
Ansible Tower User Guide
Release Ansible Tower 3.0.2

Red Hat, Inc.

Jun 06, 2017

CONTENTS

1 Overview 2
1.1 Real-time Playbook Output and Exploration . 2
1.2 “Push Button” Automation . 2
1.3 Enhanced and Simplifed Role-Based Access Control and Auditing 2
1.4 Cloud & Autoscaling Flexibility . 3
1.5 The Ideal RESTful API . 3
1.6 Backup and Restore . 3
1.7 Ansible Galaxy Integration . 3
1.8 Inventory Support for OpenStack . 3
1.9 Remote Command Execution . 3
1.10 System Tracking . 4
1.11 Integrated Notifications . 4
1.12 Satellite and CloudForms Integration . 4
1.13 Run-time Job Customization . 4

2 Tower Licensing, Updates, and Support 5
2.1 Support . 5
2.2 Trial Licenses . 5
2.3 License Types . 5
2.4 Node Counting in Licenses . 6
2.5 License Features . 6
2.6 Tower Component Licenses . 7

3 Logging In 8

4 Import a License 9
4.1 Adding a Tower License Manually . 10

5 The Tower Dashboard and Interface 11
5.1 Tower Admin Menu . 12
5.2 Settings Menu . 13
5.3 My View – User Menu . 14
5.4 Dashboard Views . 16
5.5 Activity Streams . 17

6 Organizations 19
6.1 Organizations - Permissions . 22
6.2 Organizations - Notifications . 24
6.3 Organizations - Users . 25
6.4 Organization - Administrators . 26

i

7 Users 29
7.1 User Types - Quick View . 31
7.2 Users - Organizations . 32
7.3 Users - Teams . 32
7.4 Users - Granted Permissions . 33

8 Teams 34
8.1 Teams - Users . 35
8.2 Teams - Granted Permissions . 37

9 Credentials 39
9.1 Understanding How Credentials Work . 39
9.2 Getting Started with Credentials . 39
9.3 Add a New Credential . 42
9.4 Credential Types . 43

10 Projects 56
10.1 Add a new project . 57
10.2 Updating projects from source control . 59
10.3 Add a new schedule . 61
10.4 Ansible Galaxy Support . 62

11 Inventories 63
11.1 Add a new inventory . 63
11.2 Groups and Hosts . 65
11.3 Running Ad Hoc Commands . 84
11.4 System Tracking . 86

12 Job Templates 93
12.1 Utilitzing Cloud Credentials . 100
12.2 Surveys . 102
12.3 Scan Job Templates . 106
12.4 Provisioning Callbacks . 115
12.5 Launching Jobs . 116
12.6 Scheduling . 118

13 Jobs 121
13.1 Job Results - Inventory Sync . 121
13.2 Job Results - SCM . 123
13.3 Job Results - Playbook Run . 124
13.4 Job Concurrency . 133

14 Notifications 135
14.1 Notifier Hierarchy . 135
14.2 Workflow . 135
14.3 Create a Notification Template . 136
14.4 Notification Types . 136
14.5 Configuring the towerhost hostname . 141

15 Best Practices 143
15.1 Use Source Control . 143
15.2 Ansible file and directory structure . 143
15.3 Use Dynamic Inventory Sources . 143
15.4 Variable Management for Inventory . 144
15.5 Autoscaling . 144

ii

15.6 Larger Host Counts . 144
15.7 Continuous integration / Continuous Deployment . 144

16 Security 145
16.1 Playbook Access and Information Sharing . 145
16.2 PRoot functionality and variables . 146
16.3 Role-Based Access Controls . 146

17 Index 152

18 Copyright © 2016 Red Hat, Inc. 153

Index 154

iii

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Thank you for your interest in Ansible Tower by Red Hat. Ansible Tower is a commercial offering that helps teams
manage complex multi-tier deployments by adding control, knowledge, and delegation to Ansible-powered environ-
ments.

The Ansible Tower User Guide discusses all of the functionality available in Ansible Tower and assumes moderate
familiarity with Ansible, including concepts such as Playbooks, Variables, and Tags. For more information on these
and other Ansible concepts, please see the Ansible documentation at http://docs.ansible.com/. This document has been
updated to include information for the latest release of Ansible Tower 3.0.2.

Ansible Tower Version 3.0.2; Aug 31, 2016; https://access.redhat.com/

CONTENTS 1

http://docs.ansible.com/
https://access.redhat.com/

CHAPTER

ONE

OVERVIEW

Thank you for your interest in Ansible Tower. Tower is a graphically-enabled framework accessible via a web interface
and a REST API endpoint for Ansible, the open source IT orchestration engine. Whether sharing operations tasks with
your team or integrating with Ansible through the Tower REST API, Tower provides many powerful tools to make
your automation life easier.

1.1 Real-time Playbook Output and Exploration

Watch playbooks run in real time, seeing each host as they check in. Easily go back and explore the results for specific
tasks and hosts in great detail. Search for specific plays or hosts and see just those results, or quickly zero in on errors
that need to be corrected.

1.2 “Push Button” Automation

Access your favorite projects and re-trigger execution from the web interface with a minimum of clicking. Tower will
ask for input variables, prompt for your credentials, kick off and monitor the job, and display results and host history
over time.

1.3 Enhanced and Simplifed Role-Based Access Control and Audit-
ing

Ansible Tower allows for the granting of permissions to perform a specific task (such as to view, create, or modify a
file) to different teams or explicit users through role-based access control (RBAC).

Keep some projects private, while allowing some users to edit inventory and others to run playbooks against only
certain systems–either in check (dry run) or live mode. You can also allow certain users to use credentials without
exposing the credentials to them. Regardless of what you do, Tower records the history of operations and who made
them–including objects edited and jobs launched.

Bason on user feedback, Ansible Tower both expands and simplifies its role-based access control. No longer is job
template visibility configured via a combination of permissions on inventory, projects, and credentials. If you want to
give any user or team permissions to use a job template, just assign permissions directly on the job template. Similarly,
credentials are now full objects in Tower’s RBAC system, and can be assigned to multiple users and/or teams for use.

A new ‘Auditor’ type has been introduced in Tower as well, who can see all aspects of the systems automation, but
has no permission to run or change automation, for those that need a system-level auditor. (This may also be useful
for a service account that scrapes automation information from Tower’s API.) Refer to Role-Based Access Controls
for more information.

2

Ansible Tower User Guide, Release Ansible Tower 3.0.2

1.4 Cloud & Autoscaling Flexibility

Tower features a powerful provisioning callback feature that allows nodes to request configuration on demand. While
optional, this is an ideal solution for a cloud auto-scaling scenario, integrating with provisioning servers like Cobbler,
or when dealing with managed systems with unpredictable uptimes. Requiring no management software to be installed
on remote nodes, the callback solution can be triggered via a simple call to ‘curl’ or ‘wget’, and is easily embeddable in
init scripts, kickstarts, or preseeds. Access is controlled such that only machines in inventory can request configuration.

1.5 The Ideal RESTful API

The Tower REST API is the ideal RESTful API for a systems management application, with all resources fully
discoverable, paginated, searchable, and well modeled. A styled API browser allows API exploration from the API
root at http://<Tower server name>/api/, showing off every resource and relation. Everything that can
be done in the user interface can be done in the API - and more.

1.6 Backup and Restore

The ability to backup and restore your system(s) has been integrated into the Tower setup playbook, making it easy
for you to backup and replicate your Tower instance as needed.

1.7 Ansible Galaxy Integration

When it comes to describing your automation, everyone repeats the DRY mantra–“Don’t Repeat Yourself.” Using
centralized copies of Ansible roles, such as in Ansible Galaxy, allows you to bring that philosophy to your playbooks.
By including an Ansible Galaxy requirements.yml file in your project directory, Tower automatically fetches the roles
your playbook needs from Galaxy, GitHub, or your local source control. Refer to Ansible Galaxy Support for more
information.

1.8 Inventory Support for OpenStack

Ansible is committed to making OpenStack simple for everyone to use. As part of that, dynamic inventory support has
been added for OpenStack. This allows you to easily target any of the virtual machines or images that you’re running
in your OpenStack cloud.

1.9 Remote Command Execution

Often times, you just need to do a simple task on a few hosts, whether it’s add a single user, update a single secu-
rity vulnerability, or restart a misbehaving service. Beginning with version 2.2.0, Tower includes remote command
execution–any task that you can describe as a single Ansible play can be run on a host or group of hosts in your inven-
tory, allowing you to get managing your systems quickly and easily. Plus, it is all backed by Tower’s RBAC engine
and detailed audit logging, removing any questions regarding who has done what to what machines.

1.4. Cloud & Autoscaling Flexibility 3

Ansible Tower User Guide, Release Ansible Tower 3.0.2

1.10 System Tracking

Introduced in version 2.2.0, Tower’s System Tracking brings a new level of visibility to your infrastructure–you can
see exactly what is happening on your systems, comparing it to both the prior state of the system and to other systems
in your cluster, which helps you to ensure compliance. The rich and extensible store of data available in System
Tracking is accessible via Tower’s REST API, enabling you to feed it into other tools and systems.

1.11 Integrated Notifications

Starting with version 3.0, Ansible Tower allows you to easily keep track of the status of your automation. You can
configure stackable notifications for job templates, projects, or entire organizations, and configure different notifica-
tions for job success and job failure. The following notification sources are supported: - Slack - E-mail - SMS (via
Twilio) - HipChat - Pagerduty - IRC - Webhooks (post to an arbitrary webhook, for integration into other tools)

1.12 Satellite and CloudForms Integration

Ansible Tower 3.0 also adds dynamic inventory sources for Red Hat Satellite 6 and Red Hat CloudForms.

1.13 Run-time Job Customization

Bringing the flexibility of the command line to Tower, you can now prompt for any of the following:

• inventory

• credential

• job tags

• limits

1.10. System Tracking 4

CHAPTER

TWO

TOWER LICENSING, UPDATES, AND SUPPORT

Tower is a proprietary software product and is licensed on an annual subscription basis.

Ansible is an open source software project and is licensed under the GNU General Public License version 3, as detailed
in the Ansible source code: https://github.com/ansible/ansible/blob/devel/COPYING

2.1 Support

Ansible offers support for paid Enterprise customers seeking help with the Tower product. If you or you company has
paid for a license of Ansible Tower, you can contact Ansible via the Red Hat Customer portal at https://access.redhat.
com/. To better understand the levels of support which match your Tower license, refer to License Types.

If you are using Ansible core and are having issues, you should reach out to the “ansible-devel” mailing list or file an
issue on the Github project page at https://github.com/ansible/ansible/issues/.

All of Ansible’s community and OSS info can be found here: https://docs.ansible.com/ansible/community.html

2.2 Trial Licenses

While a license is required for Tower to run, there is no fee for managing up to 10 hosts. Additionally, trial licenses
are available for exploring Tower with a larger number of hosts.

Trial licenses for Tower are available at: http://ansible.com/license

To acquire a license for additional servers, visit: http://www.ansible.com/pricing/

2.3 License Types

Tower is licensed at various levels as an annual subscription. Whether you have a small business or a mission-critical
environment, Ansible is ready to simplify your IT work-flow.

• Self-Support

– Manage smaller environments (up to 250 nodes)

– Maintenance and upgrades included

• Enterprise: Standard

– Manage any size environment

– Enterprise 8x5 support and SLA

5

https://github.com/ansible/ansible/blob/devel/COPYING
https://access.redhat.com/
https://access.redhat.com/
https://github.com/ansible/ansible/issues/
https://docs.ansible.com/ansible/community.html
http://ansible.com/license
http://www.ansible.com/pricing/

Ansible Tower User Guide, Release Ansible Tower 3.0.2

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

• Enterprise: Premium

– Manage any size environment, including mission-critical environments

– Premium 24x7 support and SLA

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

All subscriptions include regular updates and releases of both Ansible Tower and Ansible core.

For more information, contact Ansible via the Red Hat Customer portal at https://access.redhat.com/ or at http://www.
ansible.com/pricing/.

2.4 Node Counting in Licenses

The Tower license defines the number of nodes that can be managed by Tower. A typical license will say ‘Enterprise
Tower Up To 250 Nodes’, which sets the maximum number of nodes that can be managed at 250.

Tower counts nodes by the number of hosts in inventory. If more nodes are in the Tower inventory than are supported
by the license, you will be unable to start any Jobs in Tower. If a dynamic inventory sync causes Tower to exceed the
node count specified in the license, the dynamic inventory sync will fail.

If you have multiple hosts in inventory that have the same name, such as webserver1, they will be counted for
licensing purposes as a single node. Note that this differs from the ‘Hosts’ count in Tower’s dashboard, which counts
hosts in separate inventories separately.

2.5 License Features

Note: Ansible Tower version 2.2 introduced a separation of features for Basic (now called Self Support) versus
Enterprise (now Enterprise: Standard) or Premium (now Enterprise: Premium) licenses.

The following list of features are available for all new Enterprise or Premium license users:

• Custom rebranding for login (added in Ansible Tower 2.4.0)

• SAML and RADIUS Authentication Support (added in Ansible Tower 2.4.0)

• Multi-Organization Support

• Activity Streams

• Surveys

• LDAP Support

• Active/Passive Redundancy

• System Tracking (added in Ansible Tower 2.2.0)

Enterprise license users with versions of Ansible Tower prior to 2.2 must import a new license file to enable System
Tracking.

2.4. Node Counting in Licenses 6

https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/
http://www.ansible.com/pricing/
http://www.ansible.com/pricing/

Ansible Tower User Guide, Release Ansible Tower 3.0.2

2.6 Tower Component Licenses

Ansible Tower includes some open source components. Ansible, Inc. supports Tower’s use of and interactions with
these components for both development and production purposes, subject to applicable terms and conditions. Unless
otherwise agreed to in writing, the use of Ansible Tower is subject to the Ansible Software Subscription and Services
Agreement located at http://www.ansible.com/subscription-agreement. Ansible Tower is a proprietary product offered
by Ansible, Inc. and its use is not intended to prohibit the rights under any open source license.

To view the license information for the components included within Ansible Tower, refer to /usr/share/doc/
ansible-tower-<version>/README where <version> refers to the version of Ansible Tower you have
installed.

To view a specific license, refer to /usr/share/doc/ansible-tower-<version>/*.txt, where * is re-
placed by the license file name to which you are referring.

2.6. Tower Component Licenses 7

http://www.ansible.com/subscription-agreement

CHAPTER

THREE

LOGGING IN

To log in to Tower, browse to the Tower interface at: http://<Tower server name>/

Log in using a valid Tower username and password.

The default username and password set during installation are admin and password, but the Tower administrator may
have changed these settings during installation. If the default settings have not been changed, you can do so by

accessing the Users link from the Settings () Menu.

8

CHAPTER

FOUR

IMPORT A LICENSE

Tower requires a valid license to run. If you did not receive a license from Ansible directly or via email, or have issues
with the license you received, refer to http://www.ansible.com/license for free and paid license options (including free
trial licenses) or contact Ansible via the Red Hat Customer portal at https://access.redhat.com/.

To add your license, you must browse to the location where you saved your license (or save the license contents to a
text file locally, if needed) and upload it. The uploaded license may be a plain text file or a JSON file, and must include
properly formatted JSON code. Once uploaded, agree to the End User License Agreement and click Submit.

Once your license has been accepted, Tower navigates you to the main Ansible interface for the Dashboard (which
you can access by clicking on the Ansible Tower logo at the top left of the screen as well).

For later reference, you can view this license from the Settings () Menu’s ‘VIEW YOUR LICENSE’ link.

9

http://www.ansible.com/license
https://access.redhat.com/

Ansible Tower User Guide, Release Ansible Tower 3.0.2

4.1 Adding a Tower License Manually

If you are in a situation where uploading a file is not allowed due to a locked down environment, you can add the
Ansible Tower license by hand using Tower’s API.

In Tower’s REST API, at the /api/v1/config/ endpoint, scroll down to the POST text entry box.

Add your valid license, the one you received directly from Ansible, to the POST box using the following as an example:

{"eula_accepted" : "true",
"subscription_name": "Enterprise Tower up to 100000 Nodes",
"features": {},
"instance_count": 100000,
"trial": false,
"contact_email": "maddux@hotdog.com",
"company_name": "Dr. Maddux Golden",
"license_type": "enterprise",
"contact_name": "Dr. Maddux Golden",
"license_date": 0000000000,
"license_key": "xxx111xx111xxx1x1x1x1x1x11x1xxxx1x1xx1x1xx1x1x1x1xxx111xx1x1xx1x"

}

Once done, hit the “POST” button and review your license.

4.1. Adding a Tower License Manually 10

CHAPTER

FIVE

THE TOWER DASHBOARD AND INTERFACE

Note: Ansible Tower 3.0 provides a streamlined interface, with the Settings () button offering access to ad-
ministrative configuration options. Users of older versions of Ansible Tower (2.4.5 or older) can access most of these
through the top-level navigational menu or from their “Setup” menu button.

The Tower Dashboard offers a friendly graphical framework for your IT orchestration needs. Across the top-left side
of the Tower Dashboard, administrators can quickly navigate to their Projects, Inventories, Job Templates, and Jobs.

Across the top-right side of this interface, administrators can access the tools they need to configure organizations,
users, groups, and permissions as well as view related documentation, access portal mode, and log out.

At the top of the Dashboard is a summary of your hosts, inventories, and projects. Each of these is linked to the
corresponding object in Tower, for easy access.

On the main Tower Dashboard screen, a summary appears listing your current Job Status. Also available for review
are summaries of Recently Used Job Templates and Recently Run Jobs.

11

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Note: Clicking on the Ansible Tower logo at any time returns you to the Dashboard.

5.1 Tower Admin Menu

The Tower user menu is accessed by clicking .

From here, you can:

• View/Edit the properties of the Tower admin account

• View the activity stream for that user (by clicking on the Activity Stream button)

• View the Organizations which have been setup for the Tower user

• View the Teams to which the Tower user has been added

• View the Granted Permissions for this Tower admin account

5.1. Tower Admin Menu 12

Ansible Tower User Guide, Release Ansible Tower 3.0.2

5.2 Settings Menu

To enter the Settings Menu screen for Ansible Tower, click the button. This screen allows you to create your
organizations, add credentials, add users and teams, schedule management jobs, and more. You can also view your
license from the Settings Menu’s ‘View Your License’ link.

5.2. Settings Menu 13

Ansible Tower User Guide, Release Ansible Tower 3.0.2

5.3 My View – User Menu

My View, a user’s single-page view of jobs and job templates, can be accessed by clicking the My View ()
button.

My View is a simplified interface for users that need to run Ansible jobs, but that do not need an advanced knowledge
of Ansible or Tower. My View could be used by, for instance, development teams, or even departmental users in
non-technical fields.

My View offers Tower users a simplified, clean interface to the jobs that they are able to run, and the results of jobs
that they have run in the past.

Pressing the button beside a job in My View launches it, potentially asking some survey questions if the job is
configured to do so.

Other portions of the interface are hidden from view until My View is exited.

5.3. My View – User Menu 14

Ansible Tower User Guide, Release Ansible Tower 3.0.2

My View can be accessed in two ways:

• via the My View () button at the top-right of the Tower interface

• by navigating to https://<Tower server name>/portal

My View displays two main sections–Job Templates and Jobs.

5.3.1 Job Templates

This shows the job templates that are available for the user to run. This list can be searched by Name or Description,

and can be sorted by those keys as well. To launch a job template, click the button. This launches the job, which
can be viewed in My Jobs.

Note: Unlike Tower’s main interface, you are not automatically redirected to the Job view for the launched job. This
view is still accessible via the View Details button for this job run in the My Jobs panel. This is useful for instances
when a job fails and a non-technical user needs an Ansible expert look at what might have gone wrong.

5.3.2 Jobs

This shows the list of jobs that have run in the past.

Sort for jobs specific to you by clicking on the My Jobs button or review all jobs you have access to view by clicking
on the All Jobs button, next to the search bar.

• My Jobs: View jobs that you (as the user) ran .

• All Jobs: View your team members’ completed jobs, viewable based on your RBAC permissions.

5.3. My View – User Menu 15

Ansible Tower User Guide, Release Ansible Tower 3.0.2

For each job, you can view the Job ID, the Status of the job (Running, Pending, Successful, or Failed), its start time,
and the job Name. The job list can be sorted by any of these fields. Clicking on the Details button opens a new window
with the Job Details for that job (refer to Jobs for more information).

5.4 Dashboard Views

The central interface to Tower is the Dashboard. You will use the dashboard to quickly view job statuses, recently run
jobs, and recently used job templates.

5.4.1 Job Status

The Job Status graph displays the number of successful and failed jobs over a specified time period. You can choose
to limit the job types that are viewed, and to change the time horizon of the graph.

5.4.2 Recently Used Job Templates

The Jobs section of this display shows a summary of the most recently used jobs. You can also access this summary
by clicking on the Jobs entry in the main navigation menu.

5.4.3 Recently Run Jobs

The Recently Run Jobs section displays which jobs were most recently run, their status, and notes when they were run
as well.

5.4. Dashboard Views 16

Ansible Tower User Guide, Release Ansible Tower 3.0.2

5.5 Activity Streams

Most screens in Tower have an Activity Stream () button. Clicking this brings up the Activity Stream for this
object.

An Activity Stream shows all changes for a particular object. For each change, the Activity Stream shows the time of

the event, the user that initiated the event, and the action. Clicking on the Examine () button shows the event log
for the change.

5.5. Activity Streams 17

Ansible Tower User Guide, Release Ansible Tower 3.0.2

The Activity Stream can be filtered by the initiating user (or the system, if it was system initiated), and by any related
Tower object, such as a particular credential, job template, or schedule.

The Activity Stream on the main Dashboard shows the Activity Stream for the entire Tower instance. Most pages in
Tower allow viewing an activity stream filtered for that specific object.

5.5. Activity Streams 18

CHAPTER

SIX

ORGANIZATIONS

An Organization is a logical collection of Users, Teams, Projects, and Inventories, and is the highest level in the
Tower object hierarchy.

The Organizations link from the Settings () menu displays all of the existing organizations for your installation
of Tower. Organizations can be searched by Name or Description. Modify and remove organizations using the Edit
and Delete buttons.

Note: Tower creates a default organization automatically. Users of Tower with a Self-Support level license (formerly
called Basic) only have the default organization available and should not delete it. Users of older versions of Tower
(prior to 2.2) will not see this default organization.

19

http://docs.ansible.com/ansible-tower/3.0.2/html/installandreference/glossary.html#term-organization

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Enterprise: Standard and Enterprise: Premium Tower licenses allow you to create a new Organization by selecting the

button.

Note: If you are using Ansible Tower with a Self-Support level license (formerly called Basic), you must use the
default Organization. Do not delete it and try to add a new Organization, or you will break your Tower setup. Only
Enterprise: Standard or Enterprise: Premium Tower licenses have the ability to add new Organizations beyond the
default.

1. Enter the Name for your Organization.

2. Optionally, enter a Description for the Organization.

Click Save to finish creating the Organization.

20

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Once created, Tower displays the Organization details, and allows for the managing of users and administrators for the
Organization.

21

Ansible Tower User Guide, Release Ansible Tower 3.0.2

6.1 Organizations - Permissions

Clicking on Permissions (beside Details when viewing your organization), allows you to review, grant, edit, and
remove associated permissions for users as well as team members.

Click the button to create new permissions for this organization.

6.1. Organizations - Permissions 22

Ansible Tower User Guide, Release Ansible Tower 3.0.2

In this example, two users have been selected and each have been granted permissions for this organization.

You can also assign permissions to teams. Note that you do not have to choose between teams or users, and that you
can assign permissions to both at the same time.

6.1. Organizations - Permissions 23

Ansible Tower User Guide, Release Ansible Tower 3.0.2

6.2 Organizations - Notifications

Clicking on Notifications (beside Details when viewing your organization), allows you to easily manage notifications
for this organization.

Click on the button to create a notification.

Supported notification sources include Slack, Email, SMS (via Twilio), HipChat, and more. Refer to Notifications for
more information.

6.2. Organizations - Notifications 24

Ansible Tower User Guide, Release Ansible Tower 3.0.2

6.3 Organizations - Users

The Users submenu of an Organization displays all the Users associated with this Organization. A User is some-
one with access to Tower with associated roles and Credentials. Expand the Users menu by selecting Users in the
Organization Summary.

This menu allows you to manage the user membership for this Organization. (User membership may also be managed

6.3. Organizations - Users 25

Ansible Tower User Guide, Release Ansible Tower 3.0.2

on a per-user basis via the Users link available from the Settings menu.) The user list may be sorted and
searched by Username, First Name, or Last Name. Existing users may also be modified and removed using the Edit
and Delete buttons. Clicking on a user brings up that user’s details, which can then be edited. For more information,
refer to Users.

To add existing users to the Organization, click the button. Then, select one or more users from
the list of available users by clicking the Select checkbox or clicking anywhere on the user row. Click the Select button
when done.

6.4 Organization - Administrators

An Organization Administrator is a type of user that has the rights to create, modify, or delete objects in the Organi-
zation, including Projects, Teams, and Users in that Organization. Expand the Admins submenu by selecting Admins
in the Organization Summary.

6.4. Organization - Administrators 26

Ansible Tower User Guide, Release Ansible Tower 3.0.2

This menu displays a list of the users that are currently setup as an administrator of the Organization. The administrator
list may be sorted and searched by Username, First Name, or Last Name.

Note: Any user marked as a ‘Superuser’ is implicitly an administrator of all Organizations, and is not displayed here.

To add an administrator to the Organization, click the button. Select one or more
users from the list of available users by clicking the Select checkbox or clicking anywhere on the user row. Click the
Select button when done.

6.4. Organization - Administrators 27

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Note: A user must first be added to the Organization before it can be added to the list of administrators for that
Organization.

6.4. Organization - Administrators 28

CHAPTER

SEVEN

USERS

A User is someone who has access to Tower with associated permissions and credentials. The Users link (found by

clicking on the Settings () menu and selecting Users) allows you to manage the all Tower users. The User list
may be sorted and searched by Username, First Name, or Last Name (click on the USERNAME button beside the
search field to toggle your sorting preference).

There are three types of Tower Users:

1. Normal User: Normal Users have read and write access limited to the inventory and projects for which that
user has been granted the appropriate roles and privileges.

2. System Auditor: Auditors implicitly inherit the read-only capability for all objects within the Tower environ-
ment.

3. System Administrator: a Tower System Administrator (also the Superuser) has admin, read, and write priv-
ileges over the entire Tower installation. A System Administrator is typically responsible for managing all
aspects of Tower and delegating responsibilities for day-to-day work to various Users and System Auditors.

Note: The initial user (usually “admin”) created by the Tower installation process is a Superuser. One Superuser must
always exist. To delete the “admin” user account, you must first create another Superuser account.

To create a new user click the button, which opens the Create User dialog.

29

http://docs.ansible.com/ansible-tower/3.0.2/html/installandreference/glossary.html#term-user

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Enter the appropriate details into the following fields:

• First Name

• Last Name

• Email

• Username

• Organization (Choose from an existing organization–this is the default organization if you are using a Self-
Supported level license.)

• Password

• Confirmation Password

• User Type (The System Administrator, superuser, has full system administration privileges for Tower. Assign
with caution!)

Select Save when finished.

Once the user is successfully created, the User dialog opens for that newly created User. This is the same menu that

is opened if the Edit () button beside a User is clicked from the Users link within Tower’s Settings ().
Here, the User’s Organizations, Teams and Granted Permissions, as well as other user membership details, may be
reviewed and modified.

30

Ansible Tower User Guide, Release Ansible Tower 3.0.2

7.1 User Types - Quick View

Once a user has been created, you can easily view permissions and user type information by looking beside their user
name in the User overview screen.

If the user account is associated with an enterprise-level authentication method (such as SAML, RADIUS, or LDAP),
the user type may look like:

7.1. User Types - Quick View 31

Ansible Tower User Guide, Release Ansible Tower 3.0.2

If the user account is associated with a social authentication method, the user type will look like:

7.2 Users - Organizations

This displays the list of organizations of which that user is a member. This list may be searched by Organization Name
or Description. Organization membership cannot be modified from this display panel.

7.3 Users - Teams

This displays the list of teams of which that user is a member. This list may be searched by Team Name or Descrip-
tion. Team membership cannot be modified from this display panel. For more information, refer to Teams.

Until a Team has been created and the user has been assigned to that team, the assigned Teams Details for the User
appears blank.

7.2. Users - Organizations 32

Ansible Tower User Guide, Release Ansible Tower 3.0.2

7.4 Users - Granted Permissions

The set of Granted Permissions assigned to this user (role-based access controls) that provide the ability to read,
modify, and administer projects, inventories, job templates, and other Tower elements are Privileges.

This menu displays a list of the privileges that are currently available for a selected User. The privileges list may be
sorted and searched by Name, Type, or Role.

To remove Granted Permissions for a particular User, click the Disassociate () button under Actions. This
launches a Remove Role dialog, asking you to confirm the disassociation.

7.4. Users - Granted Permissions 33

CHAPTER

EIGHT

TEAMS

A Team is a subdivision of an organization with associated users, projects, credentials, and permissions. Teams
provide a means to implement role-based access control schemes and delegate responsibilities across organizations.
For instance, permissions may be granted to a whole Team rather than each user on the Team.

You can create as many Teams of users as make sense for your Organization. Each Team can be assigned permissions,
just as with Users.

Teams can also scalably assign ownership for Credentials, preventing multiple Tower interface click-throughs to assign
the same Credentials to the same user.

The Teams link, accessible by clicking on the Settings () button and then selecting Teams, allows you to manage
the teams for Tower. The team list may be sorted and searched by Name, Description, or Organization.

Buttons located in the upper right corner of the Team tab provide the following actions:

• Create a new team

• View Activity Stream

To create a new Team, click the button.

34

http://docs.ansible.com/ansible-tower/3.0.2/html/installandreference/glossary.html#term-team

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Enter the appropriate details into the following fields:

• Name

• Description

• Organization (Choose from an existing organization)

Select Save.

Once the Team is successfully created, Tower opens the Details dialog, which also allows you to review and edit your

Team information. This is the same menu that is opened if the Edit () button is clicked from the Teams link. You
can also review Users and Granted Permissions associated with this Team.

8.1 Teams - Users

This menu displays the list of Users that are members of this Team. This list may be searched by Username, First
Name, or Last Name. For more information, refer to Users.

8.1. Teams - Users 35

Ansible Tower User Guide, Release Ansible Tower 3.0.2

To add users to the Team, click the button. Then, select one or more Users from the list of available users
by clicking the Select checkbox or clicking anywhere on the user row.

Next, grant permissions for the User(s) selected for this team. Choose one or more of the following permission settings:

• Admin: This User should have privileges to manage all aspects of the team

• Member: This User should be a member of the team

• Read: This User may view settings for the team

8.1. Teams - Users 36

Ansible Tower User Guide, Release Ansible Tower 3.0.2

8.2 Teams - Granted Permissions

Selecting the Granted Permissions view displays a list of the permissions that are currently available for this Team.
The permissions list may be sorted and searched by Name, Inventory, Project or Permission type.

8.2. Teams - Granted Permissions 37

Ansible Tower User Guide, Release Ansible Tower 3.0.2

The set of privileges assigned to Teams that provide the ability to read, modify, and administer projects, inventories,
and other Tower elements are permissions.

By default, the Team is given the “read” permission (also called a role).

Permissions must be set explicitly via an Inventory, Project, Job Template, or within the Organization view.

8.2. Teams - Granted Permissions 38

CHAPTER

NINE

CREDENTIALS

Credentials are utilized by Tower for authentication when launching Jobs against machines, synchronizing with inven-
tory sources, and importing project content from a version control system.

Tower credentials are imported and stored encrypted in Tower, and are not retrievable in plain text on the command
line by any user. Once a password or key has been entered into the Tower interface, it is encrypted and inserted
into the Tower database, and cannot be retrieved from Tower. You can grant users and teams the ability to use these
credentials, without actually exposing the credential to the user. If you have a user move to a different team or leave
the organization, you don’t have to re-key all of your systems just because that credential was available in Tower.

Note: Tower encrypts passwords and key information in the Tower database and never makes secret information
visible via the API.

9.1 Understanding How Credentials Work

The encryption/decryption algorithm uses Electronic Code Book (ECB) as the mode of operation with AES-128 as the
block cipher. The 128-bit AES key is derived from the SECRET_KEY (found in the awx settings). Specific, sensitive,
Model fields in Tower are encrypted and include:

Credential: password, ssh_key_data, ssh_key_unlock, become_password, vault_password
UnifiedJob: start_args

Data is encrypted before it is saved to the database and is decrypted as is needed in Tower. The encryption/decryption
process derives the AES-128 bit encryption key from <SECRET_KEY, field_name, primary_key> where
field_name is the name of the Model field and primary_key is the database assigned auto-incremented record
ID. Thus, if any attribute used in the key generation process changes, Tower fails to correctly decrypt the secret.

Note: The rules of encryption and decryption for Ansible Tower also apply to one field outside of credentials, the
Unified Job start_args field, which is used through the job, ad_hoc_command, and system_job data types.

9.2 Getting Started with Credentials

The Credentials link, accessible from the Setting () button, displays a list of all available Credentials. It can be
sorted and searched by Name, Description, Type, or Owners.

39

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Credentials added to a Team are made available to all members of the Team, whereas credentials added to a User are
only available to that specific User by default.

To help you get started, a Demo Credential has been created for your use.

Clicking on the link for the Demo Credential takes you to the Details view of this Credential.

9.2. Getting Started with Credentials 40

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Clicking on Permissions shows you users and teams associated with this Credential and their granted roles (owner,
admin, auditor, etc.)

9.2. Getting Started with Credentials 41

Ansible Tower User Guide, Release Ansible Tower 3.0.2

You can click the button to assign this Demo Credential to additional Users or Teams.

9.3 Add a New Credential

The button located in the upper right corner of the Credentials screen allows you to create a new creden-
tial.

9.3. Add a New Credential 42

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Enter the appropriate details depending on the type of credential and select Save.

9.4 Credential Types

Topics:

• Machine

• Network

• Source Control

• Amazon Web Services

• Rackspace

• VMware vCenter

• Red Hat Satellite 6

• Red Hat CloudForms

• Google Compute Engine

• Microsoft Azure Classic (Deprecated)

• Microsoft Azure Resource Manager

• OpenStack

9.4. Credential Types 43

Ansible Tower User Guide, Release Ansible Tower 3.0.2

9.4.1 Machine

Machine credentials enable Tower to invoke Ansible on hosts under your management. Just like using Ansible on
the command line, you can specify the SSH username, optionally provide a password, an SSH key, a key password,
or even have Tower prompt the user for their password at deployment time. They define ssh and user-level privilege
escalation access for playbooks, and are used when submitting jobs to run playbooks on a remote host.

Machine credentials have several attributes that may be configured:

• Username: The username to be used for SSH authenticatation.

• Password: The actual password to be used for SSH authenticatation. This password can be stored encrypted in
the Tower database, if entered. Alternatively, you can configure Tower to ask the user for the password when
necessary by selecting “Ask at runtime?”. In these cases, a dialog opens when the job is launched, promoting
the user to enter the password and password confirmation.

• Private Key: The actual SSH Private Key to be used to authenticate the user via SSH. This key is stored
encrypted in the Tower database.

• Private Key Passphrase: If the SSH Private Key used is protected by a password, you can configure a Key
Password for the private key. This password may be stored encrypted in the Tower database, if entered. Alterna-
tively, you can configure Tower to ask the user for the password as necessary by selecting “Ask at runtime?”.
In these cases, a dialog opens when the job is launched, prompting the user to enter the password and password
confirmation.

• Privilege Escalation: Specifies the type of escalation privilege to assign to specific users. This is equivalent to
specifying the --become-method=BECOME_METHOD parameter, where BECOME_METHOD could be sudo
| su | pbrun | pfexec.

– none: Assigns no privilege escalation to this credential.

9.4. Credential Types 44

Ansible Tower User Guide, Release Ansible Tower 3.0.2

– sudo: Performs single commands with super user (root user) privileges

– su: Switches to the super user (root user) account (or to other user accounts)

– pbrun: Requests that an application or command be run in a controlled account and provides for advanced
root privilege delegation and keylogging.

– pfexec: Executes commands with predefined process attributes, such as specific user or group IDs.

• Privilege Escalation Username: The username to use with escalation privileges on the remote system.

• Privilege Escalation Password: The actual password to be used to authenticate the user via the selected priv-
ilege escalation type on the remote system. This password may be stored encrypted in the Tower database, if
entered. Alternatively, you may configure Tower to ask the user for the password when necessary by selecting
“Ask at runtime?”. In these cases, a dialog opens when the job is launched, promoting the user to enter the
password and password confirmation.

Note: Sudo Password must be used in combination with SSH passwords or SSH Private Keys, since
Tower must first establish an authenticated SSH connection with the host prior to invoking sudo to
change to the sudo user.

• Vault Password: If your playbook uses Ansible Vault, add the Vault password to your credentials here. Alter-
natively, you may configure Tower to ask the user for the vault password when necessary by selecting “Ask at
runtime?”. In these cases, a dialog opens when the job is launched, promoting the user to enter the password
and password confirmation.

For more information about Ansible Vault, refer to: http://docs.ansible.com/playbooks_vault.html

Warning: Credentials which are used in Scheduled Jobs must not be configured as “Ask at runtime?”.

9.4.2 Network

Network credentials are used by Ansible networking modules to connect to and manage networking devices.

9.4. Credential Types 45

http://docs.ansible.com/playbooks_vault.html

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Network credentials have several attributes that may be configured:

• Username: The username to use in conjunction with the network device.

• Password: The password to use in conjunction with the network device.

• SSH Private Key: The actual SSH Private Key to be used to authenticate the user to the network via SSH.

• Authorize: Select this to add an Authorize Password which signs the RSA key with a password (the Authorize
Password field is only seen if this option is selected).

9.4.3 Source Control

SCM (source control) credentials are used with Projects to clone and update local source code repositories from a
remote revision control system such as Git, Subversion, or Mercurial.

9.4. Credential Types 46

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Source Control credentials have several attributes that may be configured:

• Username: The username to use in conjunction with the source control system.

• Password: The password to use in conjunction with the source control system.

• SCM Private Key: The actual SSH Private Key to be used to authenticate the user to the source control system
via SSH.

• Private Key Passphrase: If the SSH Private Key used is protected by a passphrase, you may configure a Key
Passphrase for the private key.

Note: Source Control credentials cannot be configured as “Ask at runtime?”.

9.4.4 Amazon Web Services

Selecting this credential type enables synchronization of cloud inventory with Amazon Web Services.

9.4. Credential Types 47

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Traditional Amazon Web Services credentials consist of the AWS Access Key and Secret Key.

Ansible Tower version 2.4.0 introduced support for EC2 STS tokens (sometimes referred to as IAM STS credentials).
Security Token Service (STS) is a web service that enables you to request temporary, limited-privilege credentials
for AWS Identity and Access Management (IAM) users. To learn more about the IAM/EC2 STS Token, refer to:
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS credentials consist of:

AWS_ACCESS_KEY
AWS_SECRET_KEY
AWS_SECURITY_TOKEN

Note: If the value of your tags in EC2 contain booleans (yes/no/true/false), you must remember to quote them.

Warning: To use implicit IAM role credentials, do not attach AWS cloud credentials in Tower when relying on
IAM roles to access the AWS API. While it may seem to make sense to attach your AWS cloud credential to your
job template, doing so will force the use of your AWS credentials and will not “fall through” to use your IAM role
credentials (this is due to the use of the boto library.)

9.4.5 Rackspace

Selecting this credential type enables synchronization of cloud inventory with Rackspace.

9.4. Credential Types 48

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Rackspace credentials consist of the Rackspace Username and API Key.

9.4.6 VMware vCenter

Selecting this credential type enables synchronization of inventory with VMware vCenter.

VMware credentials have several attributes that may be configured:

• vCenter Host: The vCenter hostname or IP address to connect to.

• Username: The username to use to connect to vCenter.

• Password: The password to use to connect to vCenter.

Note: If the VMware guest tools are not running on the instance, VMware inventory sync may not return an IP
address for that instance.

9.4.7 Red Hat Satellite 6

Selecting this credential type enables synchronization of cloud inventory with Red Hat Satellite 6.

9.4. Credential Types 49

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Satellite credentials have several attributes that may be configured:

• Satellite 6 Host: The Satellite 6 hostname or IP address to connect to.

• Username: The username to use to connect to Satellite 6.

• Password: The password to use to connect to Satellite 6.

9.4.8 Red Hat CloudForms

Selecting this credential type enables synchronization of cloud inventory with Red Hat CloudForms.

CloudForms have several attributes that may be configured:

• CloudForms Host: The CloudForms hostname or IP address to connect to.

• Username: The username to use to connect to CloudForms.

• Password: The password to use to connect to CloudForms.

Please note that during the testing of Ansible Tower 3.0, it was discovered that the CloudForms inventory plugin has
a known failure with the current release of the CloudForms Management Engine (CFME), version 5.6. This failure is
expected to be resolved with the release of CFME 5.6.1.

Additional Resources:

9.4. Credential Types 50

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Red Hat is writing a blog post series on Ansible Tower Integration in Red Hat CloudForm 4.1 which can be accessed
at http://cloudformsblog.redhat.com/2016/07/22/ansible-tower-in-cloudforms/.

9.4.9 Google Compute Engine

Selecting this credential type enables synchronization of cloud inventory with Google Compute Engine.

Google Compute Engine credentials have several attributes that may be configured:

• Service Account Email Address: The email address assigned to the Google Compute Engine service account.

• RSA Private Key: The PEM file associated with the service account email.

• Project: The GCE assigned identification. It is constructed as two words followed by a three digit number, such
as: squeamish-ossifrage-123.

9.4. Credential Types 51

http://cloudformsblog.redhat.com/2016/07/22/ansible-tower-in-cloudforms/

Ansible Tower User Guide, Release Ansible Tower 3.0.2

9.4.10 Microsoft Azure Classic (Deprecated)

Selecting this credential type enables synchronization of cloud inventory with Windows Azure Classic.

Microsoft Azure credentials have several attributes to configure:

• Subscription ID: The Subscription UUID for the Microsoft Azure Classic account.

• Management Certificate: The PEM file that corresponds to the certificate you uploaded in the Microsoft Azure
Classic console.

9.4.11 Microsoft Azure Resource Manager

Selecting this credential type enables synchronization of cloud inventory with Microsoft Azure Resource Manager.

9.4. Credential Types 52

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Microsoft Azure Resource Manager credentials have several attributes to configure:

• Subscription ID: The Subscription UUID for the Microsoft Azure account.

• Username: The username to use to connect to the Microsoft Azure account.

• Password: The password to use to connect to the Microsoft Azure account.

• Client ID: The Client ID for the Microsoft Azure account.

• Client Secret: The Client Secret for the Microsoft Azure account.

• Tenant ID: The Tenant ID for the Microsoft Azure account.

To pass service principal credentials, define the following variables:

AZURE_CLIENT_ID
AZURE_SECRET
AZURE_SUBSCRIPTION_ID
AZURE_TENANT

To pass an Active Directory username/password pair, define the following variables:

AZURE_AD_USER
AZURE_PASSWORD
AZURE_SUBSCRIPTION_ID

9.4. Credential Types 53

Ansible Tower User Guide, Release Ansible Tower 3.0.2

You can also pass credentials as parameters to a task within a playbook. The order of precedence is parameters, then
environment variables, and finally a file found in your home directory.

To pass credentials as parameters to a task, use the following parameters for service principal credentials:

client_id
secret
subscription_id
tenant

Or, pass the following parameters for Active Directory username/password:

ad_user
password
subscription_id

9.4.12 OpenStack

Selecting this credential type enables synchronization of cloud inventory with OpenStack.

OpenStack credentials have several attributes that may be configured:

• Host (Authentication URL): The host to be used for authentication.

• Username: The username to use to connect to OpenStack.

9.4. Credential Types 54

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Password (API Key): The password or API key to use to connect to OpenStack.

• Project (Tenet Name/ID): The Tenant name or Tenant ID used for OpenStack. This value is usually the same
as the username.

• Domain name: The FQDN to be used to connect to OpenStack.

If you are interested in using OpenStack Cloud Credentials, refer to Utilitzing Cloud Credentials in this guide for more
information, including a sample playbook.

9.4. Credential Types 55

CHAPTER

TEN

PROJECTS

A Project is a logical collection of Ansible playbooks, represented in Tower.

You can manage playbooks and playbook directories by either placing them manually under the Project Base Path on
your Tower server, or by placing your playbooks into a source code management (SCM) system supported by Tower,
including Git, Subversion, and Mercurial.

Note: By default, the Project Base Path is /var/lib/awx/projects, but this may have been modified by
the Tower administrator. It is configured in /etc/tower/settings.py. Use caution when editing this file, as
incorrect settings can disable your installation.

This menu displays a list of the projects that are currently available. The list of projects may be sorted and searched by
Status, Name, or Type. For each project listed, you can edit project properties and delete the project, using the edit
and delete icons.

Status indicates the state of the project and may be one of the following (note that you can also filter your view by
specific status types):

• New: The source control update has been created, but not queued or started yet. (To be deprecated.)

• Pending: The source control update has been queued, but has not run yet. (To be deprecated.)

• Waiting: The source control update is waiting on an update/dependency.

• Running: The source control update is currently in progress.

• Successful: The last source control update for this project succeeded succeeded.

• Failed: The last source control update for this project failed.

• Error: The last source control update job failed to run at all. (To be deprecated.)

• Canceled: The last source control update for the project was canceled.

• Never updated: The project is configured for source control, but has never been updated.

56

http://docs.ansible.com/ansible-tower/3.0.2/html/installandreference/glossary.html#term-project

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• OK: The project is not configured for source control, and is correctly in place. (To be deprecated.)

• Missing: Projects are absent from the project base path of /var/lib/awx/projects (applicable for man-
ual or source control managed projects).

Under Actions, the following actions are available:

• Update: Invoke an immediate update from source control, if configured for this project

• Schedule: Schedule an update from source control, if configured for this project

• Edit: Edit the project

• Delete: Delete the project

Note: Projects of credential type Manual cannot update or schedule source control-based actions without being
reconfigured as an SCM type credential.

10.1 Add a new project

To create a new project, click the button, which launches the Create Project dialog.

Enter the appropriate details into the following fields:

• Name

• Description

• Organization (A project must have at least one organization. Pick one organization now to create the project,
and then after the project is created you can add additional organizations.)

• SCM Type (Select one of Manual, Git, Subversion, or Mercurial. Refer to Manage playbooks manually and
Manage playbooks using Source Control in this guide for more detail.)

All fields are required.

Note: Each project path can only be assigned to one project. If you receive the following message, ensure that you
have not already assigned the project path to an existing project:

“All of the project paths have been assigned to existing projects, or there are no directories found in the
base path. You will need to add a project path before creating a new project.”

10.1. Add a new project 57

Ansible Tower User Guide, Release Ansible Tower 3.0.2

10.1.1 Manage playbooks manually

• Create one or more directories to store playbooks under the Project Base Path (for example,
/var/lib/awx/projects/)

• Create or copy playbook files into the playbook directory.

• Ensure that the playbook directory and files are owned by the same UNIX user and group that the Tower service
runs as.

• Ensure that the permissions are appropriate for the playbook directories and files.

If you have trouble adding a project path, check the permissions and SELinux context settings for the project directory
and files.

Warning: If you have not added any Ansible playbook directories to the base project path, you will receive the
following message from Tower:

Correct this issue by creating the appropriate playbook directories and checking out playbooks from your SCM or
otherwise copying playbooks into the appropriate playbook directories.

10.1.2 Manage playbooks using Source Control

Select the appropriate SCM Type. Then, enter the appropriate details into the following fields:

• SCM URL

• SCM Branch (Optionally enter the SCM branch for Git or Mercurial.)

• Revision # (Optionally enter the Revision # for Subversion.)

• SCM Credential (If authentication is required, select the appropriate SCM credential.)

• SCM Update Options

– Clean (Remove any local modifications prior to performing an update.)

– Delete on Update (Delete the local repository in its entirety prior to performing an update. Depending
on the size of the repository this may significantly increase the amount of time required to complete an
update.

10.1. Add a new project 58

Ansible Tower User Guide, Release Ansible Tower 3.0.2

– Update on Launch (Each time a job runs using this project, perform an update to the local repository prior
to starting the job. To avoid job overflows if jobs are spawned faster than the project can sync, selecting
this allows you to configure a Cache Timeout to cache prior project syncs for a certain number of seconds.)

Click Save to save your project.

Tip: Using a Github link offers an easy way to use a playbook. To help get you started, use the helloworld.yml
file available at: https://github.com/ansible/tower-example.git

This link offers a very similar playbook to the one created manually in the instructions found in the Ansible Tower
Quick Start Guide. Using it will not alter or harm your system in anyway.

10.2 Updating projects from source control

Update an existing SCM-based project by clicking the button.

Note: Please note that immediately after adding a project setup to use source control, a “Sync” starts that fetches the
project details from the configured source control.

Click on the dot under Status (far left, beside the name of the Project) to get further details about the update process.

10.2. Updating projects from source control 59

https://github.com/ansible/tower-example.git
http://docs.ansible.com/ansible-tower/3.0.2/html/quickstart/index.html#qs-start
http://docs.ansible.com/ansible-tower/3.0.2/html/quickstart/index.html#qs-start

Ansible Tower User Guide, Release Ansible Tower 3.0.2

To set a schedule for updating the project from SCM, click the button. This will navigate to the Schedules
screen.

This screen displays a list of the schedules that are currently available for the selected Project. The schedule list may
be sorted and searched by Name.

The list of schedules includes:

• Name: Clicking the schedule name opens the Edit Schedule dialog

• First Run: The first scheduled run of this task

• Next Run: The next scheduled run of this task

• Final Run: If the task has an end date, this is the last scheduled run of the task.

Buttons located in the upper right corner of the Schedules screen provide the following actions:

10.2. Updating projects from source control 60

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Create a new schedule

• Refresh this view

• View Activity Stream

10.3 Add a new schedule

To create a new schedule click the button, which opens the Add Schedule dialog.

Enter the appropriate details into the following fields:

• Name (required)

• Start Date (required)

• Start Time (required)

• Local Time Zone (the entered Start Time should be in this timezone)

• UTC Start Time (calculated from Start Time + Local Time Zone)

• Repeat Frequency (appropriate scheduling options are displayed depending on the frequency you select)

The SCHEDULE DESCRIPTION allows you to review the set schedule and a list of the scheduled occurrences in
the selected Local Time Zone.

Caution: Jobs are scheduled in UTC. Repeating jobs that run at a specific time of day may move relative to a
local timezone when Daylight Savings Time shifts occur. Essentially, Tower resolves the local time zone based
time to UTC when the schedule is saved. To ensure your schedules are correctly set, you should set your schedules
in UTC time.

Once done, click Save.

10.3. Add a new schedule 61

Ansible Tower User Guide, Release Ansible Tower 3.0.2

You can use the ON/OFF toggle button to stop an active schedule or activate a stopped schedule.

The schedules overview screen for the project also shows you when the first, next, and final runs are scheduled.

There are several actions available for schedules, under the Actions column:

• Edit Schedule

• Delete schedule

10.4 Ansible Galaxy Support

At the end of a Project update, Tower searches for a file called roles/requirements.yml in the top level of the Project
directory. If this file is found, the following command automatically runs:

ansible-galaxy install -r requirements.yml -p ./roles/ --force

This file allows you to reference Galaxy roles or roles within other repositories which can be checked out in conjunction
with your own project. The addition of this Ansible Galaxy support eliminates the need to create git submodules for
achieving this result.

For more information and examples on the syntax of the requirements.yml file, refer to Advanced Control Over
Role Requirements in the Ansible documentation.

10.4. Ansible Galaxy Support 62

http://docs.ansible.com/galaxy.html#advanced-control-over-role-requirements-files
http://docs.ansible.com/galaxy.html#advanced-control-over-role-requirements-files

CHAPTER

ELEVEN

INVENTORIES

An Inventory is a collection of hosts against which jobs may be launched, the same as an Ansible inventory file.
Inventories are divided into groups and these groups contain the actual hosts. Groups may be sourced manually, by
entering host names into Tower, or from one of Ansible Tower’s supported cloud providers.

Note: If you have a custom dynamic inventory script, or a cloud provider that is not yet supported natively in Tower,
you can also import that into Tower. Refer to the Tower Administration Guide.

This tab displays a list of the inventories that are currently available. The inventory list may be sorted and searched by
Name or Organization. This list may also be filtered by selecting Cloud Sourced, Failed Hosts, or Sync Failures.

The list of Inventory details includes:

• Inventory Sync: If configured, you can “Sync” to fetch the project details from the configured source control.

• Status Dot: This shows the status of recent jobs for this inventory.

• Name: The inventory name. Clicking the Inventory name navigates to the properties screen for the selected
inventory, which shows the inventory’s groups and hosts. (This view is also accessible from the Action menu.)

• Organization: The organization to which the inventory belongs.

• Actions: The following actions are available for the selected inventory:

– Edit: Edit the properties for the selected inventory

– Delete: Delete the selected inventory. This operation cannot be reversed!

11.1 Add a new inventory

To create a new inventory click the button, which opens the Create Inventory window.

63

http://docs.ansible.com/ansible-tower/3.0.2/html/installandreference/glossary.html#term-inventory
http://docs.ansible.com/ansible-tower/3.0.2/html/administration/index.html#ag-start

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Enter the appropriate details into the following fields and select Save:

• Name: Enter a name appropriate for this inventory.

• Description: Enter an arbitrary description as appropriate.

• Organization: Choose among the available organizations.

• Variables: Variable definitions and values to be applied to all hosts in this inventory. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

After clicking save, the Groups and Hosts Management screen appears.

11.1. Add a new inventory 64

Ansible Tower User Guide, Release Ansible Tower 3.0.2

11.2 Groups and Hosts

Topics:

• Groups

– Add a new group

– Credential Sources

* Rackspace Cloud Servers

* Amazon Web Services EC2

* Google Compute Engine

* Microsoft Azure Classic (deprecated)

* Microsoft Azure Resource Manager

* VMware vCenter

* Red Hat Satellite 6

* Red Hat CloudForms

* OpenStack

* Custom Script

– Scheduling

* Add a new schedule

• Hosts

– Add a new host

Inventories are divided into groups, which may contain hosts and other groups, and hosts. There are several actions
available for inventories.

• Create a new Group

• Create a new Host

• Run a command on the selected Inventory

• Edit Inventory properties

• View activity streams for Groups and Hosts

• Obtain help building your Inventory

11.2.1 Groups

Under Groups, you can view which groups belong to this inventory, easily filtered or searched by group name.

Additional actions may be performed on the group by selecting the buttons to the right of the group name:

• Sync status: Show the status of inventory synchronization for groups configured with cloud sources. If syn-
chronization is configured, clicking this button shows the synchronization log for the selected group.

• Host status: Show the status of successful and failed jobs for the selected group. Clicking this button shows the
list of hosts that are members of the selected group.

11.2. Groups and Hosts 65

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Start sync process: Initiate a synchronization of the group with the configured cloud source. (A synchro-
nization process that is in progress may be canceled by clicking the cancel button that appears here during
synchronization.)

• Edit Group: Edit the properties for the selected group

• Copy Group: Groups can be nested. This allows you to copy or move the group to a different group.

• Delete: Delete the selected group. This operation cannot be reversed!

Add a new group

Create a new group for an inventory by clicking the button, which opens the Create Group
window.

Enter the appropriate details into the required and optional fields, and click Save.

• Name: Required

• Description: Enter an arbitrary description as appropriate

• Source: Choose a source which matches the credential type against which a host can be entered.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

In prior versions of Ansible Tower, the Source default was manual, meaning that the hosts must be entered into Tower
manually. Beginning with Ansible Tower 3.0, host can be added via multiple methods/credential sources. (Refer to
Add a new host for more information on managing hosts individually.)

To synchronize the inventory group from a cloud source, choose the appropriate source from the Source menu.

Note: Starting with version 2.2, Ansible Tower supports Amazon Web Services EC2, Rackspace Cloud Servers,
Google Compute Engine, VMware vCenter, Microsoft Azure, OpenStack, and custom scripts added by the adminis-
trator. With Ansible Tower version 3.0, Microsoft Azure Classic (deprecated) and Microsoft Azure Resource Manager

11.2. Groups and Hosts 66

Ansible Tower User Guide, Release Ansible Tower 3.0.2

were added to expand upon the support offered for Microsoft Azure, and support for Red Hat Satellite 6 and RH
Cloudforms credentials were also added.

All cloud inventory sources have the following update options:

• Overwrite: When checked all child groups and hosts not found on the remote source are deleted from the
local inventory. When not checked any local child hosts and groups not found on the external source remains
untouched by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts will be removed and replaced by those
found on the external source. When not checked a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks. To avoid job overflows if jobs are spawned faster than the inventory can sync,
selecting this allows you to configure a Cache Timeout to cache prior inventory syncs for a certain number of
seconds.

The “Update on Launch” setting refers to a dependency system for projects and inventory, and it will not specifically
exclude two jobs from running at the same time. If a cache timeout is specified, then the dependencies for the second
job is created and it uses the project and inventory update that the first job spawned. Both jobs then wait for that project
and/or inventory update to finish before proceeding. If they are different job templates, they can then both start and
run at the same time, if the system has the capacity to do so.

Note: If you intend to use Tower’s provisioning callback feature with a dynamic inventory source, “Update on
Launch” should be set for the inventory group.

When done, click Save.

Credential Sources

Topics:

• Rackspace Cloud Servers

• Amazon Web Services EC2

• Google Compute Engine

• Microsoft Azure Classic (deprecated)

• Microsoft Azure Resource Manager

11.2. Groups and Hosts 67

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• VMware vCenter

• Red Hat Satellite 6

• Red Hat CloudForms

• OpenStack

• Custom Script

Choose a source which matches the credential type against which a host can be entered.

Rackspace Cloud Servers

To configure a group for Rackspace, select Rackspace Cloud Servers and enter the following details:

• Cloud Credential: Choose from an existing Credential. For more information, refer to Credentials.

• Regions: Click on the regions field to see a list of regions for your cloud provider. You can select multiple
regions, or choose “All” to include all regions. Tower will only be updated with Hosts associated with the
selected regions.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

11.2. Groups and Hosts 68

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Amazon Web Services EC2

To configure a group for AWS, select Amazon EC2 and enter the following details:

11.2. Groups and Hosts 69

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Cloud Credential: Choose from an existing credential (for more information, refer to Credentials).

If Tower is running on an EC2 instance with an assigned IAM Role, the credential may be omitted,
and the security credentials from the instance metadata will be used instead. For more information
on using IAM Roles, refer to the IAM_Roles_for_Amazon_EC2_documentation_at_Amazon.

• Regions: Click on the regions field to see a list of regions for your cloud provider. You can select multiple
regions, or choose “All” to include all regions. Tower will only be updated with Hosts associated with the
selected regions.

• Instance Filters: Rather than importing your entire Amazon EC2 inventory, filter the instances returned by the
inventory script based on a variety of metadata. Hosts are imported if they match any of the filters entered here.

Examples:

– To limit to hosts having the tag TowerManaged: Enter tag-key=TowerManaged

– To limit to hosts using either the key-name staging or production: Enter key-name=staging,
key-name=production

– To limit to hosts where the Name tag begins with test: Enter tag:Name=test*

For more information on the filters that can be used here, refer to the Describe Instances documentation at
Amazon.

• Only Group By: By default, Tower creates groups based on the following Amazon EC2 parameters:

– Availability Zones

– Image ID

– Instance Type

– Key Name

– Region

– Security Group

– Tags (by name)

– VPC ID

If you do not want all these groups created, select from the dropdown the list of groups that you would like
created by default. You can also select Instance ID to create groups based on the Instance ID of your
instances.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

• Source Variables: Override variables found in ec2.ini and used by the inventory update script. Enter vari-
ables using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed
description of these variables view ec2.ini in the Ansible GitHub repo.

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

11.2. Groups and Hosts 70

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
https://github.com/ansible/ansible/blob/devel/contrib/inventory/ec2.ini

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Google Compute Engine

To configure a group for Google Compute Engine, select Google Compute Engine and enter the following details:

• Cloud Credential: Choose from an existing Credential. For more information, refer to Credentials.

• Regions: Click on the regions field to see a list of regions for your cloud provider. You can select multiple
regions, or choose “All” to include all regions. Tower will only be updated with Hosts associated with the
selected regions.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

Microsoft Azure Classic (deprecated)

To configure a group for Microsoft Azure Classic, select Microsoft Azure Classic (deprecated) and enter the follow-
ing details:

• Cloud Credential: Choose from an existing Credential. For more information, refer to Credentials.

• Regions: Click on the regions field to see a list of regions for your cloud provider. You can select multiple
regions, or choose “All” to include all regions. Tower will only be updated with Hosts associated with the
selected regions.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

11.2. Groups and Hosts 71

Ansible Tower User Guide, Release Ansible Tower 3.0.2

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

Microsoft Azure Resource Manager

To configure a group for Microsoft Azure Resource Manager, select Microsoft Azure Resource Managee and enter
the following details:

• Cloud Credential: Choose from an existing Credential. For more information, refer to Credentials.

• Regions: Click on the regions field to see a list of regions for your cloud provider. You can select multiple
regions, or choose “All” to include all regions. Tower will only be updated with Hosts associated with the
selected regions.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

11.2. Groups and Hosts 72

Ansible Tower User Guide, Release Ansible Tower 3.0.2

VMware vCenter

To configure a group for VMware vCenter, select VMware and enter the following details:

• Cloud Credential: Choose from an existing Credential. For more information, refer to Credentials.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

• Source Variables: Override variables found in vmware.ini and used by the inventory update script. For a
detailed description of these variables view vmware.ini in the Ansible GitHub repo. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

11.2. Groups and Hosts 73

https://github.com/ansible/ansible/blob/devel/contrib/inventory/vmware.ini

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Red Hat Satellite 6

To configure a group for Red Hat Satellite 6, select Red Hat Satellite 6 and enter the following details:

• Cloud Credential: Choose from an existing Credential. For more information, refer to Credentials.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

11.2. Groups and Hosts 74

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Red Hat CloudForms

To configure a group for Red Hat CloudForms, select Red Hat CloudForms and enter the following details:

• Cloud Credential: Choose from an existing Credential. For more information, refer to Credentials.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

11.2. Groups and Hosts 75

Ansible Tower User Guide, Release Ansible Tower 3.0.2

OpenStack

To configure a group for OpenStack, select OpenStack and enter the following details:

• Cloud Credential: Choose from an existing Credential. For more information, refer to Credentials.

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

• Source Variables: Override variables found in openstack.yml and used by the inventory update script. For
a detailed description of these variables view openstack.yml in the Ansible GitHub repo. Enter variables using
either JSON or YAML syntax. Use the radio button to toggle between the two.

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

11.2. Groups and Hosts 76

https://github.com/ansible/ansible/blob/devel/contrib/inventory/openstack.yml

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Custom Script

Tower allows you to use a custom dynamic inventory script, if your administrator has added one.

To configure a group to use a Custom Inventory Script, select Custom Script and enter the following details:

• Custom Inventory Script: Choose from an existing Inventory Script.

• Environment Variables: Set variables in the environment to be used by the inventory update script. The
variables would be specific to the script that you have written.

Enter variables using either JSON or YAML syntax. Use the radio button to toggle between the two.

You can also configure Update Options.

• Overwrite: If checked, all child groups and hosts not found on the external source are deleted from the local
inventory. When not checked, local child hosts and groups not found on the external source remain untouched
by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts are removed and replaced by those
found on the external source. When not checked, a merge is performed, combining local variables with those
found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the selected source
before executing job tasks.

11.2. Groups and Hosts 77

Ansible Tower User Guide, Release Ansible Tower 3.0.2

For more information on syncing or using custom inventory scripts, refer to Custom Inventory Scripts in the Ansible
Tower Administration Guide.

Scheduling

For groups sourced from a cloud service, the inventory update process may be scheduled via the Schedule view. To

access the Schedule view, click the Schedule () button beside the Inventory Group name to open the Edit
Group dialog.

This screen displays a list of the schedules that are currently available for the selected Group. The schedule list may
be sorted and searched by Name.

11.2. Groups and Hosts 78

http://docs.ansible.com/ansible-tower/3.0.2/html/administration/custom_inventory_script.html#ag-custom-inventory-script

Ansible Tower User Guide, Release Ansible Tower 3.0.2

The list of schedules includes:

• Name (Clicking the schedule name opens the Edit Schedule dialog)

• First Run

• Next Run

Buttons located in the upper right corner of the Schedules screen provide the following actions:

• Create a new schedule

• Refresh this view

Add a new schedule

To create a new schedule click the button.

11.2. Groups and Hosts 79

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Enter the appropriate details into the following fields and select Save:

• Name (required)

• Start Date (required)

• Start Time (required)

• Local Time Zone (the entered Start Time should be in this timezone)

• Repeat Frequency (the appropriate options are displayed as the update frequency is modified)

• None

• Minute, Hour, or Day

11.2. Groups and Hosts 80

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Week

• Month

11.2. Groups and Hosts 81

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Year

The Schedule Description panel displays an detailed overview of the schedule and a list of the scheduled occurrences
in the selected Local Time Zone or in UTC (be sure to select Local Time or UTC as based on your needs).

Note: When using UTC time settings, repeating jobs that runs at a specific time of day may move relative to a local
timezone when Daylight Saving Time shifts occur.

Once you have saved the schedule, it can be viewed by clicking on the Schedule () tab beside the group name.

11.2. Groups and Hosts 82

Ansible Tower User Guide, Release Ansible Tower 3.0.2

There are server actions available for schedules:

• ON/OFF – Stop an active schedule or activate a stopped schedule by using the toggle button.

• Edit schedule

• Delete schedule

11.2.2 Hosts

Hosts are listed on the right side of the Inventory display screen.

The host list may be sorted and searched by Name or Groups, and filtered by hosts that are disabled, by hosts with
failed jobs, and by hosts synchronized with an external source.

This list displays information about each host and provides for several actions:

• ON/OFF Indicates whether a host is available and should be included in running jobs. For hosts that are part of
an external inventory, this flag is set by the inventory sync process and cannot be manually changed.

11.2. Groups and Hosts 83

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Name: Opens the Host Properties dialog

• Available: A toggle indicating whether the host is enabled to receive jobs from Tower. Click to toggle this
setting.

• Jobs: Shows the most recent Jobs run against this Host. Clicking this button displays a window showing the
most recent jobs and their status.

• Edit host: Opens the Host Properties dialog

• Copy host: Copies or moves the host to a different group

• Delete: Removes the host from Tower. This operation is not reversible!

Add a new host

Hosts can be added manually, by IP address, or hostname. Tower can also sync inventory directly from AWS EC2,
Google Compute Engine, MS Azure, VMware, Rackspace Open Cloud, or OpenStack.

To create a new host and add it to an existing group, click the button.

This opens the Create New Host dialog.

Enter the appropriate details into the following fields and click Save:

• Host Name: The hostname or IP address of the host

• Description: Enter an arbitrary description as appropriate

• Enabled?: Indicates if a host is available and should be included in running jobs. For hosts that are part of an
external inventory, this flag cannot be changed. It is set by the inventory sync process.

• Variables: Variable definitions and values to be applied to the selected host. Enter variables using either JSON
or YAML syntax, using the radio button to toggle between JSON or YAML.

11.3 Running Ad Hoc Commands

To run an ad hoc command, first select an inventory source. The inventory source can be a single group or host, a
selection of multiple hosts, or a selection of multiple groups.

11.3. Running Ad Hoc Commands 84

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Then, click the button.

Enter the details for the following fields:

• Module: Select one of the modules that Tower supports running commands against.

command apt_repository mount win_service
shell apt_rpm ping win_updates
yum service selinux win_group
apt group setup win_userapt_key user win_ping

• Arguments: Provide arguments to be used with the module you selected.

• Host Pattern: Enter the pattern used to target hosts in the inventory. To target all hosts in the inventory enter
all or *, or leave the field blank. This is automatically populated with whatever was selected in the previous
view prior to clicking the launch button.

• Machine Credential: Select the credential to use when accessing the remote hosts to run the command. Choose
the credential containing the username and SSH key or password that Ansbile needs to log into the remote hosts.

• Enable Privilege Escalation: If enabled, the playbook is run with administrator privileges. This is the equiva-
lent of passing the --become option to the ansible command.

• Verbosity: Select a verbosity level for the standard output.

• Forks: If needed, select the number of parallel or simultaneous processes to use while executing the command.

Click the button to run this ad hoc command.

11.3. Running Ad Hoc Commands 85

Ansible Tower User Guide, Release Ansible Tower 3.0.2

11.4 System Tracking

Note: System Tracking, introduced as a new feature in Ansible Tower 2.2, is only available to those with Enterprise-
level licenses.

System Tracking offers the ability to compare the results of two scan runs from different dates on one host or the same
date on two hosts.

Data is grouped by fact modules:

• Packages

• Services

• Files

• Ansible

• Custom

Tower is designed to make every attempt to find your data. If you select a date without any scan runs, Tower gathers
the previous year’s worth of scan runs to verify possible data to include. Successful comparisons display results from
the available dates instead of the specified dates. Unsuccessful comparisons display a message indicating why they
did not work.

Note: Service scan jobs should not run against an inventory with hosts that point to the same physical machine.

11.4. System Tracking 86

Ansible Tower User Guide, Release Ansible Tower 3.0.2

11.4.1 Single Host Workflow

Select a single host in an inventory to compare against two dates and click the button.

Note: If you have not already created a job template set to scan, you will not be able to proceed until the correct job
template has been created.

Select two dates on which you have scan data for the host, with the earliest date to compare on the left and the latest
date to compare on the right.

Select the module (Packages, Services, or Ansible) for which you want to compare differences. To change modules,
click on the module button with the button navigation to filter by different types of facts. Note that differences among
the “ansible” and “files” modules changes are highlighted in red, while only changes for “packages” and “services”
are shown.

You may also choose the same date in both date selectors if you want to compare multiple scan runs against a single
date. If two or more scan jobs runs are discovered on a particular day, Tower compares the most recent and the second-
most recent. If there is only one run for the selected date, Tower may display a message saying it could not find any

11.4. System Tracking 87

Ansible Tower User Guide, Release Ansible Tower 3.0.2

scan job runs in one of the columns. (Also noted in Known Issues in the Ansible Tower Release Notes manual.)

11.4. System Tracking 88

http://docs.ansible.com/ansible-tower/3.0.2/html/release-notes/known_issues.html#ir-known-issues

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Please note that if the scans found for the selected date are identical, Tower displays a single result of all facts scanned.

As an example, say that a user selects “7/7/2015” for both dates and selects the “packages” module. And say that
two runs occurred on this date, but there were no changes to packages on the selected host. The user sees a message
indicating the scans were identical as well as a single column containing all package versions, instead of a two-column
listing of differences.

11.4.2 Host to Host Workflow

To compare two hosts, select the hosts and click the button.

11.4. System Tracking 89

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Select a single date on which to compare the two hosts. Next, select the module for which you want to view differences.

11.4. System Tracking 90

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Although Tower only supports picking a single date for both hosts, you may notice different dates in the results.
Remember that Tower is designed to make every attempt to find your data. If a date is selected without any scan runs,
Tower gathers the previous year’s worth of scan runs to verify possible data to include. Note that differences among
the “ansible” and “files” modules changes are highlighted in red, while only changes for “packages” and “services”
are shown.

11.4. System Tracking 91

Ansible Tower User Guide, Release Ansible Tower 3.0.2

11.4. System Tracking 92

CHAPTER

TWELVE

JOB TEMPLATES

A job template is a definition and set of parameters for running an Ansible job. Job templates are useful to execute
the same job many times. Job templates also encourage the reuse of Ansible playbook content and collaboration
between teams. While the REST API allows for the execution of jobs directly, Tower requires that you first create a
job template.

This menu opens a list of the job templates that are currently available. The job template list may be sorted and
searched by Name or Description. The Job Templates tab also enables the user to launch, schedule, modify, and
remove a job template.

To create a new job template click the button.

93

http://docs.ansible.com/ansible-tower/3.0.2/html/installandreference/glossary.html#term-job-template

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Enter the appropriate details into the following fields:

• Name: Enter a name for the job (this is required).

• Description: Enter an arbitrary description as appropriate.

• Job Type:

– Run: Execute the playbook when launched, running Ansible tasks on the selected hosts.

– Check: Setting the type to Check does not execute the playbook, but does check the syntax, test the
environment setup, and report problems. Think of this as running the playbook in dry-run mode and
having it report “changed” when an item would be changed, but not actually making changes.

– Scan: Gather system tracking information. Only Superusers and Admins have permission to create scan
jobs. A default playbook has been created for your use. Custom written scan playbooks can use scan
modules.

– Prompt on Launch – If selected, even if a default value is supplied, you will be prompted upon launch to
choose a job type of run or check (scan job types cannot be changed at the time of launch).

Note: More information on job types can be found in the Playbooks: Special Topics section of the Ansible

94

http://docs.ansible.com/playbooks_special_topics.html

Ansible Tower User Guide, Release Ansible Tower 3.0.2

documentation.

• Inventory: Choose the inventory to be used with this job template from the inventories available to the currently
logged in Tower user. - Prompt on Launch – If selected, even if a default value is supplied, you will be
prompted upon launch to choose an inventory to run this job template against.

• Project: Choose the project to be used with this job template from the projects available to the currently logged
in Tower user.

• Playbook: Choose the playbook to be launched with this job template from the available playbooks. This
menu is automatically populated with the names of the playbooks found in the project base path for the selected
project. For example, a playbook named “jboss.yml” in the project path appears in the menu as “jboss”.

• Machine Credential: Choose the machine credential to be used with this job template from the credentials
available to the currently logged in Tower user.

• Cloud Credential: Choose the credential to be used with this job template from the credentials available to the
currently logged in Tower user.

• Network Credential Choose the network credential to be used with this job template from the credentials
availale to the currently logged in Tower user.

• Forks: The number of parallel or simultaneous processes to use while executing the playbook. A value of
zero uses the Ansible default setting, which is 5 parallel processes unless overridden in /etc/ansible/
ansible.cfg.

• Limit:

– A host pattern to further constrain the list of hosts managed or affected by the playbook. Multiple
patterns can be separated by colons (”:”). As with core Ansible, “a:b” means “in group a or b”,
“a:b:&c” means “in a or b but must be in c”, and “a:!b” means “in a, and definitely not in b”.

– Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon
launch to choose a limit.

Note: For more information and examples refer to Patterns in the Ansible documentation.

• Verbosity: Control the level of output Ansible produces as the playbook executes. Set the verbosity to any of
Default, Verbose, or Debug. This only appears in the “details” report view. Verbose logging includes the output
of all commands. Debug logging is exceedingly verbose and includes information on SSH operations that can
be useful in certain support instances. Most users do not need to see debug mode output.

• Job Tags:

– Provide a comma-separated list of playbook tags to specify what parts of the playbooks should be executed.

– For more information and examples refer to Tags in the Ansible documentation.

– Prompt on Launch – If selected, even if a default value is supplied, you will be prompted upon launch to
choose a job tag.

• Skip Tags:

– Provide a comma-separated list of playbook tags to skip certain tasks or parts of the playbooks to be
executed.

– For more information and examples refer to Tags in the Ansible documentation.

– Prompt on Launch – If selected, even if a default value is supplied, you will be prompted upon launch to
choose a job tag.

95

http://docs.ansible.com/intro_patterns.html
http://docs.ansible.com/playbooks_tags.html
http://docs.ansible.com/playbooks_tags.html

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Labels: Supply optional labels that describe this job template, such as “dev” or “test”. Labels can be used to
group and filter job templates and completed jobs in the Tower display.

– Labels are created when they are added to the Job Template. Labels are associated to a single Organization
using the Project that is provided in the Job Template. Members of the Organization can create labels on a
Job Template if they have edit permissions (such as an admin role).

– Once the Job Template is saved, the labels appear in the Job Templates overview.

– Click on the “x” beside a label to remove it. When a label is removed, and is no longer associated with a
Job or Job Template, the label is permanently deleted from the list of Organization labels.

– Jobs inherit labels from the Job Template at the time of launch. If a label is deleted from a Job Template,
it is also deleted from the Job.

• Extra Variables:

– Pass extra command line variables to the playbook. This is the “-e” or “–extra-vars” command line pa-
rameter for ansible-playbook that is documented in the Ansible documentation at Passing Variables on the
Command Line.

– Provide key/value pairs using either YAML or JSON. These variables have a maximum value of precedence
and overrides other variables specified elsewhere. An example value might be:

git_branch: production
release_version: 1.5

– Prompt on Launch – If selected, even if a default value is supplied, you will be prompted upon launch to
choose command line variables.

• Enable Privilege Escalation: If enabled, run this playbook as an administrator. This is the equivalent of passing
the --become option to the ansible-playbook command.

• Allow Provisioning Callbacks: Enable a host to call back to Tower via the Tower API and invoke the launch
of a job from this job template. Refer to Provisioning Callbacks for additional information.

• Add Survey: Creates a survey.

• Edit Survey: Edits the existing survey for this job template.

When you have completed configuring the job template, select Save.

When editing an existing job template, by clicking the job template name or the Edit button, the bottom of the screen
displays a list of all of the jobs that have been launched from this template. Refer to the section Jobs for more
information about this interface.

96

http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line
http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Note: Starting with Ansible Tower 3.0, Job Templates now have an option to be copied. If you choose to Copy
a Job Template, you must understand that this does not copy any associated schedule, notifications, or permissions.
Schedules and notifications must be recreated by the user or admin creating the copy of the Job Template. The user
copying the Job Template will be granted the admin permission, but no permissions are assigned (copied) to the Job
Template.

The Details view of a saved job allows you to review, edit, and add a survey (if the job type is not a scan).

The Completed Jobs view provides details of how this job has been run. It provides you with the ID, Name, Job Type,
when it completed, and allows you to relaunch or delete the job. You can filter the list of completed jobs using the job
ID, Name, Type, or if the Job Failed.

97

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Clicking on Permissions allows you to review, grant, edit, and remove associated permissions for users as well as
team members.

Click the button to create new permissions for this Job Template.

In this example, two users and one team have been selected and each have been granted permissions for this Job
Template.

98

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Note that you do not have to choose between teams or users, and that you can assign permissions to both at the same
time.

Clicking on Notifications allows you to review any notification integrations you have setup.

Click on the button to create a notification.

Refer to Notifications for more information.

99

Ansible Tower User Guide, Release Ansible Tower 3.0.2

12.1 Utilitzing Cloud Credentials

Cloud Credentials can be used when syncing a respective cloud inventory. Cloud Credentials may also be associated
with a Job Template and included in the runtime environment for use by a playbook. The use of Cloud Credentials
was introduced in Ansible Tower version 2.4.0.

12.1.1 OpenStack

The sample playbook below invokes the nova_compute Ansible OpenStack cloud module and requires creden-
tials to do anything meaningful, and specifically requires the following information: auth_url, username,
password, and project_name. These fields are made available to the playbook via the environmental vari-
able OS_CLIENT_CONFIG_FILE, which points to a YAML file written by Tower based on the contents of the cloud
credential. This sample playbook loads the YAML file into the Ansible variable space.

OS_CLIENT_CONFIG_FILE example:

clouds:
devstack:
auth:

auth_url: http://devstack.yoursite.com:5000/v2.0/
username: admin
password: your_password_here
project_name: demo

Playbook example:

- hosts: all
gather_facts: false
vars:
config_file: "{{ lookup('env', 'OS_CLIENT_CONFIG_FILE') }}"
nova_tenant_name: demo
nova_image_name: "cirros-0.3.2-x86_64-uec"
nova_instance_name: autobot
nova_instance_state: 'present'
nova_flavor_name: m1.nano

nova_group:
group_name: antarctica
instance_name: deceptacon
instance_count: 3

tasks:
- debug: msg="{{ config_file }}"
- stat: path="{{ config_file }}"

register: st
- include_vars: "{{ config_file }}"

when: st.stat.exists and st.stat.isreg

- name: "Print out clouds variable"
debug: msg="{{ clouds|default('No clouds found') }}"

- name: "Setting nova instance state to: {{ nova_instance_state }}"
local_action:

module: nova_compute
login_username: "{{ clouds.devstack.auth.username }}"
login_password: "{{ clouds.devstack.auth.password }}"

12.1. Utilitzing Cloud Credentials 100

Ansible Tower User Guide, Release Ansible Tower 3.0.2

12.1.2 Amazon Web Services

Amazon Web Services cloud credentials are exposed as the following environment variables during playbook execu-
tion (in the job template, choose the cloud credential needed for your setup):

• AWS_ACCESS_KEY

• AWS_SECRET_KEY

All of the AWS modules will implicitly use these credentials when run via Tower without having to set the
aws_access_key or aws_secret_key module options.

12.1.3 Rackspace

Rackspace cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• RAX_USERNAME

• RAX_API_KEY

All of the Rackspace modules will implicitly use these credentials when run via Tower without having to set the
username or api_key module options.

12.1.4 Google

Google cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• GCE_EMAIL

• GCE_PROJECT

• GCE_PEM_FILE_PATH

All of the Google modules will implicitly use these credentials when run via Tower without having to set the
service_account_email, project_id, or pem_file module options.

12.1.5 Azure

Azure cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• AZURE_SUBSCRIPTION_ID

• AZURE_CERT_PATH

All of the Azure modules implicitly use these credentials when run via Tower without having to set the
subscription_id or management_cert_path module options.

12.1.6 VMware

VMware cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• VMWARE_USER

• VMWARE_PASSWORD

12.1. Utilitzing Cloud Credentials 101

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• VMWARE_HOST

The sample playbook below demonstrates usage of these credentials:

- vsphere_guest:
vcenter_hostname: "{{ lookup('env', 'VMWARE_HOST') }}"
username: "{{ lookup('env', 'VMWARE_USER') }}"
password: "{{ lookup('env', 'VMWARE_PASSWORD') }}"
guest: newvm001
from_template: yes
template_src: centosTemplate
cluster: MainCluster
resource_pool: "/Resources"
vm_extra_config:

folder: MyFolder

12.2 Surveys

Surveys set extra variables for the playbook similar to ‘Prompt for Extra Variables’ does, but in a user-friendly question

and answer way. Surveys also allows for validation of user input. Click the button to create a
survey.

Use cases for surveys are numerous. An example might be if operations wanted to give developers a “push to stage”
button they could run without advanced Ansible knowledge. When launched, this task could prompt for answers to
questions such as, “What tag should we release?”

Many types of questions can be asked, including multiple-choice questions.

Note: Surveys are only available to those with Enterprise-level licenses.

12.2.1 Creating a Survey

Clicking on the button brings up the Add Survey window.

Use the ON/OFF toggle button to quickly activate or deactivate this survey prompt.

A survey can consist of any number of questions. For each question, enter the following information:

• Name: The question to ask the user

• Description: (optional) A description of what’s being asked of the user.

• Answer Variable Name: The Ansible variable name to store the user’s response in. This is the variable to be
used by the playbook. Variable names cannot contain spaces.

• Answer Type: Choose from the following question types.

– Text: A single line of text. You can set the minimum and maximum length (in characters) for this answer.

– Textarea: A multi-line text field. You can set the minimum and maximum length (in characters) for this
answer.

12.2. Surveys 102

Ansible Tower User Guide, Release Ansible Tower 3.0.2

– Password: Responses are treated as sensitive information, much like an actual password is treated. You
can set the minimum and maximum length (in characters) for this answer.

– Multiple Choice (single select): A list of options, of which only one can be selected at a time. Enter the
options, one per line, in the Multiple Choice Options box.

– Multiple Choice (multiple select): A list of options, any number of which can be selected at a time. Enter
the options, one per line, in the Multiple Choice Options box.

– Integer: An integer number. You can set the minimum and maximum length (in characters) for this answer.

– Float: A decimal number. You can set the minimum and maximum length (in characters) for this answer.

• Default Answer: The default answer to the question. This value is pre-filled in the interface and is used if the
answer is not provided by the user.

• Required: Whether or not an answer to this question is required from the user.

Once you have entered the question information, click Add Question to add the question.

A stylized version of the survey is presented, along with a New Question button. Click this button to add additional
questions.

For any question, you can click on the Edit button to edit the question, the Delete button to delete the question, and
click on the Up and Down arrow buttons to rearrange the order of the questions. Click Save to save the survey.

12.2. Surveys 103

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Click Save to save the survey.

12.2.2 Optional Survey Questions

The Required setting on a survey question determines whether the answer is optional or not for the user interacting
with it.

Behind the scenes, optional survey variables can be passed to the playbook in extra_vars, even when they aren’t
filled in.

• If a non-text variable (input type) is marked as optional, and is not filled in, no survey extra_var is passed to
the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length > 0, no
survey extra_var is passed to the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length === 0,
that survey extra_var is passed to the playbook, with the value set to an empty string (“”).

12.2.3 Extra Variables

Note: Additional strict extra_vars validation was added in Ansible Tower 3.0.0. extra_vars passed to the job
launch API are only honored if one of the following is true:

• They correspond to variables in an enabled survey

• ask_variables_on_launch is set to True

When you pass survey variables, they are passed as extra variables (extra_vars) within Tower. This can be tricky,
as passing extra variables to a job template (as you would do with a survey) can override other variables being passed
from the inventory and project.

12.2. Surveys 104

Ansible Tower User Guide, Release Ansible Tower 3.0.2

For example, say that you have a defined variable for an inventory for debug = true. It is entirely possible that
this variable, debug = true, can be overridden in a job template survey.

To ensure that the variables you need to pass are not overridden, ensure they are included by redefining them in the
survey. Keep in mind that extra variables can be defined at the inventory, group, and host levels.

Note: Beginning with Ansible Tower version 2.4, the behavior for Job Template extra variables and Survey variables
has changed. Previously, variables set using a Survey overrode any extra variables specified in the Job Template. In
2.4 and later, the Job Template extra variables dictionary is merged with the Survey variables. This may result in a
change of behavior upon upgrading to 2.4.

The following table notes the behavior (hierarchy) of variable precedence in Ansible Tower as it compares to variable
precedence in Ansible.

Ansible Tower Variable Precedence Hierarchy (last listed wins)

12.2.4 Relaunching Job Templates

Another change for Ansible Tower version 2.4 introduced a launch_type setting for your jobs. Instead of manually
relaunching a job, a relaunch is denoted by setting launch_type to relaunch. The relaunch behavior deviates
from the launch behavior in that it does not inherit extra_vars.

Job relaunching does not go through the inherit logic. It uses the same extra_vars that were calculated for the job
being relaunched.

For example, say that you launch a Job Template with no extra_varswhich results in the creation of a Job called j1.
Next, say that you edit the Job Template and add in some extra_vars (such as adding "{ "hello": "world"
}").

Relaunching j1 results in the creation of j2, but because there is no inherit logic and j1 had no extra_vars, j2 will
not have any extra_vars.

12.2. Surveys 105

Ansible Tower User Guide, Release Ansible Tower 3.0.2

To continue upon this example, if you launched the Job Template with the extra_vars you added after the creation
of j1, the relaunch job created (j3) will include the extra_vars. And relaunching j3 results in the creation of j4,
which would also include extra_vars.

12.3 Scan Job Templates

Scan jobs are special Job Templates that only collect information about the host on which the job is running.

Click on Job Templates to create this special type of job template.

To create a new job template click the button, which opens the Create Job Templates window.

Enter values for the following fields and select Save.

• Name: Enter a name appropriate for this inventory. (Required.)

• Description: Enter an arbitrary description as appropriate.

• Job Type: Jobs can be of type Run, Check, or Scan. (Required.)

• Inventory: Select the inventory containing the hosts you want this job to manage. (Required.)

12.3. Scan Job Templates 106

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Project: Select the project containing the playbook you want this job to execute. Use the default project included
with Tower unless you have a specific project to scan. (Required.)

• Playbook: Select the playbook to be executed by this job. Use the default playbook included with Tower unless
you have a specific playbook to scan. (Required.)

• Machine Credential: Select the credential you want the job to use when accessing the remote hosts. Choose
the credential containing the username and SSH key or password that Ansible will need to log into the remote
hosts.

• Cloud Credential: Selecting an optional cloud credential in the job template will pass along the access creden-
tials to the running playbook, allowing provisioning into the cloud without manually passing parameters to the
included modules.

• Forks: The number of parallel or simultaneous processes to use while executing the playbook.

• Limit: Provide a host pattern to further constrain the list of hosts that will be managed or affected by the
playbook.

• Verbosity: Control the level of output Ansible produces as the playbook executes (this is required).

• Job Tags: Provide a comma separated list of tags to run a specific part of a play or task.

• Enable Privilege Escalation: If enabled, run this playbook as an administrator. This is the equivalent of passing
the --become option to the ansible-playbook command.

• Allow Provisioning Callbacks: Enable a host to call back to Tower via the Tower API and invoke the launch
of a job from this job template. Refer to Provisioning Callbacks for additional information.

• Labels: Supply optional labels that describe this job template, such as “dev” or “test”. Labels can be used to
group and filter job templates and completed jobs in the Tower display.

– Labels are created when they are added to the Job Template. Labels are associated to a single Organization
using the Project that is provided in the Job Template. Members of the Organization can create labels on a
Job Template if they have edit permissions (such as an admin role).

– Once the Job Template is saved, the labels appear in the Job Templates overview.

– Click on the “x” beside a label to remove it. When a label is removed, and is no longer associated with a
Job or Job Template, the label is permanently deleted from the list of Organization labels.

– Jobs inherit labels from the Job Template at the time of launch. If a label is deleted from a Job Template,
it is also deleted from the Job.

• Extra Variables: Variable definitions and values to be applied to all hosts in this job template. Enter variables
using either JSON or YAML syntax. Use the radio button to toggle between the two.

12.3. Scan Job Templates 107

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Extra variables can be passed as command line variables to the playbook. This is the “-e” or “–extra-vars” command
line parameter for ansible-playbook that is documented in the Ansible documentation at Passing Variables on the
Command Line. Example commands might include:

scan_file_paths:
- /root/
- /root/

scan_use_checksum: true
scan_use_recursive: true

Extra variables can also be provided by key/value pairs using either YAML or JSON. These variables have a maximum
value of precedence and overrides other variables specified elsewhere.

Note: You cannot assign a new inventory at the time of launch to a scan job. Scan jobs must be tied to a fixed
inventory.

Note: You cannot change the Job Type at the time of launch to or from the type of “scan”. The
ask_job_type_on_launch option only enables you to toggle “run” versus “check” at launch time.

12.3. Scan Job Templates 108

http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line
http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line

Ansible Tower User Guide, Release Ansible Tower 3.0.2

12.3.1 Supported OSes for Scan Job Templates

The following operating systems are supported for Scan Jobs:

• Red Hat Enterprise Linux 5, 6, & 7

• CentOS 5, 6, & 7

• Ubuntu 12.04, 14.04, 16.04

• OEL 6 & 7

• SLES 11 & 12

• Debian 6 & 7

• Fedora 22, 23, 24

• Amazon Linux 2016.03

Note that some of these operating systems may require initial configuration in order to be able to run python and/or
have access to the python packages that the scan modules depend on.

Pre-scan Setup

The following are examples of playbooks that configure certain distributions so that scan jobs can be run against them.

Bootstrap Ubuntu (16.04)

- name: Get Ubuntu 15, 16, and on ready
hosts: all
sudo: yes
gather_facts: no

tasks:

- name: install python-simplejson
raw: sudo apt-get -y update
raw: sudo apt-get -y install python-simplejson
raw: sudo apt-get install python-apt

Bootstrap Fedora (23, 24)

- name: Get Fedora ready
hosts: all
sudo: yes
gather_facts: no

tasks:

- name: install python-simplejson
raw: sudo dnf -y update
raw: sudo dnf -y install python-simplejson
raw: sudo dnf -y install rpm-python

CentOS 5 or Red Hat Enterprise Linux 5 may also need the simplejson package installed.

12.3. Scan Job Templates 109

Ansible Tower User Guide, Release Ansible Tower 3.0.2

12.3.2 Launching a Scan Job Template

You can Launch, Schedule, Edit, Delete, or Copy the scan job template using the buttons to the right.

Click on the button. Enter any necessary credentials, passwords, passphrases, etc. that were setup for this job
template.

The Jobs page shows details of all the tasks and events for that playbook run.

12.3. Scan Job Templates 110

Ansible Tower User Guide, Release Ansible Tower 3.0.2

12.3. Scan Job Templates 111

Ansible Tower User Guide, Release Ansible Tower 3.0.2

12.3.3 Scheduling a Scan Job Template

To access scheduling for your scan job, click the button (most easily accessible from the Job Templates
navigational link).

Click the button to add a schedule.

Enter the appropriate details into the following fields and select Save:

12.3. Scan Job Templates 112

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Name (required)

• Start Date (required)

• Start Time (required)

• Local Time Zone (the entered Start Time should be in this timezone)

• Repeat Frequency (the appropriate options display as the update frequency is modified.)

The Details tab displays a description of the schedule and a list of the scheduled occurrences in the selected Local
Time Zone.

Note: Jobs are scheduled in UTC. Repeating jobs that runs at a specific time of day may move relative to a local
timezone when Daylight Saving Time shifts occur.

Use the ON/OFF toggle button to quickly activate or deactivate this survey prompt.

There are several actions available for schedules, under the Actions column:

• Edit Schedule

• Delete schedule

12.3.4 Custom Scan Job Templates

Custom scan jobs are normal scan job templates which use a custom scan playbook with customized fact modules.
Additional Ansible fact modules can be included easily via custom scan playbooks.

Fact Scan Playbooks

The default scan job playbook bundled with Tower, scan_facts.yml, contains invocations of three fact scan
modules - packages, services, and files, along with Ansible’s standard fact gathering. The scan_facts.yml
playbook file looks like the following:

- hosts: all
vars:
scan_use_checksum: false
scan_use_recursive: false

tasks:
- scan_packages:
- scan_services:
- scan_files:

paths: '{{ scan_file_paths }}'
get_checksum: '{{ scan_use_checksum }}'
recursive: '{{ scan_use_recursive }}'

when: scan_file_paths is defined

12.3. Scan Job Templates 113

Ansible Tower User Guide, Release Ansible Tower 3.0.2

The scan_files fact module is the only module that accepts parameters, passed via extra_vars on the scan job
template.

scan_file_paths: '/tmp/'
scan_use_checksum: true
scan_use_recursive: true

• The scan_file_paths parameter may have multiple settings (such as /tmp/ or /var/log).

• The scan_use_checksum and scan_use_recursive parameters may also be set to false or omitted.
An omission is the same as a false setting.

Custom Fact Scans

A playbook for a custom fact scan is similar to the example of the Fact Scan Playbook above. As an example, a
playbook that only uses a custom scan_foo Ansible fact module would look like this:

scan_custom.yml:

- hosts: all
gather_facts: false
tasks:
- scan_foo:

scan_foo.py:

def main():
module = AnsibleModule(

argument_spec = dict())

foo = [
{

"hello": "world"
},
{

"foo": "bar"
}

]
results = dict(ansible_facts=dict(foo=foo))
module.exit_json(**results)

main()

To use a custom fact module, ensure that it lives in the /library/ subdirectory of the Ansible project used in the
scan job template. This fact scan module is very simple, returning a hard-coded set of facts:

[
{

"hello": "world"
},
{

"foo": "bar"
}

]

12.3. Scan Job Templates 114

Ansible Tower User Guide, Release Ansible Tower 3.0.2

12.4 Provisioning Callbacks

Provisioning callbacks are a feature of Tower that allow a host to initiate a playbook run against itself, rather than
waiting for a user to launch a job to manage the host from the tower console. Please note that provisioning callbacks
are only used to run playbooks on the calling host. Provisioning callbacks are meant for cloud bursting, ie: new
instances with a need for client to server communication for configuration (such as transmitting an authorization key),
not to run a job against another host. This provides for automatically configuring a system after it has been provisioned
by another system (such as AWS auto-scaling, or a OS provisioning system like kickstart or preseed) or for launching
a job programmatically without invoking the Tower API directly. The Job Template launched only runs against the
host requesting the provisioning.

Frequently this would be accessed via a firstboot type script, or from cron.

To enable callbacks, check the Allow Provisioning Callbacks checkbox in the Job Template. This displays the Provi-
sioning Callback URL for this job template.

Note: If you intend to use Tower’s provisioning callback feature with a dynamic inventory, Update on Launch should
be set for the inventory group used in the Job Template.

Callbacks also require a Host Config Key, to ensure that foreign hosts with the URL cannot request configuration.

Click the button to create a unique host key for this callback, or enter your own key. The host key may be
reused across multiple hosts to apply this job template against multiple hosts. Should you wish to control what hosts
are able to request configuration, the key may be changed at any time.

To callback manually via REST, look at the callback URL in the UI, which is of the form:

http://<Tower server name>/api/v1/job_templates/1/callback/

The ‘1’ in this sample URL is the job template ID in Tower.

The request from the host must be a POST. Here is an example using curl (all on a single line):

root@localhost:~$ curl --data "host_config_key=5a8ec154832b780b9bdef1061764ae5a" \
http://<Tower server name>/api/v1/job_templates/1/callback/

The requesting host must be defined in your inventory for the callback to succeed. If Tower fails to locate the host
either by name or IP address in one of your defined inventories, the request is denied. When running a Job Template
in this way, the host initiating the playbook run against itself must be in the inventory. If the host is missing from the
inventory, the Job Template will fail with a “No Hosts Matched” type error message.

Note: If your host is not in inventory and Update on Launch is set for the inventory group, Tower attempts to
update cloud based inventory source before running the callback.

Successful requests result in an entry on the Jobs tab, where the results and history can be viewed.

While the callback can be accessed via REST, the suggested method of using the callback is to use one of the example
scripts that ships with Tower - /usr/share/awx/request_tower_configuration.sh (Linux/UNIX) or /
usr/share/awx/request_tower_configuration.ps1 (Windows). Usage is described in the source code

12.4. Provisioning Callbacks 115

Ansible Tower User Guide, Release Ansible Tower 3.0.2

of the file. This script is intelligent in that it knows how to retry commands and is therefore a more robust way to use
callbacks than a simple curl request. As written, the script retries once per minute for up to ten minutes.

Note: Please note that this is an example script. You should edit this script if you need more dynamic behavior when
detecting failure scenarios, as any non-200 error code may not be a transient error requiring retry.

Most likely you will use callbacks with dynamic inventory in Tower, such as pulling cloud inventory from one of
the supported cloud providers. In these cases, along with setting Update On Launch, be sure to configure an in-
ventory cache timeout for the inventory source, to avoid hammering of your Cloud’s API endpoints. Since the
request_tower_configuration.sh script polls once per minute for up to ten minutes, a suggested cache
invalidation time for inventory (configured on the inventory source itself) would be one or two minutes.

While we recommend against running the request_tower_configuration.sh script from a cron job, a sug-
gested cron interval would be perhaps every 30 minutes. Repeated configuration can be easily handled by schedul-
ing in Tower, so the primary use of callbacks by most users is to enable a base image that is bootstrapped into
the latest configuration upon coming online. To do so, running at first boot is a better practice. First boot scripts
are just simple init scripts that typically self-delete, so you would set up an init script that called a copy of the
request_tower_configuration script and make that into an autoscaling image.

12.4.1 Passing Extra Variables to Provisioning Callbacks

Just as you can pass extra_vars in a regular Job Template, you can also pass them to provisioning callbacks. To
pass extra_vars, the data sent must be part of the body of the POST request as application/json (as the content
type). Use the following JSON format as an example when adding your own extra_vars to be passed:

'{"extra_vars": {"variable1":"value1","variable2":"value2",...}}'

(Added in Ansible Tower version 2.2.0.)

You can also pass extra variables to the Job Template call using curl, such as is shown in the following example:

root@localhost:~$ curl -f -H 'Content-Type: application/json' -XPOST \
-d '{"host_config_key": "5a8ec154832b780b9bdef1061764ae5a", "extra_

↪→vars": "{\"foo\": \"bar\"}"}' \
http://<Tower server name>/api/v1/job_templates/1/callback

For more information, refer to Launching Jobs with Curl.

12.5 Launching Jobs

A major benefit of Ansible Tower is the push-button deployment of Ansible playbooks. You can easily configure
a template within Tower to store all parameters you would normally pass to the ansible-playbook on the command
line–not just the playbooks, but the inventory, credentials, extra variables, and all options and settings you can specify
on the command line.

Easier deployments drive consistency, by running your playbooks the same way each time, and allow you to delegate
responsibilities–even users who aren’t Ansible experts can run Tower playbooks written by others.

To launch a job template, click the button.

A job may require additional information to run. The following data may be requested at launch:

• Credentials that were setup

12.5. Launching Jobs 116

http://docs.ansible.com/ansible-tower/3.0.2/html/administration/tipsandtricks.html#launch-jobs-curl

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Passwords or passphrases that have been set to Ask

• A survey, if one has been configured for the job templates

• Extra variables, if requested by the job template

Here is an example job launch that prompts for Job Tags, and runs the example survey created in Surveys.

Along with any extra variables set in the job template and survey, Tower automatically adds the following variables to
the job environment:

• tower_job_id: The Job ID for this job run

• tower_job_launch_type: One of manual, callback, or scheduled to indicate how the job was started

• tower_job_template_id: The Job Template ID that this job run uses

12.5. Launching Jobs 117

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• tower_job_template_name: The Job Template name that this job uses

• tower_user_id: The user ID of the Tower user that started this job. This is not available for callback or
scheduled jobs.

• tower_user_name: The user name of the Tower user that started this job. This is not available for callback
or scheduled jobs.

Upon launch, Tower automatically redirects the web browser to the Job Status page for this job under the Jobs tab.

12.6 Scheduling

Launching job templates may also be scheduled via the button. Clicking this button opens the Schedules page.

This page displays a list of the schedules that are currently available for the selected Job Template. The schedule list
may be sorted and searched by Name.

The list of schedules includes: - Name: Clicking the schedule name opens the Edit Schedule dialog - First Run: The
first scheduled run of this task - Next Run: The next scheduled run of this task - Final Run: If the task has an end
date, this is the last run of the task

Buttons located in the upper right corner of the Schedules screen provide the following actions:

• Create a new schedule

• Refresh this view

• View Activity Stream

12.6.1 Add a new schedule

To create a new schedule click the button.

12.6. Scheduling 118

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Enter the appropriate details into the following fields and select Save:

• Name (required)

• Start Date (required)

• Start Time (required)

• Local Time Zone (the entered Start Time should be in this timezone)

• Repeat Frequency (the appropriate options display as the update frequency is modified.)

The Details tab displays a description of the schedule and a list of the scheduled occurrences in the selected Local
Time Zone.

12.6. Scheduling 119

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Note: Jobs are scheduled in UTC. Repeating jobs that runs at a specific time of day may move relative to a local
timezone when Daylight Saving Time shifts occur.

Use the ON/OFF toggle button to quickly activate or deactivate this survey prompt.

There are several actions available for schedules, under the Actions column:

• Edit Schedule

• Delete schedule

12.6. Scheduling 120

CHAPTER

THIRTEEN

JOBS

A job is an instance of Tower launching an Ansible playbook against an inventory of hosts.

The Jobs link displays a list of jobs and their status–shown as completed successfully or failed, or as an active (running)
job.

• Jobs can be searched by Job Failed?, job ID, or Status.

• Jobs can be filtered by job ID or Finished.

From this screen, you can relaunch jobs, remove jobs, or view the standard output of a particular job. Clicking on
a Name for an SCM Update job opens the Job Results screen, while clicking on a manually created Playbook Run
job takes you to the Job Status page for this job (also accessible after launching a job from the Job Templates link in
the main Tower navigational menu).

The Job Results window displays information about jobs of type Inventory Sync, Playbook Run, and SCM Update.

13.1 Job Results - Inventory Sync

The Job Results page for an inventory sync consists of two sections:

• Results

• Standard Out

121

http://docs.ansible.com/ansible-tower/3.0.2/html/installandreference/glossary.html#term-job

Ansible Tower User Guide, Release Ansible Tower 3.0.2

13.1.1 Results

The Results area shows the basic status of the job–Running, Pending, Successful, or Failed–and its start time. The
buttons in the top right of the Results view allow you to relaunch or delete the job.

The Results display includes details on the job execution:

• Name: The name of the associated inventory group.

• Status: Can be any of Pending, Running, Successful, or Failed.

• License Error: Only shown for Inventory Sync jobs. If this is True, the hosts added by the inventory sync
caused Tower to exceed the licensed number of managed hosts.

• Started: The timestamp of when the job was initiated by Tower.

• Finished: The timestamp of when the job was completed.

• Elapsed: The total time the job took.

• Launch Type: Manual or Scheduled.

• Group: The group being synced.

• Source: The type of cloud inventory.

• Overwrite: The value of Overwrite for this Inventory Sync. Refer to Inventories for details.

• Overwrite Vars: The value of Overwrite Vars for this Inventory Sync. Refer to Inventories for details.

By clicking on these items, where appropriate, you can view the corresponding job templates, projects, and other
Tower objects.

13.1.2 Standard Out

The Standard Out display shows the full results of running the SCM Update or Inventory Sync playbook. This shows
the same information you would see if you ran the Ansible playbook using Ansible from the command line, and can
be useful for debugging. The buttons in the top right corner of the Standard Out display allow you to toggle the output
as a main view or to download the output.

13.1. Job Results - Inventory Sync 122

Ansible Tower User Guide, Release Ansible Tower 3.0.2

13.2 Job Results - SCM

The Job Results page for an SCM update consists of two sections:

• Results

• Standard Out

13.2.1 Results

The Results area shows the basic status of the job–Running, Pending, Successful, or Failed–and its start time. The
buttons in the top right of the Results view allow you to relaunch or delete the job.

The Results display includes details on the job execution:

• Name: The name of the associated inventory group.

• Status: Can be any of Pending, Running, Successful, or Failed.

• Started: The timestamp of when the job was initiated by Tower.

• Finished: The timestamp of when the job was completed.

• Elapsed: The total time the job took.

• Launch Type: Manual or Scheduled.

• Project: The name of the project.

13.2. Job Results - SCM 123

Ansible Tower User Guide, Release Ansible Tower 3.0.2

By clicking on these items, where appropriate, you can view the corresponding job templates, projects, and other
Tower objects.

13.2.2 Standard Out

The Standard Out display shows the full results of running the SCM Update or Inventory Sync playbook. This shows
the same information you would see if you ran the Ansible playbook using Ansible from the command line, and can
be useful for debugging. The buttons in the top right corner of the Standard Out display allow you to toggle the output
as a main view or to download the output.

13.3 Job Results - Playbook Run

The Job Results page for a playbook run consists of several sections:

• Results

• Standard Out

• Details

• Event Summary

13.3.1 Results

The Results area shows the basic status of the job–Running, Pending, Successful, or Failed–and its start time. The
buttons in the top right of the Results view allow you to relaunch or delete the job.

13.3. Job Results - Playbook Run 124

Ansible Tower User Guide, Release Ansible Tower 3.0.2

The Results display includes details on the job execution:

• Status: Can be any of Pending, Running, Successful, or Failed.

• Template: The name of the job template from which this job was launched.

• Started: The timestamp of when the job was initiated by Tower.

• Finished: The timestamp of when the job was completed.

• Elapsed: The total time the job took.

• Launch By: The name of the user, job, or scheduled scan job which launched this job.

• Inventory: The inventory selected to run this job against.

• Machine Credential: The name of the credential used in this job.

• Verbosity: The level of verbosity set when creating the job template.

• Extra Variables: Any extra variables passed when creating the job template are displayed here.

By clicking on these items, where appropriate, you can view the corresponding job templates, projects, and other
Tower objects.

13.3.2 Standard Out

The Standard Out display shows the full results of running the SCM Update or Inventory Sync playbook. This shows
the same information you would see if you ran the Ansible playbook using Ansible from the command line, and can
be useful for debugging. The buttons in the top right corner of the Standard Out display allow you to toggle the output
as a main view or to download the output.

13.3. Job Results - Playbook Run 125

Ansible Tower User Guide, Release Ansible Tower 3.0.2

13.3. Job Results - Playbook Run 126

Ansible Tower User Guide, Release Ansible Tower 3.0.2

13.3.3 Job Details View

Plays

The Plays area shows the plays that were run as part of this playbook. The displayed plays can be filtered by Play
Name, and can be limited to show only failed plays (using the ALL/FAIL view toggle).

For each play, Tower shows the Play Name, start time for the play, the elapsed time of the play, the play Name, and
whether the play succeeded or failed (indicated by the status dot to the left of the pPlay Name). Clicking on a specific
play filters the Tasks and Host Events area to only display tasks and hosts relative to that selected play.

13.3. Job Results - Playbook Run 127

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Tasks

The Tasks area shows the tasks run as part of plays in the playbook. The displayed tasks can be filtered by Task
Name, and can be limited to only failed tasks.

For each task, Tower shows the task Name, the start time for the task, the elapsed time of the task, whether the task
succeeded or failed. Clicking on a specific task filters the Host Events area to only display hosts relative to that task.

Host Events

The Host Events area shows hosts affected by the selected play and task. For each host, Tower shows the host’s status,
its name, and any Item or Message set by that task.

13.3. Job Results - Playbook Run 128

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Clicking on the linked hostname brings up the Host Event dialog for that host and task.

The Host Event dialog shows the events for this host and the selected play and task:

• the Host

• the Status

• a unique ID

• a Created time stamp

• the name of the Play

• the name of the Task

• if applicable, the Ansible Module for the task, and any arguments for that module

• the Results of the task

There is also a JSON tab which displays the result in JSON format.

There is also a JSON tab which displays the result in JSON format.

13.3. Job Results - Playbook Run 129

Ansible Tower User Guide, Release Ansible Tower 3.0.2

13.3.4 Event Summary

The Event Summary area shows a summary of events for all hosts affected by this playbook as well as the Host
Status Summary.

Hosts can be filtered by their hostname, and can be limited to showing only changed, failed, OK, and unreachable
hosts.

13.3. Job Results - Playbook Run 130

Ansible Tower User Guide, Release Ansible Tower 3.0.2

For each host, the Event Summary area shows the hostname and the number of completed tasks for that host, sorted
by status.

13.3. Job Results - Playbook Run 131

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Clicking on the hostname brings up a Host Events dialog, displaying all tasks that affected that host.

This dialog can be filtered by the status of the tasks, as well as by the hostname.

For each event, Tower displays the status, the play name, and the task name.

Host status can be one of the following:

• Changed: the playbook task actually executed. Since Ansible tasks should be written to be idempotent, tasks
may exit successfully without executing anything on the host. In these cases, the task would return Ok, but not
Changed.

• Failure: the task failed. Further playbook execution was stopped for this host.

• OK: the playbook task returned “Ok”.

• Unreachable: the host was unreachable from the network or had another fatal error associated with it.

• Skipped: the playbook task was skipped because no change was necessary for the host to reach the target state.

The Host Summary area shows a graph summarizing the status of all hosts affected by this playbook run.

13.3. Job Results - Playbook Run 132

Ansible Tower User Guide, Release Ansible Tower 3.0.2

13.4 Job Concurrency

Tower limits the number of simultaneous jobs that can run based on the amount of physical memory and the complexity
of the playbook.

If the “Update on Launch” setting is checked, job templates that rely on the inventory or project also trigger an update
on them if it is within the cache timeout. If multiple jobs are launched within the cache timeout that depend on the
same project or inventory, only one of those project or inventory updates is created (instead of one for each job that
relies on it).

If you are having trouble, try setting the cache timeout on the project or inventory source to 60 seconds.

The restriction related to the amount of RAM on your Tower server and the size of your inventory equates to the total
number of machines from which facts can be gathered and stored in memory. The algorithm used is:

50 + ((total memory in megabytes) / 1024) - 2) * 75

With 50 as the baseline.

Each job that runs is:

(number of forks on the job) * 10

Which defaults to 50 if the limit is set Tower’s default value of 0.

Forks determine the default number of parallel processes to spawn when communicating with remote hosts. The fork
number is automatically limited to the number of possible hosts, so this is really a limit of how much network and
CPU load you can handle. Many users set this to 50, while others set it to 500 or more. If you have a large number of
hosts, higher values will make actions across all of those hosts complete faster. You can edit the ansible.cfg file
to change this value.

The Ansible fork number default is extremely conservative and is set to five (5). When you do not pass a forks value
in Tower (leaving it as 0), Ansible uses 5 forks (the default). If you set your forks value to one (1) in Tower, Ansible
uses the value entered and one (1) fork is created. Non-zero inputs are used as instructed.

As an example, if you have a job with 0 forks (the Tower default) on a system with 2 GB of memory, your algorithm
would look like the following:

13.4. Job Concurrency 133

Ansible Tower User Guide, Release Ansible Tower 3.0.2

50 + ((2048 / 1024) - 2) * 75 = 50

If you have a job with 0 forks (the Tower default) on a system with 4 GB of memory then you can run four (4) tasks
simultaneously which includes callbacks.

50 + ((4096 / 1024) - 2) * 75 = 200

This can be changed by setting a value in the Tower settings file (/etc/tower/settings.py) such as:

SYSTEM_TASK_CAPACITY = 300

If you want to override the setting, use caution, as you may run out of RAM if you set this value too high. You can
determine what the calculated setting is by reviewing /var/log/tower/task_system.log and looking for a
line similar to:

Running Nodes: []; Capacity: 50; Running Impact: 0; Remaining Capacity: 50

The Capacity: 50 is the current calculated setting.

As long as you have the capacity to do so, Tower attempts to reorder and run the most number of jobs possible. There
are some blockers and exceptions worth noting, however.

• A Job Template will block the same instance of another Job Template launched with the same inventory (this is
a change in behavior – prior to Ansible Tower 3.0, a Job Template would block the same instance of another Job
Template).

• A project update will block for another project requiring the same update.

• Job Templates which launch via provisioning callbacks can run, just not as an instance on the same host. This
allows running two (2) templates on the same inventory. However, if the inventory requires an update, they
will not run. Callbacks are special types of job templates which receive “push requests” from the host to the
inventory. They run on one host only and can run parallel with other jobs as long as they are different callbacks
and different hosts.

• System Jobs can only run one at a time. They block all other jobs and must be run on their own to avoid conflict.
System jobs will finish behind jobs schedule ahead of them, but will finish ahead of those jobs scheduled behind
it.

• Ad hoc jobs are blocked by any inventory updates running against the inventory for that ad hoc job as specified.

13.4. Job Concurrency 134

CHAPTER

FOURTEEN

NOTIFICATIONS

A Notifier is an instance of a Notification type (Email, Slack, Webhook, etc.) with a name, description, and a defined
configuration.

For example:

• A username, password, server, and recipients are needed for an Email notifier

• The token and a list of channels are needed for a Slack notifier

• The URL and Headers are needed for a Webhook notifier

A Notification is a manifestation of the notifier; for example, when a job fails, a notification is sent using the configu-
ration defined by the Notifier.

At a high level, the typical flow for the notification system works as follows:

• A user creates a notifier to the Tower REST API at the /api/v1/notifiers endpoint (either through the
API or through the Tower UI).

• A user assigns the notifier to any of the various objects that support it (all variants of job templates as well
as organizations and projects) and at the appropriate trigger level for which they want the notification (error,
success, or any). For example a user may wish to assign a particular Notifier to trigger when Job Template 1
fails. In which case, they will associate the notifier with the job template at /api/v1/job_templates/n/
notifiers_error API endpoint.

14.1 Notifier Hierarchy

Notifiers assigned at certain levels will inherit notifiers defined on parent objects as such:

• Job Templates will use notifiers defined on it as well as inheriting notifiers from the Project used by the Job
Template and from the Organization that it is listed under (via the Project).

• Project Updates will use notifiers defined on the project and will inherit notifiers from the Organization associ-
ated with it

• Inventory Updates will use notifiers defined on the Organization that it is listed under

• Ad-hoc commands will use notifiers defined on the Organization that the inventory is associated with

14.2 Workflow

When a job succeeds or fails, the error or success handler will pull a list of relevant notifiers using the procedure defined
above. It will then create a Notification object for each one containing relevant details about the job and then sends
it to the destination (email addresses, slack channel(s), sms numbers, etc). These Notification objects are available as

135

http://docs.ansible.com/ansible-tower/3.0.2/html/installandreference/glossary.html#term-notifier
http://docs.ansible.com/ansible-tower/3.0.2/html/installandreference/glossary.html#term-notification

Ansible Tower User Guide, Release Ansible Tower 3.0.2

related resources on job types (jobs, inventory updates, project updates), and also at /api/v1/notifications.
You may also see what notifications have been sent from a notifier by examining its related resources.

If a notification fails, it will not impact the job associated to it or cause it to fail. The status of the notification can be
viewed at its detail endpoint (/api/v1/notifications/<n>).

14.3 Create a Notification Template

To create a Notification Template, click the button and select Notifications.

14.4 Notification Types

Topics:

• Email

• Slack

• Twilio

• PagerDuty

• HipChat

• Webhook

• IRC

Each of these have their own configuration and behavioral semantics and testing them may need to be approached in
different ways. The following sections will give as much detail as possible.

14.4.1 Email

The email notification type supports a wide variety of SMTP servers and has support for TLS/SSL connections.

You must provide the following details to setup an email notification: - Username - Host - Sender email - Recepient
list - Password - Port

14.3. Create a Notification Template 136

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Caution: TLS and SSL connections are mutually exclusive and should not be selected at the same time. Be sure
to only select one–checking both causes the notification to silently fail.

14.4.2 Slack

Slack, a collaborative team communication and messaging tool, is pretty easy to configure.

You must supply the following to setup Slack notifications:

• A token (which you can obtain from creating a bot in the integrations settings for the Slack team at https:
//api.slack.com/bot-users)

• Destination channel(s)

You must also invite the notification bot to join the channel(s) in question. Note that private messages are not supported.

14.4. Notification Types 137

https://api.slack.com/bot-users
https://api.slack.com/bot-users

Ansible Tower User Guide, Release Ansible Tower 3.0.2

14.4.3 Twilio

Twilio service is an Voice and SMS automation service. Once you are signed in, you must create a phone number from
which the message will be sent. You can then define a “Messaging Service” under Programmable SMS and associate
the number you created before with it.

Note that you may need to verify this number or some other information before you are allowed to use it to send to any
numbers. The Messaging Service does not need a status callback URL nor does it need the ability to Process inbound
messages.

Under your individual (or sub) account settings, you will have API credentials. Twilio uses two credentials to deter-
mine which account an API request is coming from. The “Account SID”, which acts as a username, and the “Auth
Token” which acts as a password.

To setup Twilio, provide the following details:

• Account Token

• Source phone number (this is the number associated with the messaging service above and must be given in the
form of “+15556667777”)

• Destination phone number (this will be the list of numbers to receive the SMS and should be the 10-digit phone
number)

• Account SID

14.4.4 PagerDuty

PagerDuty is a fairly straightforward integration. The user must first create an API Key in the pagerduty system (this
is the token that is given to Tower) and then create a “Service” which provides an “Integration Key” that will also be
given to Tower. The other options of note are:

• API Token: The user must first create an API Key in the PagerDuty system (this is the token that is given to
Tower.

• PagerDuty Subdoman: When you sign up for the PagerDuty account, you receive a unique subdomain to com-
municate with. For instance, if you signed up as “towertest”, the web dashboard will be at towertest.
pagerduty.com and you will give the Tower API towertest as the subdomain (not the full domain).

• API Service/Integration Key

14.4. Notification Types 138

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• Client Identifier: This will be sent along with the alert content to the pagerduty service to help identify the
service that is using the api key/service. This is helpful if multiple integrations are using the same API key and
service.

14.4.5 HipChat

There are several ways to integrate with HipChat. The Tower implementation uses HipChat “Integrations”. Currently
you can find this at the bottom right of the main HipChat webview. From there, you will select “Build your own
Integration”. After creating that, it will list the auth_token that needs to be supplied to Tower. Some other relevant
details on the fields accepted by Tower for the HipChat notification type:

• Destination Channels: Channels which should receive the notification (“engineering” or “#support”, for exam-
ple).

• Token: The token listed after building your own HipChat integration.

• Label to be shown with notification: Along with the integration name itself this will put another label on the
notification (which could be helpful if multiple services are using the same integration to distinguish them from
each other).

• API URL: The URL of the Hipchat API service. If you create a team hosted by them it will be something
like: https://team.hipchat.com. For a self-hosted integration, use a base URL similar to https:/
/hipchat.yourcompany.com/ and add in appropriate Destination Channels without the # leading them
(“engineering” rahter than “#engineering”).

• Notification Color: This will highlight the message as the given color. If set to something HipChat does not
expect, then the notification will generate an error in the given color.

• Notify Channel: Selecting this will cause the bot to “notify” channel members. Normally it will just be stuck
as a message in the chat channel without triggering anyone’s notifications. This option will notify users of the
channel respecting their existing notification settings (browser notification, email fallback, etc.).

14.4. Notification Types 139

Ansible Tower User Guide, Release Ansible Tower 3.0.2

14.4.6 Webhook

The webhook notification type in Ansible Tower provides a simple interface to sending POSTs to a predefined web
service. Tower will POST to this address using application/json content type with the data payload containing all
relevant details in json format.

The parameters are pretty straightforward:

• Target URL: The full URL that will be POSTed to

• HTTP Headers: Headers in JSON form where the keys and values are strings. For example:

{"Authentication": "988881adc9fc3655077dc2d4d757d480b5ea0e11", "MessageType":
↪→"Test"}

14.4. Notification Types 140

Ansible Tower User Guide, Release Ansible Tower 3.0.2

14.4.7 IRC

The Tower IRC notification takes the form of an IRC bot that will connect, deliver its messages to channel(s) or
individual user(s), and then disconnect. The Tower notification bot also supports SSL authentication. The Tower
bot does not currently support Nickserv identification. If a channel or user does not exist or is not on-line then the
Notification will not fail; the failure scenario is reserved specifically for connectivity.

Connectivity information is straightforward:

• IRC Server Password: IRC servers can require a password to connect. If the server does not require one, leave
blank

• IRC Server Port: The IRC server Port

• IRC Server Address: The host name or address of the IRC server

• IRC Nick: The bot’s nickname once it connects to the server

• Destination Channels or Users: A list of users and/or channels to which to send the notification.

• SSL Connection: Should the bot use SSL when connecting

14.5 Configuring the towerhost hostname

In /etc/tower/settings.py, you can modify TOWER_URL_BASE='https://tower.example.com'
to change the notification hostname, replacing https://tower.example.com with your preferred hostname.
You must restart Tower services after saving your changes with ansible-tower-service restart.

Refreshing your Tower license also changes the notification hostname. New installations of Ansible Tower 3.0 should
not have to set the hostname for notifications.

14.5.1 Resetting the TOWER_URL_BASE

The primary way that Tower determines how the base URL (TOWER_URL_BASE) is defined is by looking at an
incoming request and setting the server address based on that incoming request.

14.5. Configuring the towerhost hostname 141

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Tower takes settings values from the database first. If no settings values are found, Tower falls back to using the values
from the settings files. If a user posts a license by navigating to the Tower host’s IP adddress, the posted license is
written to the settings entry in the database.

To change the TOWER_URL_BASE if the wrong address has been picked up, navigate to the license from the Tower

Settings () Menu’s ‘VIEW YOUR LICENSE’ link using the DNS entry you wish to appear in notifications, and
re-add your license.

14.5. Configuring the towerhost hostname 142

CHAPTER

FIFTEEN

BEST PRACTICES

15.1 Use Source Control

While Tower supports playbooks stored directly on the Tower server, best practice is to store your playbooks, roles,
and any associated details in source control. This way you have an audit trail describing when and why you changed
the rules that are automating your infrastructure. Plus, it allows for easy sharing of playbooks with other parts of your
infrastructure or team.

15.2 Ansible file and directory structure

Please review the Ansible best practices from the Ansible documentation at http://docs.ansible.com/playbooks_best_
practices.html. If creating a common set of roles to use across projects, these should be accessed via source control
submodules, or a common location such as /opt. Projects should not expect to import roles or content from other
projects.

Note: Playbooks should not use the vars_prompt feature, as Tower does not interactively allow for
vars_prompt questions. If you must use vars_prompt, refer to and make use of the Surveys functionality
of Tower.

Jobs run in Tower use the playbook directory as the current working directory, although jobs should be coded to use
the playbook_dir variable rather than relying on this.

15.3 Use Dynamic Inventory Sources

If you have an external source of truth for your infrastructure, whether it is a cloud provider or a local CMDB, it is best
to define an inventory sync process and use Tower’s support for dynamic inventory (including cloud inventory sources
and custom inventory scripts). This ensures your inventory is always up to date.

Note: With the release of Ansible Tower 2.4.0, edits and additions to Inventory host variables now persist beyond an
inventory sync as long as --overwrite_vars is not set. To have inventory syncs behave as they did before, it is
now required that both --overwrite and --overwrite_vars are set.

143

http://docs.ansible.com/playbooks_best_practices.html
http://docs.ansible.com/playbooks_best_practices.html
http://docs.ansible.com/ansible-tower/3.0.2/html/administration/custom_inventory_script.html#ag-custom-inventory-script

Ansible Tower User Guide, Release Ansible Tower 3.0.2

15.4 Variable Management for Inventory

Keeping variable data along with the objects in Tower (see the inventory editor) is encouraged, rather than using
group_vars/ and host_vars/. If you use dynamic inventory sources, Tower can sync such variables with the
database as long as the Overwrite Variables option is not set.

15.5 Autoscaling

Using the “callback” feature to allow newly booting instances to request configuration is very useful for auto-scaling
scenarios or provisioning integration.

15.6 Larger Host Counts

Consider setting “forks” on a job template to larger values to increase parallelism of execution runs. For more infor-
mation on tuning Ansible, see the Ansible blog.

15.7 Continuous integration / Continuous Deployment

For a Continuous Integration system, such as Jenkins, to spawn an Tower job, it should make a curl request to a job
template, or use the Tower CLI tool. The credentials to the job template should not require prompting for any particular
passwords. Using the API to spawn jobs is covered in the Tower API guide.

15.4. Variable Management for Inventory 144

http://www.ansible.com/blog/ansible-performance-tuning
http://docs.ansible.com/ansible-tower/3.0.2/html/towerapi/tower_cli.html#api-towercli
http://docs.ansible.com/ansible-tower/3.0.2/html/towerapi/index.html#api-start

CHAPTER

SIXTEEN

SECURITY

The following sections will help you gain an understanding of how Ansible Tower handles and lets you control file
system security.

All playbooks are executed via the awx file system user. For running jobs, Ansible Tower defaults to offering job
isolation via Linux namespacing and chroots. This projection ensures jobs can only access playbooks and roles from
the Project directory for that job template and common locations such as /opt. Playbooks are not able to access roles,
playbooks, or data from other Projects by default.

If you need to disable this protection (not recommended), you can edit /etc/tower/settings.py and set
AWX_PROOT_ENABLED to False.

Note: In this scenario, playbooks have access to the file system and all that that implies; therefore, users who have
access to edit playbooks must be trusted.

For credential security, users may choose to upload locked SSH keys and set the unlock password to “ask”. You can
also choose to have the system prompt them for SSH credentials or sudo passwords rather than having the system store
them in the database.

16.1 Playbook Access and Information Sharing

By default, Tower’s multi-tenant security prevents playbooks from reading files outside of their project directory. To
share information between playbooks or to read files on the file system outside of their project directory, you must
edit /etc/tower/settings.py and add the directories that are available to the AWX_PROOT_SHOW_PATHS
setting.

The following paths, plus any user specified paths, are hidden by AWX_PROOT_HIDE_PATHS:

• /etc/tower

• /var/lib/awx

• /var/log

• /tmp

• /var/lib/awx/projects

• /var/lib/awx/job_status

The following paths, plus any user specified paths, are shown by AWX_PROOT_SHOW_PATHS:

• /var/lib/awx/projects/<current_project>

• /tmp/ansible_tower_xxxxx

145

Ansible Tower User Guide, Release Ansible Tower 3.0.2

The primary file you may want to add to AWX_PROOT_SHOW_PATHS is /var/lib/awx/.ssh, if your playbooks
need to use keys or settings defined there.

16.2 PRoot functionality and variables

The PRoot functionality in Ansible Tower limits which directories on the Tower file system are available for playbooks
to see and use during playbook runs. You may find that you need to customize your PRoot settings in some cases. To
fine tune your usage of PRoot, there are certain variables that can be set:

Enable proot support for running jobs (playbook runs only).
AWX_PROOT_ENABLED = False

Command/path to proot.
AWX_PROOT_CMD = 'proot'

Additional paths to hide from jobs using proot.
AWX_PROOT_HIDE_PATHS = []

Additional paths to show for jobs using proot.
AWX_PROOT_SHOW_PATHS = []

To customize your PRoot settings, navigate to the /etc/tower/settings.py file. Once your changes have
been saved, restart services with the ansible-tower-service restart command.

16.3 Role-Based Access Controls

Role-Based Access Controls (RBAC) are built into Tower and allow Tower administrators to delegate access to server
inventories, organizations, and more. Administrators can also centralize the management of various credentials, al-
lowing end users to leverage a needed secret without ever exposing that secret to the end user. RBAC controls allow
Tower to help you increase security and streamline management.

RBACs are easiest to think of in terms of Roles which define precisely who or what can see, change, or delete an
“object” for which a specific capability is being set. In releases prior to Ansible Tower version 3.0, RBAC was thought
of in terms of granting permissions to users or teams. Starting with Tower 3.0, RBAC is best thought of as granting
roles to users or teams, which is a more intuitive approach.

There are a few main concepts that you should become familiar with regarding Tower’s RBAC design–roles, resources,
and users. Users can be members of a role, which gives them certain access to any resources associated with that role,
or any resources associated with “descendant” roles.

A role is essentially a collection of capabilities. Users are granted access to these capabilities and Tower’s resources
through the roles to which they are assigned or through roles inherited through the role hierarchy.

Roles associate a group of capabilities with a group of users. All capabilities are derived from membership within a
role. Users receive capabilities only through the roles to which they are assigned or through roles they inherit through
the role hierarchy. All members of a role have all capabilities granted to that role. Within an organization, roles are
relatively stable, while users and capabilities are both numerous and may change rapidly. Users can have many roles.

16.3.1 Role Hierarchy and Access Inheritance

Imagine that you have an organization named “SomeCompany” and want to allow two people, “Josie” and “Carter”,
access to manage all the settings associated with that organization. You should made both people members of the
organization’s admin_role.

16.2. PRoot functionality and variables 146

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Often, you will have many Roles in a system and you will want some roles to include all of the capabilities of
other roles. For example, you may want a System Administrator to have access to everything that an Organization
Administrator has access to, who has everything that a Project Administrator has access to, and so on.

This concept is referred to as the ‘Role Hierarchy’:

• Parent roles get all capabilities bestowed on any child roles

• Members of roles automatically get all capabilities for the role they are a member of, as well as any child roles.

The Role Hierarchy is represented by allowing Roles to have “Parent Roles”. Any capability that a Role has is
implicitly granted to any parent roles (or parents of those parents, and so on).

16.3. Role-Based Access Controls 147

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Often, you will have many Roles in a system and you will want some roles to include all of the capabilities of
other roles. For example, you may want a System Administrator to have access to everything that an Organization
Administrator has access to, who has everything that a Project Administrator has access to, and so on. We refer to this
concept as the ‘Role Hierarchy’ and it is represented by allowing Roles to have “Parent Roles”. Any capability that a
Role has is implicitly granted to any parent roles (or parents of those parents, and so on). Of course Roles can have
more than one parent, and capabilities are implicitly granted to all parents.

16.3. Role-Based Access Controls 148

Ansible Tower User Guide, Release Ansible Tower 3.0.2

RBAC controls also give you the capability to explicitly permit User and Teams of Users to run playbooks against
certain sets of hosts. Users and teams are restricted to just the sets of playbooks and hosts to which they are granted
capabilities. And, with Tower, you can create or import as many Users and Teams as you require–create users and
teams manually or import them from LDAP or Active Directory.

RBACs are easiest to think of in terms of who or what can see, change, or delete an “object” for which a specific
capability is being determined.

16.3.2 Applying RBAC

The following sections cover how to apply Tower’s RBAC system in your environment.

Editing Users

When editing a user, a Tower system administrator may specify the user as being either a System Administrator (also
referred to as the Superuser) or an Auditor.

• System administrators implicitly inherit all capabilities for all objects (read/write/execute) within the Tower
environment.

• Auditors implicitly inherit the read-only capability for all objects within the Tower environment.

Editing Organizations

When editing an organization, system administrators may specify the following roles:

• One or more users as organization administrators

16.3. Role-Based Access Controls 149

Ansible Tower User Guide, Release Ansible Tower 3.0.2

• One or more users as organization auditors

• And one or more users (or teams) as organization members

Users/teams that are members of an organization can view their organization administrator.

Users who are organization administrators implicitly inherit all capabilities for all objects within that Tower organiza-
tion.

Users who are organization auditors implicitly inherit the read-only capability for all objects within that Tower orga-
nization.

Editing Projects in an Organization

When editing a project in an organization for which they are the administrator, system administrators and organization
administrators may specify:

• One or more users/teams that are project administrators

• One or more users/teams that are project members

• And one or more users/teams that may update the project from SCM, from among the users/teams that are
members of that organization.

Users who are members of a project can view their project administrators.

Project administrators implicitly inherit the capability to update the project from SCM.

Creating Inventories and Credentials within an Organization

All access that is granted to use, read, or write credentials is now handled through roles. You no longer set the “team”
or “user” for a credential. Instead, you use Tower’s RBAC system to grant ownership, auditor, or usage roles.

System administrators and organization administrators may create inventories and credentials within organizations
under their administrative capabilities.

Whether editing an inventory or a credential, System administrators and organization administrators may specify one
or more users/teams (from those that are members of that organization) to be granted the usage capability for that
inventory or credential.

System administrators and organization administrators may specify one or more users/teams (from those that are
members of that organization) that have the capabilities to update (dynamic or manually) an inventory. Administrators
can also execute ad hoc commands for an inventory.

Editing Job Templates

System administrators, organization administrators, and project administrators, within a project under their adminis-
trative capabilities, may create and modify new job templates for that project.

When editing a job template, administrators (Tower, organization, and project) can select among the inventory and
credentials in the organization for which they have usage capabilities or they may leave those fields blank so that they
will be selected at runtime.

Administrators can also specify one or more users/teams (from those that are members of that project) that can use
that project in a job template.

Additionally, they may specify one or more users/teams (from those that are members of that project) that have ex-
ecution capabilities for that job template. The execution capability is valid regardless of any explicit capabilities the
user/team may have been granted against the inventory or credential specified in the job template.

16.3. Role-Based Access Controls 150

Ansible Tower User Guide, Release Ansible Tower 3.0.2

User View

A user can:

• See any organization or project for which they are a member

• Create their own credential objects which only belong to them

• See and execute any job template for which they have been granted execution capabilities

If a job template a user has been granted execution capabilities on does not specify an inventory or credential, the user
will be prompted at run-time to select among the inventory and credentials in the organization they own or have been
granted usage capabilities.

Users that are job template administrators can make changes to job templates; however, to make changes to the
inventory, project, playbook, or credentials used in the job template, the user must also have the “Use” role for the
project, inventory, and all credentials currently being used or being set.

16.3.3 Roles

As stated earlier in this documentation, all access that is granted to use, read, or write credentials is now handled
through roles, and roles are defined for a resource.

Built-in roles

The following table lists the RBAC system roles and a brief description of the how that role is defined with regard to
privileges in Tower.

System Role What it can do
System Administrator - System wide singleton Manages all aspects of the system
System Auditor - System wide singleton Views all aspects of the system
Ad Hoc Role - Inventory Runs ad hoc commands on an Inventory
Admin Role - Organizations, Projects, Inventory,
Projects, Job Templates

Manages all aspects of a defined Organization, Project,
Inventory, or Job Template

Auditor Role - Organizations, Projects, Inventory,
Projects, Job Templates

Views all aspects of a defined Organization, Project,
Inventory, or Job Template

Execute Role - Job Templates Runs assigned Job Template
Member Role - Organization, Team User is a member of a defined Organization or Team
Read Role - All Views settings for a defined Organization, Project,

Inventory, or Job Template
SCM Update Role - Project Updates the Project from the configured source control

management system
Update Role - Inventory Updates the Inventory using the cloud source update

system
Owner Role - Credential Owns and manages all aspects of this Credential
Use Role - Credential, Inventory, Project Uses the Credential, Inventory, or Project in a Job

Template

A Singleton Role is a special role that you can create and is intended for system wide roles.

16.3. Role-Based Access Controls 151

CHAPTER

SEVENTEEN

INDEX

• genindex

152

CHAPTER

EIGHTEEN

COPYRIGHT © 2016 RED HAT, INC.

Ansible, Ansible Tower, Red Hat, and Red Hat Enterprise Linux are trademarks of Red Hat, Inc., registered in the
United States and other countries.

If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide
a link to the original version.

Third Party Rights

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Rackspace trademarks, service marks, logos and domain names are either common-law trademarks/service marks or
registered trademarks/service marks of Rackspace US, Inc., or its subsidiaries, and are protected by trademark and
other laws in the United States and other countries.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

153

INDEX

A
about Tower

settings menu, 13
activity streams, 17
ad hoc commands, 84

inventories, 84
add new

inventories, 63
scan job, 106

adding new
credentials, 42

admin menu, 12
administrators

organization, 26
Amazon Web Services

credential types, 47
inventories, 69

Ansible Galaxy, 62
Ansible Galaxy integration

features, 3
automation

features, 2
autoscaling

best practices, 144
autoscaling flexibility

features, 3
AWS

cloud credentials, 101

B
backup and restore

features, 3
best practices, 143

autoscaling, 144
deployment, continuous, 144
dynamic inventory sources, 143
file and directory structure, 143
host counts, larger, 144
integration, continuous, 144
source control, 143
variable inventory management, 144

C
callbacks

extra variables, 116
check

job types, 93
cloud credentials

AWS, 101
Google, 101
job templates, 100
MS Azure, 101
OpenStack, 100
Rackspace, 101
VMware, 101

cloud flexibility
features, 3

CloudForms
credential types, 50

components
licenses, 7

concurrency
jobs, 133

create template
notifications, 136

credential types, 43
Amazon Web Services, 47
CloudForms, 50
Google Compute Engine, 51
machine, 44
Microsoft Azure Classic, 52
Microsoft Azure Resource Manager, 52
network, 45
OpenStack, 54
rackspace, 48
Red Hat Satellite, 49
source control, 46
VMware, 49

credentials, 39
adding new, 42
getting started, 39
how they work, 39
settings menu, 13
types, 43

154

Ansible Tower User Guide, Release Ansible Tower 3.0.2

custom
fact scan job, 114
scan job, 113

custom fact scans
playbook, 114
system tracking, 114

custom script
inventories, 77

D
dashboard, 16

host count, 16
job status, 16
jobs tab, 16
main menu, 11
schedule status, 16

DEB files
licenses, 7

deployment, continuous
best practices, 144

dynamic inventory sources
best practices, 143

E
Email

notifications types, 136
extra variables

callbacks, 116
provisioning callbacks, 116
surveys, 104

extra_vars, 105

F
fact scan job

custom, 114
playbook, 113

fact scan playbook
system tracking, 113

features, 4
Ansible Galaxy integration, 3
automation, 2
autoscaling flexibility, 3
backup and restore, 3
cloud flexibility, 3
inventory sources, Red Hat CloudForms, 4
inventory sources, Red Hat Satellite 6, 4
notifications, 4
OpenStack inventory support, 3
overview, 2
real-time playbook, 2
remote command execution, 3
RESTful API, 3
role-based access control, 2
run-time job customization, 4

system tracking, 4
file and directory structure

best practices, 143
forks

jobs, 133
functionality

PRoot, 146

G
Galaxy support, 62
getting started

credentials, 39
Google

cloud credentials, 101
Google Compute Engine

credential types, 51
inventories, 71

granted permissions
teams, 37

groups
notifications, 135

H
Hipchat

notifications types, 136
host count

dashboard, 16
host counts, larger

best practices, 144
host to host

scan job, 89
system tracking, 89

hostname configuration
notifications, 141

hosts
inventories, 83

hosts, add new
inventories, 84

how they work
credentials, 39

I
installation bundle

licenses, 7
integration, continuous

best practices, 144
inventories, 63

ad hoc commands, 84
add new, 63
Amazon Web Services, 69
custom script, 77
Google Compute Engine, 71
groups, 65

add new, 66

Index 155

Ansible Tower User Guide, Release Ansible Tower 3.0.2

groups and hosts, 65
hosts, 83
hosts, add new, 84
Microsoft Azure Classic (deprecated), 71
Microsoft Azure Resource Manager, 72
OpenStack, 76
Rackspace Cloud Servers, 68
Red Hat CloudForms, 75
Red Hat Satellite 6, 74
scan job, 86
scan job templates, creating, 106
scan job templates, custom, 113
scan job templates, launching, 110
scan job templates, scheduling, 112
scheduling, 78
scheduling, add new, 79
system tracking, 86
VMware vCenter, 73

inventory scripts
settings menu, 13

inventory sources
notifications, 135

inventory sources, Red Hat CloudForms
features, 4

inventory sources, Red Hat Satellite 6
features, 4

inventory sync
job results, 121

IRC
notifications types, 136

J
job results, 121

inventory sync, 121
job status

dashboard, 16
job templates, 93

cloud credentials, 100
job variables, 105
jobs, launching, 116
portal mode, 15
provisioning callbacks, 115
relaunch, 105
scheduling, 118
survey creation, 102
survey extra variables, 104
survey optional questions, 104
surveys, 102

job templates, hierarchy, 105
job templates, overview, 105
job types

check, 93
run, 93
scan, 93

job variables
job templates, 105

jobs, 121
concurrency, 133
event summary, 130
forks, 133
host events, 128
host summary, 130
job details, 127
notifications, 135
plays, 127
portal mode, 15
results, 121
tasks, 128

jobs results
playbook run, 124
SCM, 123

jobs tab
dashboard, 16

jobs, launching
job templates, 116

L
launching

scan job, 110
license, 4, 5

features, 6
nodes, 6
trial, 5
troubleshooting, 10
types, 5

license features, 4
license, add manually, 10
license, import, 9
license, viewing, 13
licenses

components, 7
DEB files, 7
installation bundle, 7
RPM files, 7

logging in, 8

M
machine

credential types, 44
main menu

dashboard, 11
management jobs

settings menu, 13
Microsoft Azure Classic

credential types, 52
Microsoft Azure Classic (deprecated)

inventories, 71
Microsoft Azure Resource Manager

Index 156

Ansible Tower User Guide, Release Ansible Tower 3.0.2

credential types, 52
inventories, 72

MS Azure
cloud credentials, 101

my view, 14

N
network

credential types, 45
new schedule addition

projects, 61
notifications

create template, 136
features, 4
groups, 135
hostname configuration, 141
inventory sources, 135
jobs, 135
notifier, 135
notifier hierarchy, 135
notifier workflow, 135
organizations, 24
resetting the TOWER_URL_BASE, 141
template, 136
troubleshooting TOWER_URL_BASE, 141
types, 136
types Email, 136
types Hipchat, 136
types IRC, 136
types pagerduty, 136
types Slack, 136
types Twilio, 136
types Webhook, 136

notifier
notifications, 135

notifier hierarchy
notifications, 135

notifier workflow
notifications, 135

O
OpenStack

cloud credentials, 100
credential types, 54
inventories, 76

OpenStack inventory support
features, 3

organization
administrators, 26
settings menu, 13

organizations, 19
notifications, 24
permissions, 22
users, 25, 32

overview
features, 2

P
pagerduty

notifications types, 136
permissions

organizations, 22
teams, 37
users, 33

playbook
custom fact scans, 114
fact scan job, 113

playbook run
jobs results, 124

playbooks
manage manually, 58
projects, 58
PRoot settings, 145
sharing access, 145
sharing content, 145
source control, 58

portal mode, 14
job templates, 15
jobs, 15

projects, 56
add new, 57
new schedule addition, 61
playbooks, 58
source control update, 59

PRoot
functionality, 146
troubleshooting, 146
variables, 146

PRoot settings
playbooks, 145

provisioning callbacks
extra variables, 116
job templates, 115

R
Rackspace

cloud credentials, 101
rackspace

credential types, 48
Rackspace Cloud Servers

inventories, 68
RBAC

security, 146
real-time playbook

features, 2
Red Hat CloudForms

inventories, 75
Red Hat Satellite

Index 157

Ansible Tower User Guide, Release Ansible Tower 3.0.2

credential types, 49
Red Hat Satellite 6

inventories, 74
relaunch

job templates, 105
remote command execution

features, 3
resetting the TOWER_URL_BASE

notifications, 141
RESTful API

features, 3
role-based access control

features, 2
role-based access controls, 146
RPM files

licenses, 7
run

job types, 93
run-time job customization

features, 4

S
scan

job types, 93
scan job

add new, 106
custom, 113
host to host, 89
inventories, 86
launching, 110
scheduling, 112
single host, 87

scan job templates, creating
inventories, 106

scan job templates, custom
inventories, 113

scan job templates, launching
inventories, 110

scan job templates, scheduling
inventories, 112

schedule status
dashboard, 16

scheduling
add new, 118
inventories, 78
job templates, 118
scan job, 112

scheduling, add new
inventories, 79

SCM
jobs results, 123

security, 145
RBAC, 146

settings menu

about Tower, 13
credentials, 13
inventory scripts, 13
management jobs, 13
organization, 13
teams, 13
users, 13
view license, 13

sharing access
playbooks, 145

sharing content
playbooks, 145

single host
scan job, 87
system tracking, 87

Slack
notifications types, 136

source control
best practices, 143
credential types, 46

source control update
projects, 59

support, 4, 5
survey extra variables

job templates, 104
surveys

creation, 102
extra variables, 104
job templates, 102
optional questions, 104

system tracking
custom fact scans, 114
fact scan playbook, 113
features, 4
host to host, 89
inventories, 86
scan job, 93
single host, 87

T
teams, 34

granted permissions, 37
permissions, 37
settings menu, 13
users, 32, 35

template
notifications, 136

Tower admin menu, 12
Tower settings menu, 13
troubleshooting

license, 10
PRoot, 146

troubleshooting TOWER_URL_BASE
notifications, 141

Index 158

Ansible Tower User Guide, Release Ansible Tower 3.0.2

Twilio
notifications types, 136

types
Email, notifications, 136
Hipchat, notifications, 136
IRC, notifications, 136
notifications, 136
pagerduty, notifications, 136
Slack, notifications, 136
Twilio, notifications, 136
Webhook, notifications, 136

U
updates, 5
user menu, 14
users, 29

organizations, 25, 32
permissions, 33
settings menu, 13
teams, 32, 35

V
variable inventory management

best practices, 144
variable precedence, 105
variables

PRoot, 146
view license

settings menu, 13
VMware

cloud credentials, 101
credential types, 49

VMware vCenter
inventories, 73

W
Webhook

notifications types, 136

Index 159

	Overview
	Real-time Playbook Output and Exploration
	Push Button Automation
	Enhanced and Simplifed Role-Based Access Control and Auditing
	Cloud & Autoscaling Flexibility
	The Ideal RESTful API
	Backup and Restore
	Ansible Galaxy Integration
	Inventory Support for OpenStack
	Remote Command Execution
	System Tracking
	Integrated Notifications
	Satellite and CloudForms Integration
	Run-time Job Customization

	Tower Licensing, Updates, and Support
	Support
	Trial Licenses
	License Types
	Node Counting in Licenses
	License Features
	Tower Component Licenses

	Logging In
	Import a License
	Adding a Tower License Manually

	The Tower Dashboard and Interface
	Tower Admin Menu
	Settings Menu
	My View – User Menu
	Dashboard Views
	Activity Streams

	Organizations
	Organizations - Permissions
	Organizations - Notifications
	Organizations - Users
	Organization - Administrators

	Users
	User Types - Quick View
	Users - Organizations
	Users - Teams
	Users - Granted Permissions

	Teams
	Teams - Users
	Teams - Granted Permissions

	Credentials
	Understanding How Credentials Work
	Getting Started with Credentials
	Add a New Credential
	Credential Types

	Projects
	Add a new project
	Updating projects from source control
	Add a new schedule
	Ansible Galaxy Support

	Inventories
	Add a new inventory
	Groups and Hosts
	Running Ad Hoc Commands
	System Tracking

	Job Templates
	Utilitzing Cloud Credentials
	Surveys
	Scan Job Templates
	Provisioning Callbacks
	Launching Jobs
	Scheduling

	Jobs
	Job Results - Inventory Sync
	Job Results - SCM
	Job Results - Playbook Run
	Job Concurrency

	Notifications
	Notifier Hierarchy
	Workflow
	Create a Notification Template
	Notification Types
	Configuring the towerhost hostname

	Best Practices
	Use Source Control
	Ansible file and directory structure
	Use Dynamic Inventory Sources
	Variable Management for Inventory
	Autoscaling
	Larger Host Counts
	Continuous integration / Continuous Deployment

	Security
	Playbook Access and Information Sharing
	PRoot functionality and variables
	Role-Based Access Controls

	Index
	Copyright © 2016 Red Hat, Inc.
	Index

