ac-
cessible via the Tower user interface. Review the comments in that file for information on LDAP configuration and
contact Ansible support via the Red Hat Customer Portal if you need help: https://access.redhat.com/

Note: Users of older versions of Tower (prior to Tower version 2.3) should update /etc/tower/settings.py
instead of files within /etc/tower/conf.d/.

9.6.1 Enabling Logging for LDAP

To enable logging for LDAP, you must set the level to DEBUG in the LDAP configuration file, /etc/tower/conf/
ldap.py:

LOGGING['handlers']['tower_warnings']['level'] = 'DEBUG'

9.7 Organization and Team Mapping

Next, you will need to control which users are placed into which Tower organizations based on their username and
email address (mapping out your organization admins/users from social or enterprise-level authentication accounts).

Dictionary keys are organization names. Organizations will be created, if not already present and if the license allows
for multiple organizations. Otherwise, the single default organization is used regardless of the key.

Values are dictionaries defining the options for each organization’s membership. For each organization, it is possible to
specify which users are automatically users of the organization and also which users can administer the organization.

admins: None, True/False, string or list/tuple of strings.

9.6. Using LDAP with Tower 28

https://access.redhat.com/

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

• If None, organization admins will not be updated.

• If True, all users using social authentication will automatically be added as admins of the organization.

• If False, no social authentication users will be automatically added as admins of the organization.

• If a string or list of strings, specifies the usernames and emails for users who will be added to the organization.
Compiled regular expressions may also be used instead of string literals.

remove_admins: True/False. Defaults to False.

• If True, a user who does not match will be removed from the organization’s administrative list.

users: None, True/False, string or list/tuple of strings. Same rules apply as for admins.

remove_users: True/False. Defaults to False. Same rules as apply for remove_admins.

SOCIAL_AUTH_ORGANIZATION_MAP = {
Add all users to the default organization.

'Default': {
'users': True,

},
'Test Org': {

'admins': ['admin@example.com'],
'users': True,

},
'Test Org 2': {

'admins': ['admin@example.com', re.compile(r'^tower-[^@]+*?@.*$],
'users': re.compile(r'^[^@].*?@example\.com$'),

},
}

Organization mappings may be specified separately for each social authentication backend. If defined, these configu-
rations will take precedence over the global configuration above.

SOCIAL_AUTH_GOOGLE_OAUTH2_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_ORG_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_ORGANIZATION_MAP = {}
SOCIAL_AUTH_SAML_ORGANIZATION_MAP = {}

Mapping of team members (users) from social auth accounts. Keys are team names (will be created if not present).
Values are dictionaries of options for each team’s membership, where each can contain the following parameters:

organization: string. The name of the organization to which the team belongs. The team will be created if the com-
bination of organization and team name does not exist. The organization will first be created if it does not exist. If the
license does not allow for multiple organizations, the team will always be assigned to the single default organization.

users: None, True/False, string or list/tuple of strings.

• If None, team members will not be updated.

• If True/False, all social auth users will be added/removed as team members.

• If a string or list of strings, specifies expressions used to match users. User will be added as a team member if
the username or email matches. Compiled regular expressions may also be used instead of string literals.

remove: True/False. Defaults to False. If True, a user who does not match the rules above will be removed from the
team.

SOCIAL_AUTH_TEAM_MAP = {
'My Team': {

'organization': 'Test Org',

9.7. Organization and Team Mapping 29

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

'users': ['re.compile(r'^[^@]+?@test\.example\.com$')'],
'remove': True,

},
'Other Team': {

'organization': 'Test Org 2',
'users': re.compile(r'^[^@]+?@test2\.example\.com$'),
'remove': False,

},
}

Team mappings may be specified separately for each social authentication backend, based on which of these you setup.
If defined, these configurations will take precedence over the the global configuration above.

SOCIAL_AUTH_GOOGLE_OAUTH2_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_ORG_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_TEAM_MAP = {}
SOCIAL_AUTH_SAML_TEAM_MAP = {}

Uncomment the line below (i.e. set SOCIAL_AUTH_USER_FIELDS to an empty list) to prevent new user accounts
from being created. Only users who have previously logged in to Tower using social or enterprise-level authentication
or have a user account with a matching email address will be able to login.

SOCIAL_AUTH_USER_FIELDS = []

9.7. Organization and Team Mapping 30

CHAPTER

TEN

CHANGING THE DEFAULT TIMEOUT FOR AUTHENTICATION

Introduced in Ansible Tower 2.4 is a feature which adds an Auth-Token-Timeout to every response that includes a
valid user-supplied token. The value of Auth-Token-Timeout is determined by the configuration (time expressed
in seconds) of the AUTH_TOKEN_EXPIRATION.

The value of Auth-Token-Timeout indicates the length of time, in seconds, that the supplied token is valid, from
the moment the request was initiated.

Create an API settings file (/etc/tower/conf.d/session.py) with the appropriately defined time variable:

AUTH_TOKEN_EXPIRATION = <seconds> # default 1800

Create a local_settings.json file in /var/lib/awx/public/static/js/local_settings.json
with any necessary settings.

The change from using a local_config.js file, which would overwrite all settings in the config.js file,
to using a local_settings.json file, which only overwrites specific settings in the config.js file, was
introduced in Ansible Tower version 2.4.

Note: When including a local_settings.json file with specifically configured variables, it will overwrite
specific settings in the config.js file.

Tower is designed to look for the config.js file first, ensuring all preset configuration properties are set properly.
Once loaded, Tower looks for a file called local_settings.json and checks to see which, if any, settings it
should overwrite from config.js. Users can now specify only the properties they want to change.

Note: If you are using the local_settings.js file to configure some of your settings for the UI, you must
switch to using the new local_settings.json file. If you do not, your Tower instance will be loaded with the
default settings. Custom settings will not appear until you switch to using the new local_settings.json file.

For example, to turn the console debugger on, local_settings.json could contain the following object (no
additional variables are needed):

{ "debug_mode" : true}

The variables you can use within the local_settings.json file are as follows:

• tooltip_delay: {show: 500, hide: 100} – Default number of milliseconds to delay display-
ing/hiding tooltips

• debug_mode: false – Enable console logging messages

• password_length: 8 – Minimum user password length. Set to 0 to not set a limit

31

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

• password_hasLowercase: true – Requires a lowercase letter in the password

• password_hasUppercase: false – Requires an uppercase letter in the password

• password_hasNumber: true – Requires a number in the password

• password_hasSymbol: false – Requires one of these symbols to be in the password: -
!$%^&*()_+|~=‘{}[]:”;’<>?,./

• variable_edit_modes: {yaml, json} – Options passed to ControlMirror for editing YAML/JSON
variables (see below)

variable_edit_modes: {
yaml: {

mode:"text/x-yaml",
matchBrackets: true,
autoCloseBrackets: true,
styleActiveLine: true,
lineNumbers: true,
gutters: ["CodeMirror-lint-markers"],
lint: true

},
json: {

mode: "application/json",
styleActiveLine: true,
matchBrackets: true,
autoCloseBrackets: true,
lineNumbers: true,
gutters: ["CodeMirror-lint-markers"],
lint: true

}
}

Note: If you are having trouble getting your authentication to stay, in that you have to continuously keep logging
in over and over, and you are accessing Tower directly, you may just need to clear your web browser’s cache. In
situations like this, often the authentication token has cached in the browser session and needs to be cleared.

32

CHAPTER

ELEVEN

WORKING WITH SESSION LIMITS

Setting a session limit allows administrators to limit the number of simultaneous sessions per user or per IP.

In Ansible Tower, a session is created for each browser that a user uses to log in, which forces the user to log out any
extra sessions after they exceed the administrator-defined maximum.

Session limits may be important, depending on your particular setup. For example, perhaps you only want a single
user on your system with a single login per device (where the user could log in on his work laptop, phone, or home
computer). In such a case, you would want to create a session limit equal to 1 (one). If the user logs in on his laptop, for
example, then logs in using his phone, his laptop session expires (times out) and only the login on the phone persists.

While session counts can be very limited, they can also be expanded to cover as many session logins as are needed by
your organization.

When a user logs in and their login results in other users being logged out, the session limit has been reached and those
users who are logged out are notified as to why the logout occurred.

To make changes to your session limits, edit the sessions.py file. The settings you should change are detailed
below:

Seconds before auth tokens expire.
AUTH_TOKEN_EXPIRATION = 1800

Maximum number of per-user valid, concurrent tokens.
-1 is unlimited
AUTH_TOKEN_PER_USER = -1

Enable / Disable HTTP Basic Authentication used in the API browser
Note: Session limits are not enforced when using HTTP Basic Authentication.
AUTH_BASIC_ENABLED = True

Note: To truly make the best use of session limits, disable AUTH_BASIC_ENABLED by changing the value to
False as it falls outside of the scope of session limit enforcement.

Caution: Proactive session limits will kick the user out when the session is idle. It is strongly recommended that
you do not set the session limit to anything less than 1 minute, as doing so will break your Ansible Tower instance.

33

CHAPTER

TWELVE

BACKING UP AND RESTORING TOWER

The ability to backup and restore your system(s) has been integrated into the Tower setup playbook, making it easy
for you to backup and replicate your Tower instance as needed.

Note: The new backup/restore mechanism only works on systems which have been upgraded or installed as Ansible
Tower 2.2. If you have an instance on an earlier version of Tower that you want to backup, for example, you must
perform this process manually. For additional information, refer to: https://support.ansible.com/hc/en-us/articles/
203295497-Tower-Manual-Backup-Restore

The Tower setup playbook is invoked as setup.sh from the path where you unpacked the Tower installer tarball.
It uses the tower_setup_conf.yml and inventory files written by the Tower Installation Wizard. The setup
script takes the following arguments for backing up and restoring:

• -b Perform a database backup rather than an installation.

• -r BACKUP_FILE Perform a database restore rather than an installation.

As the root user, call setup.sh with the appropriate parameters and Tower backup or restored as configured.

root@localhost:~$./setup.sh -b

root@localhost:~$./setup.sh -r BACKUP_FILE

12.1 Backup/Restore Playbooks

In addition to the install.yml file included with your setup.sh setup playbook, there are also backup.yml
and restore.yml files for your backup and restoration needs.

These playbooks serve two functions:

• To backup the configuration files, keys, and other relevant files, plus the database of the Tower installation.

• To restore the backed up files and data to a freshly installed and working second instance of Tower.

The backup.yml file looks like the following:

- hosts: primary

gather_facts: yes
roles:
- backup

And is called within setup.sh as:

34

https://support.ansible.com/hc/en-us/articles/203295497-Tower-Manual-Backup-Restore
https://support.ansible.com/hc/en-us/articles/203295497-Tower-Manual-Backup-Restore

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

b)
PLAYBOOK="backup.yml"
TEMP_LOG_FILE="backup.log"
OPTIONS="$OPTIONS --force-handlers"
;;

The restore.yml file looks like the following:

- hosts: primary

gather_facts: yes
roles:
- restore

And is called within setup.sh as:

r)
PLAYBOOK="restore.yml"
TEMP_LOG_FILE="restore.log"
BACKUP_FILE=`realpath $OPTARG`
OPTIONS="$OPTIONS --force-handlers"
;;

When restoring your system, Tower checks to see that the backup file exists before beginning the restoration. If the
backup file is not available, your restoration will fail.

Note: Ensure your Tower host(s) are properly set up with SSH keys or user/pass variables in the hosts file, and that
the user has sudo access.

12.2 Backup and Restoration Considerations

• Disk Space: Review your disk space requirements to ensure you have enough room to backup configuration
files, keys, and other relevant files, plus the database of the Tower installation

• System Credentials: Confirm you have the system credentials you need when working with a local database or
a remote database. On local systems, you may need root or sudo access, depending on how credentials were
setup. On remote systems, you may need different credentials to grant you access to the remote system you are
trying to backup or restore.

12.2. Backup and Restoration Considerations 35

CHAPTER

THIRTEEN

USING CUSTOM LOGOS IN ANSIBLE TOWER

Note: Custom rebranding was added to Ansible Tower with version 2.4.0 and is available to Enterprise-level license
holders.

To set up a custom logo, you must upload a file called custom_console_logo.png into the /var/lib/awx/
public/static/assets/ directory. For the custom logo to look its best, use a .png file with a transparent
background.

Next, either create or add the following variable to /var/lib/awx/public/static/local_settings.
json:

{ "custom_logo": true }

Setting the custom_logo variable to false (or not setting it at all), results in the appearance of the standard
Ansible Tower logo.

Note: If you cannot see the image in the Ansible Tower login modal after moving it into the assets directory, you
must chown this file as the “awx” user, chmod this file as 755 for the correct permissions, and fix any SELinux
labeling (if you are on Red Hat Enterprise Linux or CentOS, or another OS that uses SELinux). You can do this
by using the wget or scp commands and directly accessing the assets directory (/var/lib/awx/public/
static/assets/).

If needed, you can add specific information (such as a legal notice or a disclaimer) to a text box in the login modal
by adding "custom_login_info": "your notice content here” to the object (/var/lib/awx/
public/static/local_settings.json). Any content added must be in plain text, as custom HTML or
other markup languages are not supported. If multiple paragraphs of text are needed, new lines (paragraphs) must
be escaped as \n within the block of text, instead of being entered as a specific lines within the block of text in the
.json file. Invalid .json files will error out if the syntax/formatting is incorrect.

For example, if you customized /var/lib/awx/public/static/local_settings.json as follows, and
added the appropriate logo:

{ "custom_logo": true, "custom_login_info": "The mustard indicates progress." }

The Tower login dialog would look like this:

36

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

With regard to upgrades of Ansible Tower, both of the local_settings.json and custom_console_logo.
png files should persist without any special work.

37

CHAPTER

FOURTEEN

TROUBLESHOOTING, TIPS, AND TRICKS

14.1 Error logs

Tower server errors are logged in /var/log/tower. Supervisors logs can be found in /var/log/
supervisor/. Apache web server errors are logged in the httpd error log. Configure other Tower logging needs in
/etc/tower/conf.d/.

Explore client-side issues using the JavaScript console built into most browsers and report any errors to Ansible via
the Red Hat Customer Portal at https://access.redhat.com/.

14.2 Problems connecting to your host

If you are unable to run the helloworld.yml example playbook from the Quick Start Guide or other playbooks
due to host connection errors, try the following:

• Can you ssh to your host? Ansible depends on SSH access to the servers you are managing.

• Are your hostnames and IPs correctly added in your inventory file? (Check for typos.)

14.3 Problems running a playbook

If you are unable to run the helloworld.yml example playbook from the Quick Start Guide or other playbooks
due to playbook errors, try the following:

• Are you authenticating with the user currently running the commands? If not, check how the username has been
setup or pass the --user=username or -u username commands to specify a user.

• Is your YAML file correctly indented? You may need to line up your whitespace correctly. Indentation level is
significant in YAML. You can use yamlint to check your playbook. For more information, refer to the YAML
primer at: http://docs.ansible.com/YAMLSyntax.html

• Items beginning with a - are considered list items or plays. Items with the format of key: value operate
as hashes or dictionaries. Ensure you don’t have extra or missing - plays.

14.4 Problems when running a job

If you are having trouble running a job from a playbook, you should review the playbook YAML file. When importing
a playbook, either manually or via a source control mechanism, keep in mind that the host definition is controlled by
Tower and should be set to hosts: all.

38

https://access.redhat.com/
http://docs.ansible.com/YAMLSyntax.html

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

14.5 View a listing of all ansible_ variables

Ansible by default gathers “facts” about the machines under its management, accessible in Playbooks and in templates.
To view all facts available about a machine, run the setup module as an ad hoc action:

ansible -m setup hostname

This prints out a dictionary of all facts available for that particular host. For more information, refer to: https://docs.
ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts

14.6 Locate and configure the configuration file

While Ansible does not require a configuration file, OS packages often include a default one in /etc/ansible/
ansible.cfg for possible customization. You can also install your own copy in ~/.ansible.cfg or keep a
copy in a directory relative to your playbook named as ansible.cfg.

To learn which values you can use in this file, refer to the configuration file on github.

Using the defaults are acceptable for starting out, but know that you can configure the default module path or connec-
tion type here, as well as other things.

14.7 Playbooks aren’t showing up in the “Job Template” drop-down

If your playbooks are not showing up in the Job Template drop-down list, here are a few things you can check:

• Make sure that the playbook is valid YML and can be parsed by Ansible.

• Make sure the permissions and ownership of the project path (/var/lib/awx/projects) is set up so that the “awx”
system user can view the files. You can run this command to change the ownership:

chown awx -R /var/lib/awx/projects/

14.8 Playbook stays in pending

If you are attempting to run a playbook Job and it stays in the “Pending” state indefinitely, try the following:

• Ensure all supervisor services are running via supervisorctl status.

• Check to ensure that the /var/ partition has more than 1 GB of space available. Jobs will not complete with
insufficient space on the /var/ partition.

• Run ansible-tower-service restart on the Tower server.

If you continue to have problems, run sosreport as root on the Tower server, then file a support request with the
result.

14.9 Cancel a Tower job

When issuing a cancel request on a currently running Tower job, Tower issues a SIGINT to the
ansible-playbook process. While this does cause Ansible to exit, Ansible is designed to finish tasks before
it exits and only does so after the currently running play has completed.

14.5. View a listing of all ansible_ variables 39

https://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
https://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
https://github.com/ansible/ansible/blob/devel/examples/ansible.cfg
https://access.redhat.com/

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

With respect to software dependencies, if a running job is canceled, the job is essentially removed but the dependencies
will remain.

14.10 View Ansible outputs for JSON commands when using Tower

When working with Ansible Tower, you can use the API to obtain the Ansible outputs for commands in JSON format.

To view the Ansible outputs, browse to:

https://<tower server name>/api/v1/jobs/<job_id>/job_events/

14.11 Reusing an external HA database causes installations to fail

Instances have been reported where reusing the external DB during subsequent HA installations causes installation
failures.

For example, say that you performed an HA installation. Next, say that you needed to do this again and performed a
second HA installation reusing the same external database, only this subsequent installation failed.

When setting up an external HA database which has been used in a prior installation, the HA database must be
manually cleared before any additional installations can succeed.

14.12 PRoot functionality and variables

The PRoot functionality in Ansible Tower limits which directories on the Tower file system are available for playbooks
to see and use during playbook runs. You may find that you need to customize your PRoot settings in some cases. To
fine tune your usage of PRoot, there are certain variables that can be set:

Enable proot support for running jobs (playbook runs only).
AWX_PROOT_ENABLED = False

Command/path to proot.
AWX_PROOT_CMD = 'proot'

Additional paths to hide from jobs using proot.
AWX_PROOT_HIDE_PATHS = []

Additional paths to show for jobs using proot.
AWX_PROOT_SHOW_PATHS = []

To customize your PRoot settings, navigate to the /etc/tower/settings.py file. Once your changes have
been saved, restart services with the ansible-tower-service restart command.

14.13 Changing the WebSockets port for live events

Ansible Tower uses port 8080 on the Tower server to stream live updates of playbook activity and other events to the
client browser. If this port is already in use or is blocked by your firewall, you can reconfigure Tower to use a different
port.

14.10. View Ansible outputs for JSON commands when using Tower 40

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

1. Create a local_settings.json file, add an entry for websocket_port, and set the value to the desired
port, such as: {"websocket_port": 8080}.

2. Edit /etc/awx/settings.py and add a new line like the following (in this example, 8081 is your new
desired port): SOCKETIO_LISTEN_PORT=8081

3. Make sure your firewall allows traffic through this port.

4. Restart Tower by running the admin utility script, ansible-tower-service restart.

Note that local_settings.json is removed when upgrading Tower to a new release. You must recreate and
reapply the change on each upgrade of Tower.

14.14 Private EC2 VPC Instances in Tower Inventory

By default, Tower only shows instances in a VPC that have an Elastic IP (EIP) associated with them. To see all of your
VPC instances, perform the following steps:

1. In the Tower interface, select your inventory.

2. Click on the group that has the Source set to AWS, and click on the Source tab.

3. In the Source Variables box, enter:

vpc_destination_variable: private_ip_address

Next, save and then trigger an update of the group. Once this is done, you should be able to see all of your VPC
instances.

Note: Tower must be running inside the VPC with access to those instances if you want to configure them.

14.15 Using the Tower CLI Tool

Ansible Tower has a full-featured command line interface. It communicates with Tower via Tower’s REST API. You
can install it from any machine with access to your Tower machine, or on Tower itself.

Installation can be done using the pip command:

pip install ansible-tower-cli

Refer to api_towercli and https://github.com/ansible/tower-cli/blob/master/README.md for configuration and usage
instructions.

14.16 Changing the Tower Admin Password

During the installation process, you are prompted to enter an administrator password which is used for the admin
superuser/first user created in Tower. If you log into the instance via SSH, it will tell you the default admin password
in the prompt. If you need to change this password at any point, run the following command as root on the Tower
server:

tower-manage changepassword admin

14.14. Private EC2 VPC Instances in Tower Inventory 41

http://docs.ansible.com/ansible-tower/2.4.3/html/towerapi/intro.html#api-towercli
https://github.com/ansible/tower-cli/blob/master/README.md

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

Next, enter a new password. After that, the password you have entered will work as the admin password in the web
UI.

14.17 Setting up a jump host to use with Tower

Credentials supplied by Tower will not flow to the jump host via ProxyCommand. They are only used for the end-node
once the tunneled connection is set up.

To make this work, configure a fixed user/keyfile in the AWX user’s SSH config in the ProxyCommand definition that
sets up the connection through the jump host. For example:

Host tampa
Hostname 10.100.100.11
IdentityFile [privatekeyfile]

Host 10.100..
Proxycommand ssh -W [jumphostuser]@%h:%p tampa

Note: You must disable PRoot by default if you need to use a jump host. You can disable PRoot by navigating to
the /etc/tower/settings.py file, setting AWX_PROOT_ENABLED=False, then restarting services with the
ansible-tower-service restart command.

14.17. Setting up a jump host to use with Tower 42

CHAPTER

FIFTEEN

USABILITY ANALYTICS AND DATA COLLECTION

Introduced in Ansible Tower version 2.4.0 is a behind the scenes functionality that allows Ansible, Inc. to collect
usability data with regard to Tower specifically. This software was added to help Ansible, Inc. understand how you or
your users are accessing Tower, to help enhance future releases, and to help streamline your user experience.

Only users installing a trial of Tower or a fresh installation of Tower are opted-in for this data collection.

If you want to change how you participate in this analytics collection, you can opt out or change your settings.

To opt out, navigate to the /etc/tower/ directory and set the following in settings.py:

PENDO_TRACKING_STATE = 'off'

Once set, you must restart your instance of Tower using the ansible-tower-service restart command,
re-authenticate, and force-reload your browser session.

To re-enable data collection, navigate to the /etc/tower/ directory and set the following in settings.py:

PENDO_TRACKING_STATE = 'detailed'

Once set, you must restart your instance of Tower using the ansible-tower-service restart command,
re-authenticate, and force-reload your browser session.

To enable data collection without your specific user data, navigate to the /etc/tower/ directory and set the follow-
ing in settings.py:

PENDO_TRACKING_STATE = 'anonymous'

Once set, you must restart your instance of Tower using the ansible-tower-service restart command,
re-authenticate, and force-reload your browser session.

43

CHAPTER

SIXTEEN

POSTFACE

Through community efforts, rigorous testing, dedicated engineers, enterprising sales teams, imaginative marketing,
and outstanding professional services and support teams, the growing but always impressive group of individuals that
make the Ansible-branded products can feel proud in saying:

Ansible, Ansible Tower, Tower CLI, and Ansible Galaxy are all, as Doge would say, “much approved.”1

1 http://knowyourmeme.com/memes/doge

44

http://knowyourmeme.com/memes/doge

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

45

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

Josie Tested - Doge Approved.

46

CHAPTER

SEVENTEEN

INDEX

• genindex

This document is Copyright © 2015 Red Hat, Inc. All rights reserved.

Ansible, Ansible Tower, Red Hat, and Red Hat Enterprise Linux are trademarks of Red Hat, Inc., registered in the
United States and other countries.

If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide
a link to the original version.

Third Party Rights

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Rackspace trademarks, service marks, logos and domain names are either common-law trademarks/service marks or
registered trademarks/service marks of Rackspace US, Inc., or its subsidiaries, and are protected by trademark and
other laws in the United States and other countries.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

47

INDEX

A
activity stream cleanup management job, 11
admin password

changing password, 41
admin password change

troubleshooting, 41
admin utility script, 5
Amazon RDS

high availability, 16
analytics collection, 43
Ansible output for JSON commands, 40
ansible-tower script replacement, 5
ansible_variables, viewing all

troubleshooting, 39
AUTH_BASIC_ENABLED

session limits, 33
AUTH_TOKEN_PER_USER

session limits, 33
authentication, 24

LDAP, 28
organization mapping, 28
RADIUS Authentication Settings, 27
SAML Service Provider, 26
team mapping, 28

authentication expiring, 32
authentication timeout

changing the default, 31
troubleshooting, 31

authentication token, 32

B
backups, 34

considerations, 35
playbooks, 34

basic authentication, 24

C
changing password

admin password, 41
changing the default

authentication timeout, 31
cleaning old data, 8

cleanup activity stream
management jobs, 11

cleanup fact details
management jobs, 13

cleanup job history
management jobs, 8

command line interface
Tower CLI, 41
troubleshooting, 41

components
licenses, 3

configuration file configuration
troubleshooting, 39

configuration file location
troubleshooting, 39

custom
logo, 36

custom inventory scripts, 6
custom logo, 36

D
data collection, 43
DEB files

licenses, 3
deleted object history

management jobs, 10

E
EC2

VPC instances, 41
EC2 VPC instances

troubleshooting, 41
enterprise authentication, 24
error logs

troubleshooting, 38
external HA database

installation failure, 40

F
fact details cleanup management job, 13
features, 1
functionality

48

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

PRoot, 40

G
general help

troubleshooting, 38
Github OAuth2

social authentication, 25
Google OAuth2

social authentication, 24

H
help, 38
high availability, 16

Amazon RDS, 16
Postgresql, 16
primary instances, 17
secondary instances, 17
setup considerations, 16
viewing configuration, 18

host connections
troubleshooting, 38

I
init script replacement, 5
installation bundle

licenses, 3
installation failure

external HA database, 40
installation wizard

playbook backup/restore arguments, 34
inventory scripts

custom, 6
writing, 7

J
job cancellation

troubleshooting, 39
job does not run

troubleshooting, 38
job history cleanup management job, 8
Job Template drop-down list

playbooks are not viewable, 39
JSON commands, Ansible output, 40
jump host

ProxyCommand, 42
troubleshooting, 42

L
LDAP, 28

authentication, 28
license, 1, 2

features, 3
trial, 2

types, 2
license features, 1
licenses

components, 3
DEB files, 3
installation bundle, 3
RPM files, 3

live events
port changes, 40
troubleshooting, 40

log, 32
logfiles, 21
logo

custom, 36

M
management jobs, 8

cleanup activity stream, 11
cleanup fact details, 13
cleanup job history, 8
deleted object history, 10

O
object history deleted data management job, 10
organization mapping, 28

authentication, 28

P
pending playbook

troubleshooting, 39
playbook setup

backup/restore arguments, 34
playbooks are not viewable

Job Template drop-down list, 39
playbooks not appearing

troubleshooting, 39
port changes

live events, 40
postface, 44
Postgresql

high availability, 16
primary instances

high availability, 17
post-installation changes, 18

PRoot
functionality, 40
troubleshooting, 39, 40
variables, 40

proxy support, 20
ProxyCommand

jump host, 42
troubleshooting, 42

Index 49

Ansible Tower Administration Guide, Release Ansible Tower 2.4.3

R
RADIUS Authentication Settings

authentication, 27
rebranding, 36
removing old data, 8
restart Tower, 5
restorations, 34

considerations, 35
playbooks, 34

RPM files
licenses, 3

S
SAML Service Provider

authentication, 26
scripts, admin utility, 5
secondary instances

decommissioning, 19
failover, 19
high availability, 17
promotion to primary, 19

session limits, 33
AUTH_BASIC_ENABLED, 33
AUTH_TOKEN_PER_USER, 33

session.py, 33
social authentication, 24

Github OAuth2, 25
Google OAuth2, 24

start Tower, 5
stop Tower, 5
support, 1, 2

T
team mapping, 28

authentication, 28
tips, 38
Tower admin utility script, 5
Tower CLI

command line interface, 41
troubleshooting, 41

tower-manage, 19, 22
high availability management, 23
inventory import, 22

tower-manage, data cleanup, 22
tricks, 38
troubleshooting, 38

admin password change, 41
ansible_variables, viewing all, 39
authentication timeout, 31
command line interface, 41
configuration file configuration, 39
configuration file location, 39
EC2 VPC instances, 41

error logs, 38
general help, 38
host connections, 38
job cancellation, 39
job does not run, 38
jump host, 42
live events, 40
pending playbook, 39
playbooks not appearing, 39
PRoot, 39, 40
ProxyCommand, 42
Tower CLI, 41
websockets, 40

U
updates, 2
usability data collection, 43

V
variables

PRoot, 40
VPC instances

EC2, 41

W
websockets

troubleshooting, 40

Index 50

	Tower Licensing, Updates, and Support
	Support
	Trial Licenses
	License Types
	License Features
	Tower Component Licenses

	Starting, Stopping, and Restarting Tower
	Custom Inventory Scripts
	Writing Inventory Scripts

	Management Jobs
	Removing Old Job History
	Removing Data Scheduled for Deletion
	Removing Old Activity Stream Data
	Removing Old System Tracking Data

	High Availability
	Setup Considerations
	Differences between Primary and Secondary Instances
	Post-Installation Changes to Primary Instances
	Examining the HA configuration of Tower
	Promoting a Secondary Instance/Failover
	Decommissioning Secondary instances

	Proxy Support
	Tower Logfiles
	The tower-manage Utility
	Inventory Import
	Cleanup of old data
	HA management

	Setting up Authentication
	Basic Authentication Settings:
	Google OAuth2 Settings
	Github OAuth2 Settings
	SAML Authentication Settings
	RADIUS Authentication Settings
	Using LDAP with Tower
	Organization and Team Mapping

	Changing the Default Timeout for Authentication
	Working with Session Limits
	Backing Up and Restoring Tower
	Backup/Restore Playbooks
	Backup and Restoration Considerations

	Using Custom Logos in Ansible Tower
	Troubleshooting, Tips, and Tricks
	Error logs
	Problems connecting to your host
	Problems running a playbook
	Problems when running a job
	View a listing of all ansible_ variables
	Locate and configure the configuration file
	Playbooks aren't showing up in the Job Template drop-down
	Playbook stays in pending
	Cancel a Tower job
	View Ansible outputs for JSON commands when using Tower
	Reusing an external HA database causes installations to fail
	PRoot functionality and variables
	Changing the WebSockets port for live events
	Private EC2 VPC Instances in Tower Inventory
	Using the Tower CLI Tool
	Changing the Tower Admin Password
	Setting up a jump host to use with Tower

	Usability Analytics and Data Collection
	Postface
	Index
	Index

