
Ansible Tower Administration Guide
Release Ansible Tower 3.3.0

Red Hat, Inc.

Jul 01, 2020

CONTENTS

1 Tower Licensing, Updates, and Support 2
1.1 Support . 2
1.2 Trial / Evaluation . 2
1.3 Subscription Types . 2
1.4 Node Counting in Licenses . 3
1.5 Tower Component Licenses . 3

2 Starting, Stopping, and Restarting Tower 4

3 Custom Inventory Scripts 5
3.1 Writing Inventory Scripts . 7

4 Inventory File Importing 8
4.1 Custom Dynamic Inventory Scripts . 8
4.2 SCM Inventory Source Fields . 9

5 Multi-Credential Assignment 10
5.1 Background . 10
5.2 Important Changes . 10
5.3 Launch Time Considerations . 11
5.4 Backwards Compatibility Concerns . 11
5.5 Multi-Vault Credentials . 12

6 Management Jobs 15
6.1 Removing Old Activity Stream Data . 15
6.2 Removing Old Job History . 19

7 Clustering 20
7.1 Setup Considerations . 21
7.2 Install and Configure . 21
7.3 Configuring Instances and Instance Groups from the API . 23
7.4 Instance group policies . 24
7.5 Isolated Instance Groups . 25
7.6 Status and Monitoring via Browser API . 28
7.7 Instance Services and Failure Behavior . 28
7.8 Job Runtime Behavior . 28
7.9 Deprovision Instances and Instance Groups . 31

8 OpenShift Deployment and Configuration 32
8.1 Tower and OpenShift Basics . 33
8.2 Configuration Options . 33

i

8.3 Basic Configuration . 33
8.4 Resource Requests and Request Planning . 34
8.5 Database Configuration and Usage . 35
8.6 Backup and Restore . 36
8.7 Upgrading . 36
8.8 Migrating . 36
8.9 Build custom virtual environments . 36

9 Proxy Support 38
9.1 Configure Known Proxies . 39
9.2 Reverse Proxy . 40

10 Tower Logfiles 41

11 Tower Logging and Aggregation 42
11.1 Loggers . 42
11.2 Set Up Logging with Tower . 47

12 The awx-manage Utility 49
12.1 Inventory Import . 49
12.2 Cleanup of old data . 50
12.3 Cluster management . 50

13 Tower Configuration 51
13.1 Authentication . 51
13.2 Jobs . 52
13.3 System . 53
13.4 User Interface . 55
13.5 License . 56

14 Bubblewrap functionality and variables 59

15 Token-Based Authentication 60
15.1 Managing OAuth 2 Applications and Tokens . 60
15.2 Using OAuth 2 Token System for Personal Access Tokens (PAT) . 63
15.3 Application Functions . 64
15.4 Application Token Functions . 67

16 Setting up Social Authentication 70
16.1 Basic Authentication Settings . 71
16.2 Google OAuth2 Settings . 71
16.3 GitHub OAuth2 Settings . 72
16.4 Organization and Team Mapping . 77

17 Setting up Enterprise Authentication 80
17.1 Azure Active Directory (AD) . 80
17.2 SAML Authentication Settings . 82
17.3 RADIUS Authentication Settings . 90
17.4 TACACS+ Authentication Settings . 91

18 Setting up LDAP Authentication 93
18.1 Referrals . 99
18.2 Enabling Logging for LDAP . 99
18.3 LDAP Organization and Team Mapping . 99

19 Changing the Default Timeout for Authentication 102

ii

20 User Authentication with Kerberos 103
20.1 AD and Kerberos Credentials . 104
20.2 Working with Kerberos Tickets . 105

21 Working with Session Limits 106

22 Backing Up and Restoring Tower 107
22.1 Backup/Restore Playbooks . 107
22.2 Backup and Restoration Considerations . 108
22.3 Backup and Restore for Clustered Environments . 108

23 Using Custom Logos in Ansible Tower 110

24 Troubleshooting Tower 112
24.1 Error logs . 112
24.2 Problems connecting to your host . 112
24.3 WebSockets port for live events not working . 112
24.4 Problems running a playbook . 112
24.5 Problems when running a job . 113
24.6 Playbooks aren’t showing up in the “Job Template” drop-down . 113
24.7 Playbook stays in pending . 113
24.8 Cancel a Tower job . 113
24.9 Reusing an external database causes installations to fail . 114
24.10 Private EC2 VPC Instances in Tower Inventory . 115
24.11 Troubleshooting “Error: provided hosts list is empty” . 115

25 Tower Tips and Tricks 116
25.1 Using the Tower CLI Tool . 116
25.2 Launching a Job Template via the API . 116
25.3 tower-cli Job Template Launching . 118
25.4 Changing the Tower Admin Password . 118
25.5 Creating a Tower Admin from the commandline . 119
25.6 Setting up a jump host to use with Tower . 119
25.7 View Ansible outputs for JSON commands when using Tower . 120
25.8 Locate and configure the Ansible configuration file . 120
25.9 View a listing of all ansible_ variables . 120
25.10 Using virtualenv with Ansible Tower . 120
25.11 Configuring the towerhost hostname for notifications . 122
25.12 Launching Jobs with curl . 122
25.13 Dynamic Inventory and private IP addresses . 123
25.14 Filtering instances returned by the dynamic inventory sources in Tower 123
25.15 Using an unreleased module from Ansible source with Tower . 124
25.16 Using callback plugins with Tower . 124
25.17 Connecting to Windows with winrm . 125
25.18 Importing existing inventory files and host/group vars into Tower 125

26 Introduction to tower-cli 127
26.1 License . 127
26.2 Capabilities . 127
26.3 Installation . 127
26.4 Configuration . 128

27 Usability Analytics and Data Collection 132

28 Postface 133

iii

29 Index 136

30 Copyright © 2018 Red Hat, Inc. 137

Index 138

iv

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Thank you for your interest in Red Hat Ansible Tower. Ansible Tower is a commercial offering that helps teams man-
age complex multi-tier deployments by adding control, knowledge, and delegation to Ansible-powered environments.

The Ansible Tower Administration Guide documents the administration of Ansible Tower through custom scripts, man-
agement jobs, and more. Written for DevOps engineers and administrators, the Ansible Tower Administration Guide
assumes a basic understanding of the systems requiring management with Tower’s easy-to-use graphical interface.
This document has been updated to include information for the latest release of Ansible Tower 3.3.0.

We Need Feedback!

If you spot a typo in this documentation, or if you have thought of a way to make this manual better, we would love to
hear from you! Please send an email to: docs@ansible.com

If you have a suggestion, try to be as specific as possible when describing it. If you have found an error, please include
the manual’s title, chapter number/section number, and some of the surrounding text so we can find it easily. We may
not be able to respond to every message sent to us, but you can be sure that we will be reading them all!

Ansible Tower Version 3.3.0; September 12, 2018; https://access.redhat.com/

CONTENTS 1

mailto:docs@ansible.com
https://access.redhat.com/

CHAPTER

ONE

TOWER LICENSING, UPDATES, AND SUPPORT

Red Hat Ansible Tower (“Ansible Tower”) is a software product provided as part of an annual subscription entered
into between you and Red Hat, Inc. (“Red Hat”).

Ansible is an open source software project and is licensed under the GNU General Public License version 3, as detailed
in the Ansible source code: https://github.com/ansible/ansible/blob/devel/COPYING

1.1 Support

Red Hat offers support to paid Red Hat Ansible Automation customers.

If you or your company has purchased a subscription for Ansible Automation, you can contact the support team at
https://access.redhat.com. To better understand the levels of support which match your Ansible Tower Subscription,
refer to Subscription Types. For details of what is covered under an Ansible Automation subscription, please see
the Scopes of Support at: https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4 and
https://access.redhat.com/support/policy/updates/ansible-engine.

1.2 Trial / Evaluation

While a license is required for Ansible Tower to run, there is no fee for a trial license.

• Trial licenses for Red Hat Ansible Automation are available at: http://ansible.com/license

• Support is not included in a trial license or during an evaluation of the Tower Software.

1.3 Subscription Types

Red Hat Ansible Automation is provided at various levels of support and number of machines as an annual Subscrip-
tion.

• Standard (F.K.A. “Enterprise: Standard”)

– Manage any size environment

– Enterprise 8x5 support and SLA

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

2

https://github.com/ansible/ansible/blob/devel/COPYING
https://access.redhat.com
https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4
https://access.redhat.com/support/policy/updates/ansible-engine
http://ansible.com/license
https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• Enterprise (F.K.A. “Enterprise: Premium”)

– Manage any size environment, including mission-critical environments

– Premium 24x7 support and SLA

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

All Subscription levels include regular updates and releases of Ansible Tower.

For more information, contact Ansible via the Red Hat Customer portal at https://access.redhat.com/ or at http://www.
ansible.com/pricing/.

1.4 Node Counting in Licenses

The Tower license defines the number of Managed Nodes that can be managed by Ansible Tower. A typical license
will say ‘License Count: 500’, which sets the maximum number of Managed Nodes at 500.

Ansible Tower counts Managed Nodes by the number of nodes in inventory. If more Managed Nodes are in the
Ansible Tower inventory than are supported by the license, you will be unable to start any Jobs in Ansible Tower.
If a dynamic inventory sync causes Ansible Tower to exceed the Managed Node count specified in the license, the
dynamic inventory sync will fail.

For more information on managed node requirements for licensing, please see https://access.redhat.com/articles/
3331481.

1.5 Tower Component Licenses

To view the license information for the components included within Ansible Tower, refer to /usr/share/doc/
ansible-tower-<version>/README where <version> refers to the version of Ansible Tower you have
installed.

To view a specific license, refer to /usr/share/doc/ansible-tower-<version>/*.txt, where * is re-
placed by the license file name to which you are referring.

1.4. Node Counting in Licenses 3

https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity
https://access.redhat.com/
http://www.ansible.com/pricing/
http://www.ansible.com/pricing/
https://access.redhat.com/articles/3331481
https://access.redhat.com/articles/3331481

CHAPTER

TWO

STARTING, STOPPING, AND RESTARTING TOWER

Ansible Tower ships with an admin utility script, ansible-tower-service, that can start, stop, and restart all
Tower services running on the current Tower node (including the message queue components, and the database if it
is an integrated installation). External databases must be explicitly managed by the administrator. The services script
resides in /usr/bin/ansible-tower-service and can be invoked as follows:

root@localhost:~$ ansible-tower-service restart

You can also invoke it via distribution-specific service management commands. Distribution packages often provide a
similar script, sometimes as an init script, to manage services. Refer to your distribution-specific service management
system for more information.

Note: When running Tower containerized in OpenShift, do not use the ansible-tower-service script. Restart
the pod using OpenShift instead.

Note: Beginning with version 2.2.0, Ansible Tower has moved away from using an init script in favor of using an
admin utility script. Previous versions of Ansible Tower shipped with a standard ansible-tower init script that
could be used to start, stop, and query the full Tower infrastructure. It was evoked via the service command:
/etc/init.d/ansible-tower script. For those using a 2.2.0 or later version of Ansible Tower, the new
admin utility script, ansible-tower-service, should be used instead.

4

CHAPTER

THREE

CUSTOM INVENTORY SCRIPTS

Tower includes built-in support for syncing dynamic inventory from cloud sources such as Amazon AWS, Google
Compute Engine, among others. Tower also offers the ability to use a custom script to pull from your own inventory
source.

Note: With the release of Ansible Tower 2.4.0, edits and additions to Inventory host variables now persist beyond an
inventory sync as long as --overwrite_vars is not set. To have inventory syncs behave as they did before, it is
now required that both --overwrite and --overwrite_vars are set.

To manage the custom inventory scripts available in Tower, choose Inventory Scripts from the Setup () menu.

To add a new custom inventory script, click the button.

5

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Enter the name for the script, plus an optional description. Then select the Organization that this script belongs to.

You can then either drag and drop a script on your local system into the Custom Script text box, or cut and paste the
contents of the inventory script there.

6

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

3.1 Writing Inventory Scripts

You can write inventory scripts in any dynamic language that you have installed on the Tower machine (such as shell
or python). They must start with a normal script shebang line such as #!/bin/bash or #!/usr/bin/python.
They run as the awx user. The inventory script invokes with '--list' to list the inventory, which returns in a JSON
hash/dictionary.

Generally, they connect to the network to retrieve the inventory from other sources. When enabling multi-tenancy
security (refer to Security for details), the inventory script will not be able to access most of the Tower machine. If this
access to the local Tower machine is necessary, configure it in /etc/tower/settings.py.

For more information on dynamic inventory scripts and how to write them, refer to the Intro to Dynamic Inventory
and Developing Dynamic Inventory Sources sections of the Ansible documentation, or review the example dynamic
inventory scripts on GitHub.

3.1. Writing Inventory Scripts 7

http://docs.ansible.com/ansible-tower/3.3.0/html/userguide/security.html#ug-security
http://docs.ansible.com/intro_dynamic_inventory.html
http://docs.ansible.com/developing_inventory.html
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory

CHAPTER

FOUR

INVENTORY FILE IMPORTING

Ansible Tower 3.2 introduces the ability to choose an inventory file from source control, rather than creating one from
scratch. This function is the same as custom inventory scripts, except that the contents are obtained from source control
instead of editing their contents browser. This means, the files are non-editable and as inventories are updated at the
source, the inventories within the projects are also updated accordingly, including the group_vars and host_vars
files or directory associated with them. SCM types can consume both inventory files and scripts, the overlap between
inventory files and custom types in that both do scripts.

Note: These features are compatible with Ansible version 2.4 and later. However, previous versions of Ansible are
supported, but with some limitations.

4.1 Custom Dynamic Inventory Scripts

A custom dynamic inventory script stored in version control can be imported and run. This makes it much easier to
make changes to an inventory script — rather than having to copy and paste one into Tower, it is pulled directly from
source control and then executed. The script must be written to handle any credentials needed for doing its work and
you are responsible for installing any Python libraries needed by the script (which is the same requirement for custom
dynamic inventory scripts). And this applies to both user-defined inventory source scripts and SCM sources as they
are both exposed to Ansible virtualenv requirements related to playbooks.

You can specify environment variables when you edit the SCM inventory source itself. For some scripts, this will be
sufficient, however, this is not a secure way to store secret information that gives access to cloud providers or inventory.

The better way is to create a new credential type for the inventory script you are going to use. The credential type will
need to specify all the necessary types of inputs. Then, when you create a credential of this type, the secrets will be
stored in an encrypted form. If you apply that credential to the inventory source, the script will have access to those
inputs like environment variables or files.

4.1.1 Update on Project Change

If the inventory source contains static content, it may be desirable to automatically update its content whenever the
SHA-1 hash of its source project changes. This can be done by configuring the inventory source to Update on Project
Change.

When this box is checked, the inventory source will not allow update-on-launch. Update-on-launch is important
because some configurations require it. For example, when you set up a project that the inventory references to update
in series before a Job Template runs, so that the inventory that the Job Template runs will have the updated form of
that inventory. However, there are two other alternative ways to accomplish this:

8

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• You can make a job template that uses a project as well as an inventory that updates from that same project. In
this case, you can set the project to update_on_launch, in which case it will trigger an inventory update, if
needed.

• If you must use a different project for the playbook than for the inventory source, then you can still place the
project in a workflow and then have a job template run on success of the project update.

This is guaranteed to have the inventory update “on time” (meaning that the inventory changes are complete before
the job template is launched), because the project does not transition to the completed state until the inventory update
is finished.

Note: A failed inventory update does not mark the project as failed. Also, not every project update will trigger a
corresponding inventory update. If the project revision has not changed and the inventory has not been edited, the
inventory update will not execute.

4.2 SCM Inventory Source Fields

The source fields used are:

• source_project: project to use

• source_path: relative path inside the project indicating a directory or a file. If left blank, “” is still a relative
path indicating the root directory of the project

• source_vars: if set on a “file” type inventory source then they will be passed to the environment vars when
running

An update of the project automatically triggers an inventory update where it is used. An update of the project is
scheduled immediately after creation of the inventory source.

You can specify a location manually in the Tower User Interface from the Create Inventory Source page.

Refer to Refer to the Inventories for instructions on creating an inventory source.

This listing should be refreshed to latest SCM info on a project update. If no inventory sources use a project as an
SCM inventory source, then the inventory listing may not be refreshed on update.

4.2.1 Supported File Syntax

Ansible Tower uses the ansible-inventory module from Ansible 2.4 and later that supports all valid inventory
syntax that Tower requires.

In order to make it configurable on the command line, the option --method is available with the
awx-manage inventory_import command. Inventory updates from files will use a backported version of
the ansible-inventory command for Ansible versions 2.4 and earlier.

For versions of Ansible 2.4 and later, the officially distributed ansible-inventory command will be used to
process inventory files.

4.2. SCM Inventory Source Fields 9

http://docs.ansible.com/ansible-tower/3.3.0/html/userguide/inventories.html#ug-inventories

CHAPTER

FIVE

MULTI-CREDENTIAL ASSIGNMENT

Starting with version 3.3, Ansible Tower provides support for assigning zero or more credentials to a job template.

5.1 Background

Prior to Ansible Tower 3.3, job templates had a certain set of requirements with respect to credentials:

• All job templates (and jobs) were required to have exactly one Machine/SSH or Vault credential (or one of both).

• All job templates (and jobs) could have zero or more “extra” credentials.

• Extra credentials represented “Cloud” and “Network” credentials that could be used to provide authentication
to external services via environment variables (e.g., AWS_ACCESS_KEY_ID).

This model required a variety of disjoint interfaces for specifying credentials on a job template and it lacked the
ability associate multiple Vault credentials with a playbook run, a use case supported by Ansible core from Ansible
2.4 onwards.

This model also poses a stumbling block for certain playbook execution workflows, such as having to attach a
“dummy” Machine/SSH credential to the job template simply to satisfy the requirement.

5.2 Important Changes

Job templates now have a single interface for credential assignment. From the API endpoint:

GET /api/v2/job_templates/N/credentials/

You can associate and disassociate credentials using POST requests, similar to the behavior in the deprecated
extra_credentials endpoint:

POST /api/v2/job_templates/N/credentials/ {'associate': true, 'id': X'}
POST /api/v2/job_templates/N/credentials/ {'disassociate': true, 'id': Y'}

Under this model, a job template is considered valid even when there are no credentials assigned to it. This model also
provides users the ability to assign multiple Vault credentials to a job template.

10

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

5.3 Launch Time Considerations

Prior to Ansible Tower 3.3, job templates had a configurable attribute, ask_credential_on_launch. This value
was used at launch time to determine which missing credential values were necessary for launch - this was primarily
used as a way to specify a Machine/SSH credential to satisfy the minimum credential requirement.

Under the new unified credential list model, this attribute still exists, but it is no longer “requiring” a credential. Now
when ask_credential_on_launch is True, it signifies that if desired, you may specify a list of credentials at
launch time to override those defined on the job template. For example:

POST /api/v2/job_templates/N/launch/ {'credentials': [A, B, C]}`

If ask_credential_on_launch is False, it signifies that custom credentials provided in the POST /api/
v2/job_templates/N/launch/ will be ignored.

Under this model, the only purpose for ask_credential_on_launch is to signal API clients to prompt the user
for (optional) changes at launch time.

5.4 Backwards Compatibility Concerns

A variety of API clients rely on now-deprecated mechanisms for credential retrieval and assignment, and those are
still supported in a backwards-compatible way under this new API change. Requests to update JobTemplate.
credential and JobTemplate.vault_credential will still behave as they did before:

PATCH /api/v2/job_templates/N/ {'credential': X, 'vault_credential': Y}

Under this model, when a job template with multiple vault credentials is updated in this way, the new underlying list
will only contain the single Vault credential specified in the deprecated request.

GET requests to /api/v2/job_templates/N/ have traditionally included a variety of metadata in the response
through related_fields:

{
"related": {

...
"credential": "/api/v2/credentials/1/",
"vault_credential": "/api/v2/credentials/3/",
"extra_credentials": "/api/v2/job_templates/5/extra_credentials/",

}
}

And summary_fields:

{
"summary_fields": {

"credential": {
"description": "",
"credential_type_id": 1,
"id": 1,
"kind": "ssh",
"name": "Demo Credential"

},
"vault_credential": {

"description": "",
"credential_type_id": 3,

(continues on next page)

5.3. Launch Time Considerations 11

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

"id": 3,
"kind": "vault",
"name": "some-vault"

},
"extra_credentials": [

{
"description": "",
"credential_type_id": 5,
"id": 2,
"kind": "aws",
"name": "some-aws"

},
{

"description": "",
"credential_type_id": 10,
"id": 4,
"kind": "gce",
"name": "some-gce"

}
],

}
}

These metadata will continue to exist and function in a backwards-compatible way.

The /api/v2/job_templates/N/extra_credentials endpoint has been deprecated, but will also con-
tinue to exist and function in the same manner.

The /api/v2/job_templates/N/launch/ endpoint also provides deprecated,backwards compatible
support for specifying credentials at launch time via the credential, vault_credential, and
extra_credentials fields:

POST /api/v2/job_templates/N/launch/ {'credential': A, 'vault_credential': B, 'extra_
↪→credentials': [C, D]}

5.5 Multi-Vault Credentials

As it possible to assign multiple credentials to a job, starting with Ansible Tower 3.3, you can now specify multiple
Vault credentials to decrypt when your job template runs. This functionality mirrors the support for multiple vault
passwords for a playbook run in Ansible 2.4 and later.

Vault credentials now have an optional field, vault_id, which is analogous to the --vault-id argument to
ansible-playbook. To run a playbook which makes use of multiple vault passwords:

1. Create a Vault credential in Tower for each vault password; specify the Vault ID as a field on the credential and
input the password (which will be encrypted and stored).

2. Assign multiple vault credentials to the job template via the new credentials endpoint:

POST /api/v2/job_templates/N/credentials/

{
'associate': true,
'id': X

}

5.5. Multi-Vault Credentials 12

http://docs.ansible.com/ansible/latest/vault.html#vault-ids-and-multiple-vault-passwords
http://docs.ansible.com/ansible/latest/vault.html#vault-ids-and-multiple-vault-passwords

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Alternatively, you can perform the same assignment in the Tower User Interface in the Create Credential page:

In the above example, the credential created specifies the secret to be used by its Vault Identifier (“first”) and password
pair. When this credential is used in a Job Template, as in the example below, it will only decrypt the secret associated
with the “first” Vault ID:

If you have a playbook that is setup the traditional way with all the secrets in one big file without distinction, then
leave the Vault Identifier field blank when setting up the Vault credential:

5.5. Multi-Vault Credentials 13

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

5.5.1 Prompted Vault Credentials

Passwords for Vault credentials that are marked with “Prompt on launch”, the launch endpoint of any related Job
Templates will communicate necessary Vault passwords via the passwords_needed_to_start key:

GET /api/v2/job_templates/N/launch/
{

'passwords_needed_to_start': [
'vault_password.X',
'vault_password.Y',

]
}

X and Y in the above example are primary keys of the associated Vault credentials.

POST /api/v2/job_templates/N/launch/
{

'credential_passwords': {
'vault_password.X': 'first-vault-password'
'vault_password.Y': 'second-vault-password'

}
}

5.5. Multi-Vault Credentials 14

CHAPTER

SIX

MANAGEMENT JOBS

Management Jobs assist in the cleaning of old data from Tower, including system tracking information, job histories,
and activity streams. You can use this if you have specific retention policies or need to decrease the storage used by

your Tower database. From the Settings () menu, click on Management Jobs.

Job types are available for you to schedule and launch:

• Cleanup Activity Stream: Remove activity stream history older than a specified number of days

• Cleanup Job Details: Remove job history older than a specified number of days

6.1 Removing Old Activity Stream Data

To remove older activity stream data, click on the launch () button beside Cleanup Activity Stream.

15

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Enter the number of days of data you would like to save and click Launch.

6.1.1 Scheduling

To review or set a schedule for purging data marked for deletion, click on the button.

Note that you can turn this scheduled management job on and off easily using the ON/OFF toggle button to the left
of the Job Name.

Click on the Job Name, in this example “Cleanup Activity Schedule”, to review or edit the schedule settings. You can

also use the button to create a new schedule for this management job.

Enter the appropriate details into the following fields and click Save:

• Name (required)

6.1. Removing Old Activity Stream Data 16

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• Start Date (required)

• Start Time (required)

• Local Time Zone (the entered Start Time should be in this timezone)

• Repeat Frequency (the appropriate options display as the update frequency is modified.)

The Details tab displays a description of the schedule and a list of the scheduled occurrences in the selected Local
Time Zone.

Note: Jobs are scheduled in UTC. Repeating jobs that runs at a specific time of day may move relative to a local
timezone when Daylight Saving Time shifts occur.

6.1. Removing Old Activity Stream Data 17

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

6.1.2 Notifications

To set or review notifications associated with this management job, click the Notifications () icon.

Click the button to create a new notification. Notification types include:

• Email

• Slack

• Twilio

• PagerDuty

• HipChat

• Webhook

• IRC

• Mattermost

• Rocket.Chat

Refer to Notifications in the Ansible Tower User Guide for more information.

6.1. Removing Old Activity Stream Data 18

http://docs.ansible.com/ansible-tower/3.3.0/html/userguide/notifications.html#ug-notifications

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

6.2 Removing Old Job History

To remove job history older than a specified number of days, click on the launch () button beside Cleanup Job
Details.

Enter the number of days of data you would like to save and click Launch.

You can review or set a schedule for cleaning up old job history by performing the same procedure described for
activity stream management jobs. See Scheduling for detail.

You can also set or review notifications associated with this management job the same way as described in Notifications
for activity stream management jobs, and refer to Notifications in the Ansible Tower User Guide for more detail.

6.2. Removing Old Job History 19

http://docs.ansible.com/ansible-tower/3.3.0/html/userguide/notifications.html#ug-notifications

CHAPTER

SEVEN

CLUSTERING

Ansible Tower 3.1 introduces Clustering as an alternate approach to redundancy, replacing the redundancy solution
configured with the active-passive nodes that involves primary and secondary instances. For versions older than 3.1,
refer to the older versions of this chapter of the Ansible Tower Administration Guide.

Clustering is sharing load between hosts. Each instance should be able to act as an entry point for UI and API access.
This should enable Tower administrators to use load balancers in front of as many instances as they wish and maintain
good data visibility.

Note: Load balancing is optional and is entirely possible to have ingress on one or all instances as needed.

Each instance should be able to join the Tower cluster and expand its ability to execute jobs. This is a simple system
where jobs can and will run anywhere rather than be directed on where to run. Ansible Tower 3.2 introduced the ability
for clustered instances to be grouped into different pools/queues.

Instances can be grouped into one or more Instance Groups. Instance groups can be assigned to one or more of the
resources listed below.

• Organizations

• Inventories

• Job Templates

When a job associated with one of the resources executes, it will be assigned to the instance group associated with
the resource. During the execution process, instance groups associated with Job Templates are checked before those
associated with Inventories. Similarly, instance groups associated with Inventories are checked before those associated
with Organizations. Thus, Instance Group assignments for the three resources form a hierarchy: Job Template >
Inventory > Organization.

Ansible Tower 3.3 adds support for container-based clusters using OpenShift or Kubernetes, meaning new Tower in-
stances can be installed on these platforms without any variation or diversion in functionality. However, the OpenShift
Tower configuration has some differences that must be considered. For more detail about Tower OpenShift, see the
OpenShift Deployment and Configuration section of this Ansible Tower Administration Guide.

Supported Operating Systems

The following operating systems are supported for establishing a clustered environment:

• RHEL-7 (can be either RHEL-7 or Centos-7 instances)

• Ubuntu 16

• Isolated instances can be installed only on RHEL-7 at this time

20

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Note: Isolated instances are not supported in conjunction with running Ansible Tower in OpenShift.

7.1 Setup Considerations

This section covers initial setup of clusters only. For upgrading an existing cluster, refer to Upgrade Planning of the
Ansible Tower Upgrade and Migration Guide.

Important considerations to note in the new clustering environment:

• PostgreSQL is still a standalone instance and is not clustered. Tower does not manage replica configuration or
database failover (if the user configures standby replicas).

• The number of instances in a cluster should always be an odd number and it is strongly recommended that a
minimum of three Tower instances be in a cluster and the supported maximum is 20. When it gets that high, the
requirement for odd number of nodes becomes less important.

• All instances should be reachable from all other instances and they should be able to reach the database. It
is also important for the hosts to have a stable address and/or hostname (depending on how the Tower host is
configured).

• All instances must be geographically collocated, with reliable low-latency connections between instances.

• RabbitMQ is the cornerstone of Tower’s clustering system. A lot of the configuration requirements and behavior
is dictated by its needs. Therefore, customization beyond Tower’s setup playbook is limited. Each Tower
instance has a deployment of RabbitMQ that will cluster with the other instances’ RabbitMQ instances.

• For purposes of upgrading to a clustered environment, your primary instance must be part of the tower group
in the inventory AND it needs to be the first host listed in the tower group.

• Manual projects must be manually synced to all instances by the customer, and updated on all instances at once.

• There is no concept of primary/secondary in the new Tower system. All systems are primary.

• Setup playbook changes to configure RabbitMQ and provide the type of network the hosts are on.

• The inventory file for Tower deployments should be saved/persisted. If new instances are to be provisioned,
the passwords and configuration options, as well as host names, must be made available to the installer.

• Do not create a group named instance_group_tower.

• Do not name any instance the same as a group name.

7.2 Install and Configure

Provisioning new instances involves updating the inventory file and re-running the setup playbook. It is important
that the inventory file contains all passwords and information used when installing the cluster or other instances
may be reconfigured. The current standalone instance configuration does not change for a 3.1 or later deployment.
The inventory file does change in some important ways:

• Since there is no primary/secondary configuration, those inventory groups go away and are replaced with a
single inventory group, tower.

• You may optionally define other groups and group instances in those groups. These groups should be
prefixed with instance_group_. Instances are not required to be in the tower group alongside other
instance_group_ groups, but one instance must be present in the tower group. Technically, tower
is a group like any other instance_group_ group, but it must always be present, and if a specific group is

7.1. Setup Considerations 21

http://docs.ansible.com/ansible-tower/3.3.0/html/upgrade-migration-guide/upgrade_considerations.html#upgrade-planning

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

not associated with a specific resource, then job execution will always fall back to the tower group. In 3.3, the
tower instance group always exists (it cannot be deleted nor renamed).

Note: All instances are responsible for various housekeeping tasks related to task scheduling, like determining where
jobs are supposed to be launched and processing playbook events, as well as periodic cleanup.

[tower]
hostA
hostB
hostC

[instance_group_east]
hostB
hostC

[instance_group_west]
hostC
hostD

Note: If no groups are selected for a resource then the tower group is used, but if any other group is selected, then
the tower group will not be used in any way.

The database group remains for specifying an external Postgres. If the database host is provisioned separately, this
group should be empty:

[tower]
hostA
hostB
hostC

[database]
hostDB

It is common to provision Tower instances externally, but it is best to reference them by internal addressing. This is
most significant for RabbitMQ clustering where the service is not available at all on an external interface. For this
purpose, it is necessary to assign the internal address for RabbitMQ links as such:

[tower]
hostA rabbitmq_host=10.1.0.2
hostB rabbitmq_host=10.1.0.3
hostC rabbitmq_host=10.1.0.4

Note: The number of instances in a cluster should always be an odd number and it is strongly recommended that
a minimum of three Tower instances be in a cluster and the supported maximum is 20. When it gets that high, the
requirement for odd number of nodes becomes less important.

• The redis_password field is removed from [all:vars]

• Fields for RabbitMQ are as follows:

– rabbitmq_port=5672: RabbitMQ is installed on each instance and is not optional, it is also not
possible to externalize it. This setting configures what port it listens on.

7.2. Install and Configure 22

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

– rabbitmq_vhost=tower: Controls the setting for which Tower configures a RabbitMQ virtualhost to
isolate itself.

– rabbitmq_username=tower and rabbitmq_password=tower: Each instance and each in-
stance’s Tower instance are configured with these values. This is similar to Tower’s other uses of user-
names/passwords.

– rabbitmq_cookie=<somevalue>: This value is unused in a standalone deployment but is critical
for clustered deployments. This acts as the secret key that allows RabbitMQ cluster members to identify
each other.

– rabbitmq_enable_manager: Set this to true to expose the RabbitMQ Management Web Console
on each instance.

7.2.1 RabbitMQ Default Settings

The following configuration shows the default settings for RabbitMQ:

rabbitmq_port=5672
rabbitmq_vhost=tower
rabbitmq_username=tower
rabbitmq_password=''
rabbitmq_cookie=cookiemonster

Note: rabbitmq_cookie is a sensitive value, it should be treated like the secret key in Tower.

7.2.2 Instances and Ports Used by Tower

Ports and instances used by Tower are as follows:

• 80, 443 (normal Tower ports)

• 22 (ssh)

• 5432 (database instance - if the database is installed on an external instance, needs to be opened to the tower
instances)

Clustering/RabbitMQ ports:

• 4369, 25672 (ports specifically used by RabbitMQ to maintain a cluster, needs to be open between each instance)

• 15672 (if the RabbitMQ Management Interface is enabled, this port needs to be opened (optional))

7.3 Configuring Instances and Instance Groups from the API

Instance groups can be created by POSTing to /api/v2/instance_groups as a system administrator.

Once created, instances can be associated with an instance group with:

HTTP POST /api/v2/instance_groups/x/instances/ {'id': y}`

An instance that is added to an instance group will automatically reconfigure itself to listen on the group’s work queue.
See the following section, Instance group policies, for more details.

7.3. Configuring Instances and Instance Groups from the API 23

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

7.4 Instance group policies

Starting with Ansible Tower 3.3, users have the ability to configure Tower instances to automatically join Instance
Groups when they come online by defining a policy. These policies are evaluated for every new instance that comes
online.

Instance Group Policies are controlled by three optional fields on an Instance Group:

• policy_instance_percentage: This is a number between 0 - 100. It guarantees that this percentage of
active Tower instances will be added to this Instance Group. As new instances come online, if the number of
Instances in this group relative to the total number of instances is less than the given percentage, then new ones
will be added until the percentage condition is satisfied.

• policy_instance_minimum: This policy attempts to keep at least this many instances in the Instance
Group. If the number of available instances is lower than this minimum, then all instances will be placed in this
Instance Group.

• policy_instance_list: This is a fixed list of instance names to always include in this Instance Group.

The Instance Groups list view from the Ansible Tower User Interface provides a summary of the capacity levels for
each instance group according to instance group policies:

7.4.1 Notable policy considerations

• policy_instance_percentage and policy_instance_minimum both set minimum allocations.
The rule that results in more instances assigned to the group will take effect. For example, if you have
a policy_instance_percentage of 50% and a policy_instance_minimum of 2 and you start
6 instances, 3 of them would be assigned to the Instance Group. If you reduce the number of to-
tal instances in the cluster to 2, then both of them would be assigned to the Instance Group to satisfy
policy_instance_minimum. This way, you can set a lower bound on the amount of available resources.

• Policies do not actively prevent instances from being associated with multiple Instance Groups, but this can
effectively be achieved by making the percentages add up to 100. If you have 4 instance groups, assign each a
percentage value of 25 and the instances will be distributed among them with no overlap.

7.4. Instance group policies 24

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

7.4.2 Manually pinning instances to specific groups

If you have a special instance which needs to be exclusively assigned to a specific Instance Group but don’t want it to
automatically join other groups via “percentage” or “minimum” policies:

1. Add the instance to one or more Instance Groups’ policy_instance_list

2. Update the instance’s managed_by_policy property to be False.

This will prevent the Instance from being automatically added to other groups based on percentage and minimum
policy; it will only belong to the groups you’ve manually assigned it to:

HTTP PATCH /api/v2/instance_groups/N/
{
"policy_instance_list": ["special-instance"]
}

HTTP PATCH /api/v2/instances/X/
{
"managed_by_policy": False
}

7.5 Isolated Instance Groups

Ansible Tower versions 3.2 and later added the ability to optionally define isolated groups inside security-restricted
networking zones from which to run jobs and ad hoc commands. Instances in these groups will not have a full
installation of Tower, but will have a minimal set of utilities used to run jobs. Isolated groups must be specified in the
inventory file prefixed with isolated_group_. Below is an example of an inventory file for an isolated instance
group.

[tower]
towerA
towerB
towerC

[instance_group_security]
towerB
towerC

[isolated_group_govcloud]
isolatedA
isolatedB

[isolated_group_govcloud:vars]
controller=security

In the isolated instance group model, “controller” instances interact with “isolated” instances via a series of Ansible
playbooks over SSH. At installation time, by default, a randomized RSA key is generated and distributed as an autho-
rized key to all “isolated” instances. The private half of the key is encrypted and stored within the Tower database, and
is used to authenticate from “controller” instances to “isolated” instances when jobs are run.

When a job is scheduled to run on an “isolated” instance:

• The “controller” instance compiles metadata required to run the job and copies it to the “isolated” instance.

• Once the metadata has been synchronized to the isolated host, the “controller” instance starts a process on the
“isolated” instance, which consumes the metadata and starts running ansible/ansible-playbook. As

7.5. Isolated Instance Groups 25

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

the playbook runs, job artifacts (such as stdout and job events) are written to disk on the “isolated” instance.

• While the job runs on the “isolated” instance, the “controller” instance periodically copies job artifacts (stdout
and job events) from the “isolated” instance. It consumes these until the job finishes running on the “isolated”
instance.

Isolated groups (nodes) may be created in a way that allow them to exist inside of a VPC with security rules that
only permit the instances in its controller group to access them; only ingress SSH traffic from “controller” instances
to “isolated” instances is required. When provisioning isolated nodes, your install machine needs to be able to have
connectivity to the isolated nodes. In cases where an isolated node is not directly accessible but can be reached
indirectly through other hosts, you can designate a “jump host” by using ProxyCommand in your SSH configuration
to specify the jump host and then run the installer.

7.5. Isolated Instance Groups 26

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

The recommended system configurations with isolated groups are as follows:

• Do not create a group named isolated_group_tower.

• Do not put any isolated instances inside the tower group or other ordinary instance groups.

• Define the controller variable as either a group variable or as a host variable on all the instances in the isolated
group. Do not allow isolated instances in the same group to have a different value for this variable - the behavior
in this case cannot be predicted.

• Do not put an isolated instance in more than one isolated group.

• Do not put an instance in both ordinary groups and isolated groups.

• Do not use fact caching with isolated instances.

7.5.1 Optional SSH Authentication

For users who wish to manage SSH authentication from “controller” nodes to “isolated” nodes via some system outside
of Tower (such as externally-managed passwordless SSH keys), this behavior can be disabled by unsetting two Tower
API settings values:

HTTP PATCH /api/v2/settings/jobs/ {'AWX_ISOLATED_PRIVATE_KEY': '', 'AWX_ISOLATED_
↪→PUBLIC_KEY': ''}

7.5. Isolated Instance Groups 27

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

7.6 Status and Monitoring via Browser API

Tower itself reports as much status as it can via the Browsable API at /api/v2/ping in order to provide validation
of the health of the cluster, including:

• The instance servicing the HTTP request

• The timestamps of the last heartbeat of all other instances in the cluster

• Instance Groups and Instance membership in those groups

View more details about Instances and Instance Groups, including running jobs and membership information at /
api/v2/instances/ and /api/v2/instance_groups/.

7.7 Instance Services and Failure Behavior

Each Tower instance is made up of several different services working collaboratively:

• HTTP Services - This includes the Tower application itself as well as external web services.

• Callback Receiver - Receives job events from running Ansible jobs.

• Celery - The worker queue that processes and runs all jobs.

• RabbitMQ - This message broker is used as a signaling mechanism for Celery as well as any event data propa-
gated to the application.

• Memcached - local caching service for the instance it lives on.

Tower is configured in such a way that if any of these services or their components fail, then all services are restarted.
If these fail sufficiently often in a short span of time, then the entire instance will be placed offline in an automated
fashion in order to allow remediation without causing unexpected behavior.

For backing up and restoring a clustered environment, refer to Backup and Restore for Clustered Environments section.

7.8 Job Runtime Behavior

The way jobs are run and reported to a ‘normal’ user of Tower does not change. On the system side, some differences
are worth noting:

• When a job is submitted from the API interface it gets pushed into the Celery queue on RabbitMQ. A single
RabbitMQ instance is the responsible master for individual queues but each Tower instance will connect to and
receive jobs from that queue using a particular scheduling algorithm. Any instance in the cluster is just as likely
to receive the work and execute the task. If a instance fails while executing jobs, then the work is marked as
permanently failed.

7.6. Status and Monitoring via Browser API 28

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• If a cluster is divided into separate instance groups, then the behavior is similar to the cluster as a whole. If two
instances are assigned to a group then either one is just as likely to receive a job as any other in the same group.

• As Tower instances are brought online, it effectively expands the work capacity of the Tower system. If those
instances are also placed into instance groups, then they also expand that group’s capacity. If an instance is
performing work and it is a member of multiple groups, then capacity will be reduced from all groups for which
it is a member. De-provisioning an instance will remove capacity from the cluster wherever that instance was
assigned. See Deprovision Instances and Instance Groups in the next section for more details.

Note: Not all instances are required to be provisioned with an equal capacity.

• Project updates behave differently than they did before. Previously, they were ordinary jobs that ran on a single
instance. It is now important that they run successfully on any instance that could potentially run a job. Projects
will now sync themselves to the correct version on the instance immediately prior to running the job.

• If an instance group is configured but all instances in that group are offline or unavailable, any jobs that are
launched targeting only that group will be stuck in a waiting state until instances become available. Fallback or
backup resources should be provisioned to handle any work that might encounter this scenario.

7.8. Job Runtime Behavior 29

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

7.8.1 Control Where a Job Runs

By default, when a job is submitted to the tower queue, it can be picked up by any of the workers. However, you
can control where a particular job runs, such as restricting the instances from which a job runs on. If any of the job
template, inventory, or organization has instance groups associated with them, a job ran from that job template will
not be eligible for the default behavior. That means that if all of the instances inside of the instance groups associated
with these 3 resources are out of capacity, the job will remain in the pending state until capacity becomes available.

The order of preference in determining which instance group to submit the job to is as follows:

1. job template

2. inventory

3. organization (by way of project)

If instance groups are associated with the job template, and all of these are at capacity, then the job will be submitted
to instance groups specified on inventory, and then organization. Jobs should execute in those groups in preferential
order as resources are available.

The global tower group can still be associated with a resource, just like any of the custom instance groups defined in
the playbook. This can be used to specify a preferred instance group on the job template or inventory, but still allow
the job to be submitted to any instance if those are out of capacity.

In order to support temporarily taking an instance offline, there is a property enabled defined on each instance. When
this property is disabled, no jobs will be assigned to that instance. Existing jobs will finish, but no new work will be
assigned.

Job Run Examples

As an example, by associating group_awith a Job Template and also associating the tower group with its inventory,
you allow the tower group to be used as a fallback in case group_a gets out of capacity.

In addition, it is possible to not associate an instance group with one resource but designate another resource as the
fallback. For example, not associating an instance group with a job template and have it fall back to the inventory
and/or the organization’s instance group.

This presents two other great use cases:

1. Associating instance groups with an inventory (omitting assigning the job template to an instance group) will
allow the user to ensure that any playbook run against a specific inventory will run only on the group associated
with it. This can be super useful in the situation where only those instances have a direct link to the managed
nodes.

2. An administrator can assign instance groups to organizations. This effectively allows the administrator to seg-
ment out the entire infrastructure and guarantee that each organization has capacity to run jobs without interfer-
ing with any other organization’s ability to run jobs.

Likewise, an administrator could assign multiple groups to each organization as desired, as in the following scenario:

• There are three instance groups: A, B, and C. There are two organizations: Org1 and Org2.

• The administrator assigns group A to Org1, group B to Org2 and then assign group C to both Org1
and Org2 as an overflow for any extra capacity that may be needed.

• The organization administrators are then free to assign inventory or job templates to whichever group
they want (or just let them inherit the default order from the organization).

7.8. Job Runtime Behavior 30

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Arranging resources in this way offers a lot of flexibility. Also, you can create instance groups with only one instance,
thus allowing you to direct work towards a very specific Host in the Tower cluster.

7.9 Deprovision Instances and Instance Groups

Re-running the setup playbook does not automatically deprovision instances since clusters do not currently distinguish
between an instance that was taken offline intentionally or due to failure. Instead, shut down all services on the Tower
instance and then run the deprovisioning tool from any other instance:

1. Shut down the instance or stop the service with the command, ansible-tower-service stop.

2. Run the deprovision command $ awx-manage deprovision_instance ---hostname=<name
used in inventory file> from another instance to remove it from the Tower cluster registry AND
the RabbitMQ cluster registry.

Example: awx-manage deprovision_instance ---hostname=hostB

Similarly, deprovisioning instance groups in Tower does not automatically deprovision or remove instance groups,
even though re-provisioning will often cause these to be unused. They may still show up in API endpoints and stats
monitoring. These groups can be removed with the following command:

Example: awx-manage unregister_queue --queuename=<name>

Removing an instance’s membership from an instance group in the inventory file and re-running the setup playbook
does not ensure the instance won’t be added back to a group. To be sure that an instance will not be added back to a
group, remove via the API and also remove it in your inventory file, or you can stop defining instance groups in the
inventory file altogether. You can also manage instance group topology through the Ansible Tower User Interface. For
more information on managing instance groups in the UI, refer to Instance Groups in the Ansible Tower User Guide.

7.9. Deprovision Instances and Instance Groups 31

http://docs.ansible.com/ansible-tower/3.3.0/html/userguide/instance_groups.html#ug-instance-groups

CHAPTER

EIGHT

OPENSHIFT DEPLOYMENT AND CONFIGURATION

Ansible Tower 3.3 introduces support for container-based clusters running on OpenShift. This section provides a
high-level overview of OpenShift and Tower Pod configuration, notably the following:

• The main Differences in standard Tower vs OpenShift Tower (i.e., auto-removal of instances)

• Tower deploys as a single pod first and can scale up after migrations

• Migrations run in celery/task-runner pod

32

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

8.1 Tower and OpenShift Basics

The Tower OpenShift documentation assumes an understanding of how to use OpenShift at an administrative level
and should include some experience maintaining container based infrastructure. The differences are:

• Standalone Tower and OpenShift Tower use different installers.

• Tower (via RabbitMQ) links to OpenShift itself in order to facilitate scaling up and down without requiring the
user to manually execute the playbook (to bring up new nodes) or run management commands in the shell (to
take nodes offline purposefully). The user can configure the Tower StatefulSet once the system is up to add
more or remove extra Tower Pods.

• Tower pods are configured without HTTPs and the installer will configure an OpenShift Route which will
handle SSL termination and distribute requests to all Tower Pods. This is somewhat of an internal OpenShift
load balancer

• Database migrations run as part of the process of bringing up the celery/task executor container within the pod
(see diagram) and thus will likely happen after the playbook has completed.

• Capacity / Performance Detection (see section on Resource Requests and Request Planning)

• Isolated instances are not supported in conjunction with running Ansible Tower in OpenShift.

8.2 Configuration Options

Requirements

• OpenShift 3.6+

• Per pod default resource requirements:

– 6GB RAM

– 3CPU cores

• Openshift command-line tool (oc) on the machine running the installer

• A setup and running Openshift cluster

• Admin privileges for the account running the openshift installer

8.3 Basic Configuration

An OpenShift install requires the following parameters to be set:

• openshift_host

• openshift_project

• openshift_user

• openshift_password

• admin_password

• secret_key

• pg_username

• pg_password

8.1. Tower and OpenShift Basics 33

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• rabbitmq_password

• rabbitmq_erlang_cookie

The Project will be created if it doesn’t exist but the user given there should have either:

• The ability to create the project and populate it with Tower-needed pods

OR

• Access to create whatever pods are needed in the project, if it already exists

The password should be given on the command line as shown when executing the installer.

The oc command line client should be installed and available and the client version should match the server version.

The secret-key, admin password, and postgresql username and password should be populated in the inventory file prior
to running the installer.

./setup_openshift.sh -e openshift_password=$OPENSHIFT_PASSWORD -- -v

Note: Tower uses Bubblewrap (from Project Atomic) as a mechanism to give the (relatively) unprivileged awx user
the ability to isolate Ansible processes from each other. There are certain privileges that need to be granted to the
container that necessitates running the Tower web and task containers in privileged mode.

8.4 Resource Requests and Request Planning

Normally Tower examines the system that it runs on in order to determine what its own capacity is for running Jobs and
performing background requests. On OpenShift this works differently since pods and containers will tend to coexist on
systems. Pods can also migrate between hosts depending on current conditions (for instance, if the OpenShift cluster
is being upgraded or is experiencing an outage).

It’s common for Pods and Containers to Request the resources that they need. OpenShift then uses this information to
decide Where things run (or even if they can run).

Tower will also use this information to configure its own capacity for how many (and the size of) individual jobs can
be run.

Each Tower pod is made up of 4 containers (see diagram), each container is configured with a conservative default,
but taken all together they can be somewhat substantial. These defaults are also configurable but it’s helpful to know
what effect that has on the Tower cluster.

The two most important values control the CPU and memory allocation for the task execution container. This container
is the one that is actually responsible for launching jobs, as such these values directly control how many and what size
jobs can run. The settings can be changed in the inventory and here are the default values:

task_cpu_request=1500

This is the amount of CPU to dedicate, the value of 1500 refers to how OpenShift itself views CPU requests
(see https://docs.OpenShift.com/container-platform/3.9/dev_guide/compute_resources.html#dev-cpu-requests)
(for value meanings see: https://docs.OpenShift.com/container-platform/3.9/dev_guide/compute_resources.html#
dev-compute-resources)

1500 is 1500 millicores which translates to roughly 1.5 CPU Cores.

This value is used to configure the Tower capacity in the following way:

8.4. Resource Requests and Request Planning 34

https://docs.OpenShift.com/container-platform/3.9/dev_guide/compute_resources.html#dev-cpu-requests
https://docs.OpenShift.com/container-platform/3.9/dev_guide/compute_resources.html#dev-compute-resources
https://docs.OpenShift.com/container-platform/3.9/dev_guide/compute_resources.html#dev-compute-resources

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

((task_cpu_request/ 1000) * 4)

Which is to say that, by default, Tower in OpenShift (when configured entirely for cpu-based algorithm) can run at
most 6 simultaneous forks.

The other value that can be tuned:

task_mem_request=2 - This is the amount of memory to dedicate (in gigabytes).

This value is used to configure the Tower capacity in the following way

((task_mem_request * 1024) / 100)

Which is to say that, by default, Tower can run at most 40 simultaneous forks when configured for mem-based algo-
rithm.

For the default resource requests, see roles/kubernetes/defaults/main.yml.

All together the default requested resources for a single Tower pod total to:

• 3 CPU Cores

• 6 GB memory

The OpenShift instances that you want to run Tower on should at least match that. If the defaults are changed then the
system will need to be updated to match the new requirements.

Note: If other Pods are running on the OpenShift instance or the systems are too small to meet these requirements
then Tower may not be able to run anywhere. Refer to Capacity Algorithm for more detail.

8.5 Database Configuration and Usage

There are two methods for configuring the Tower PostgreSQL database for Tower running in Openshift:

• (Recommended) Externally Managed Database (not installed by the Tower setup playbook). The PostgreSQL
server is installed before Tower either inside or outside of the Openshift cluster and Tower is configured to point
at it

• PostgreSQL is installed in Openshift using the Tower Installer by providing a pre-created
PersistentVolumeClaim and providing it the Tower install playbook inventory file as pg_pvc_name.

If you are installing Tower for demo/evaluation purposes you may set openshift_pg_emptydir=true and
OpenShift will create a temporary volume for use by the pod.

Warning: This volume is temporary for demo/evaluation purposes only, and will be deleted when the pod is
stopped.

8.5. Database Configuration and Usage 35

http://docs.ansible.com/ansible-tower/3.3.0/html/userguide/jobs.html#ug-job-concurrency

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

8.6 Backup and Restore

You must backup and restore into the same version before upgrading. The process for backup and restore resembles
that of traditional Tower. From the root of the installer directory, run:

./setup_openshift.sh -b # Backup

./setup_openshift.sh -r # Restore

Note: configmap will be recreated from values in the inventory file. The inventory file is included in backup
tarball.

8.7 Upgrading

Prior to performing an upgrade, you must backup and restore into the same version before upgrading. To upgrade a
Tower deployment in OpenShift, download the most recent installer from http://releases.ansible.com/ansible-tower/
setup_openshift. Expect some downtime, just as traditional Tower installations.

8.8 Migrating

Tower supports migration from traditional setup to a setup in OpenShift, as outlined below:

1. First, upgrade your traditional Tower setup to the latest release of Ansible Tower (or to version 3.3 at minimum),
using the normal upgrade procedure.

2. Download the OpenShift installer.

3. Edit the inventory file and change pg_username, pg_password, pg_database, and pg_port to
point to the upgraded Tower database from your traditional Tower setup.

4. Run the OpenShift installer as normal.

8.9 Build custom virtual environments

It is possible to override the base container image to build custom virtual environments (virtualenvs). Overriding the
base container is used for customization and custom virtualenv support or for local mirroring. If you want to use
custom virtual environments with Tower deployed in OpenShift, you will need to customize the container image used
by Tower.

Here is a Dockerfile that can be used as an example. This installs Ansible 2.3 into a custom virtual environment:

FROM registry.access.redhat.com/ansible-tower/ansible-tower:3.3.0
USER root
RUN mkdir -p /var/lib/awx/venv/ansible2.3
RUN virtualenv --system-site-packages /var/lib/awx/venv/ansible2.3
RUN cp -a /var/lib/awx/venv/ansible/lib64/python2.7/site-packages/* /var/lib/awx/venv/
↪→ansible2.3/lib64/python2.7/site-packages/
RUN sh -c ". /var/lib/awx/venv/ansible2.3/bin/activate ; pip install ansible==2.3.3.0"

8.6. Backup and Restore 36

http://releases.ansible.com/ansible-tower/setup_openshift
http://releases.ansible.com/ansible-tower/setup_openshift

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

If you need to install other python dependencies (such as those for custom modules) you can add additional RUN
commands to the docker file that activate the virtual environment and call pip.

Once the image is built, make sure that image is in your registry and that the OpenShift cluster and installer have
access to it.

Override the following variables in group_vars/all in the OpenShift installer to point to the image you have
pushed to your registry:

kubernetes_web_image: registry.example.com/my-custom-tower
kubernetes_task_image: registry.example.com/my-custom-tower

Note: The image must be tagged with 3.3.0 or pass version variable to installer to override.

When hosting all images in a local registry, such as offline installs, you’ll need to include these other images:

kubernetes_rabbitmq_image: registry.example.com/ansible-tower-messaging
kubernetes_memcached_image: registry.example.com/ansible-tower-memcached

If mirroring the vanilla Red Hat images:

kubernetes_web_image: registry.example.com/ansible-tower
kubernetes_task_image: registry.example.com/ansible-tower

8.9. Build custom virtual environments 37

CHAPTER

NINE

PROXY SUPPORT

Proxy servers act as an intermediary for requests from clients seeking resources from other servers. A client connects
to the proxy server, requesting some service or available resource from a different server, and the proxy server evaluates
the request as a way to simplify and control its complexity.

Note: Using SSL offloading or using a proxy that handles SSL for Tower is supported. The proxy/load balancer
needs to be configured to pass the remote host information.

When offloading SSL to the load balancer or proxy, set nginx_disable_https=true as an extra variable passed
to the setup playbook. Refer to The Setup Playbook for information on applying extra variables to the setup playbook.

Sessions in Tower associate an IP address upon creation. Tower policy requires that any use of the session match the
original associated IP address.

To provide proxy server support, Tower handles proxied requests (such as ELB in front of Tower, HAProxy,
Squid, and tinyproxy) via the REMOTE_HOST_HEADERS list variable in Tower settings (/etc/tower/conf.
d/remote_host_headers.py). By default REMOTE_HOST_HEADERS is set to ['REMOTE_ADDR',
'REMOTE_HOST'].

To enable proxy server support, setup REMOTE_HOST_HEADERS like the following: REMOTE_HOST_HEADERS =
['HTTP_X_FORWARDED_FOR', 'REMOTE_ADDR', 'REMOTE_HOST']

Note: A new installation of Ansible Tower will not contain the remote_host_headers.py file. However, you
can still set those values in the System settings of the Configure Tower user interface.

Tower determines the remote host’s IP address by searching through the list of headers in REMOTE_HOST_HEADERS
until the FIRST IP address is located.

38

http://docs.ansible.com/ansible-tower/3.3.0/html/quickinstall/install_script.html#um-setup-playbook

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Note: Header names are constructed using the following logic:

With the exception of CONTENT_LENGTH and CONTENT_TYPE, any HTTP headers in the request are converted
to META keys by converting all characters to uppercase, replacing any hyphens with underscores, and adding
an HTTP_ prefix to the name. For example, a header called X-Barkley would be mapped to the META key
HTTP_X_Barkley.

For more information on HTTP request and response objects, refer to: https://docs.djangoproject.com/en/1.8/ref/
request-response/#django.http.HttpRequest.META

Note: If using SSL termination at the load balancer and forwarding traffic to a different port on the tower node (443
-> 80), set the following values in the /etc/tower/settings.py file accordingly:

USE_X_FORWARDED_PORT = True
USE_X_FORWARDED_HOST = True

9.1 Configure Known Proxies

When Tower is configured with REMOTE_HOST_HEADERS = ['HTTP_X_FORWARDED_FOR',
'REMOTE_ADDR', 'REMOTE_HOST'], it assumes that the value of X-Forwarded-For has originated
from the proxy/load balancer sitting in front of Tower. In a scenario where Tower is still reachable without use of
the proxy/load balancer or when the proxy does not validate the header, X-Forwarded-For can be spoofed fairly
easily to fake the originating IP addresses. Using HTTP_X_FORWARDED_FOR in the REMOTE_HOST_HEADERS
setting poses a vulnerability that essentially gives users access to certain resources that they should not have.

To avoid this, you can configure a list of “known proxies” that are allowed, which is the PROXY_IP_WHITELIST
setting via the settings API. Load balancers and hosts that are not on the list will result in a rejected request.

PROXY_IP_WHITELIST only works if the proxies in the list are properly sanitizing header input and correctly setting
an X-Forwarded-For value equal to the real source IP of the client; the crux of this setting is that Tower can rely
on the IPs/hostnames in PROXY_IP_WHITELIST to provide non-spoofed values for the X-Forwarded-For field.

HTTP_X_FORWARDED_FOR should never be configured as an item in REMOTE_HOST_HEADERS unless all of the
following are satisfied:

• You are using a proxied environment w/ ssl termination

• The proxy provides sanitization/validation of the X-Forwarded-For header to prevent client spoofing

• /etc/tower/conf.d/remote_host_headers.py defines PROXY_IP_WHITELIST that contains
only the originating IP of trusted proxies/load balancers.

Note: If you do not need all of the traffic to be put through the proxy, then you can specify the IP scheme(s) that
you want to exclude in the no_proxy field. The list can be IP ranges or individual IPs, separated by a comma. This
example shows a specified range of IPs in JSON format:

"https_proxy": "example.proxy.com:8080",
"http_proxy": "example.proxy.com:8080",
"no_proxy": "10.0.0.0/8"

9.1. Configure Known Proxies 39

https://docs.djangoproject.com/en/1.8/ref/request-response/#django.http.HttpRequest.META
https://docs.djangoproject.com/en/1.8/ref/request-response/#django.http.HttpRequest.META

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

9.2 Reverse Proxy

If you are behind a reverse proxy, you may want to setup a header field for HTTP_X_FORWARDED_FOR. The
X-Forwarded-For (XFF) HTTP header field identifies the originating IP address of a client connecting to a web
server through an HTTP proxy or load balancer.

REMOTE_HOST_HEADERS = ['HTTP_X_FORWARDED_FOR', 'REMOTE_ADDR', 'REMOTE_HOST']

9.2. Reverse Proxy 40

CHAPTER

TEN

TOWER LOGFILES

Tower logfiles have been consolidated and can be easily accessed from two centralized locations:

• /var/log/tower/

• /var/log/supervisor/

In the /var/log/tower/ directory, you can view logfiles related to:

• callback_receiver.log

• fact_receiver.log

• setup-XX-XX-XX-XX.log

• task_system.log

• tower.log

In the /var/log/supervisor/ directory, you can view logfiles related to:

• awx-celeryd.log

• supervisord.log

The /var/log/supervisor/ directory include stdout files for all services as well.

"Mooving around: Consolidated logfiles for easier access!"
\
\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

41

CHAPTER

ELEVEN

TOWER LOGGING AND AGGREGATION

Logging is a standalone feature introduced in Ansible Tower 3.1.0 that provides the capability to send detailed logs to
several kinds of 3rd party external log aggregation services. Services connected to this data feed serve as a useful means
in gaining insight into Tower usage or technical trends. The data can be used to analyze events in the infrastructure,
monitor for anomalies, and correlate events from one service with events in another. The types of data that are most
useful to Tower are job fact data, job events/job runs, activity stream data, and log messages. The data is sent in
JSON format over a HTTP connection using minimal service-specific tweaks engineered in a custom handler or via
an imported library. Tower discards any uncaptured data if the logging aggregator is down.

11.1 Loggers

Below are special loggers (except for awx, which constitutes generic server logs) that provide large amount of in-
formation in a predictable structured or semi-structured format, following the same structure as one would expect if
obtaining the data from the API:

• job_status: Summarizes status changes for jobs, project updates, inventory updates, and others

• job_events: Provides data returned from the Ansible callback module

• activity_stream: Displays the record of changes to the objects within the Ansible Tower application

• system_tracking: Provides data gathered by Ansible scan modules ran by scan job templates

• awx: Provides generic server logs, which include logs that would normally be written to a file. It contains the
standard metadata that all logs have, except it only has the message from the log statement.

These loggers only use log-level of INFO, except for the awx logger, which may be any given level.

Additionally, the standard Tower logs are be deliverable through this same mechanism. It is apparent how to enable or
disable each of these five sources of data without manipulating a complex dictionary in your local settings file, as well
as adjust the log-level consumed from the standard Tower logs.

11.1.1 Log message schema

Common schema for all loggers:

• cluster_host_id: Unique identifier of the host within the Tower cluster

• level: Standard python log level, roughly reflecting the significance of the event All of the data loggers as a
part of this feature use INFO level, but the other Tower logs will use different levels as appropriate

• logger_name: Name of the logger we use in the settings, for example, “activity_stream”

• @timestamp: Time of log

42

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• path: File path in code where the log was generated

11.1.2 Activity stream schema

• (common): This uses all the fields common to all loggers listed above

• actor: Username of the user who took the action documented in the log

• changes: JSON summary of what fields changed, and their old/new values.

• operation: The basic category of the changed logged in the activity stream, for instance, “associate”.

• object1: Information about the primary object being operated on, consistent with what we show in the activity
stream

• object2: If applicable, the second object involved in the action

11.1.3 Job event schema

This logger reflects the data being saved into job events, except when they would otherwise conflict with expected
standard fields from the logger, in which case the fields are nested. Notably, the field host on the job_event model
is given as event_host. There is also a sub-dictionary field, event_data within the payload, which contains
different fields depending on the specifics of the Ansible event.

This logger also includes the common fields.

11.1.4 Scan / fact / system tracking data schema

These contain a detailed dictionary-type fields that are either services, packages, or files.

• (common): This uses all the fields common to all loggers listed above

• services: For services scans, this field is included and has keys based on the name of the service. NOTE:
Periods are disallowed by elastic search in names, and are replaced with “_” by our log formatter

• package: Included for log messages from package scans

• files: Included for log messages from file scans

• host: Name of host scan applies to

• inventory_id: Inventory id host is inside of

11.1.5 Job status changes

This is a intended to be a lower-volume source of information about changes in job states compared to job events, and
also intended to capture changes to types of unified jobs other than job template based jobs.

In addition to common fields, these logs include fields present on the job model.

11.1. Loggers 43

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

11.1.6 Tower logs

In addition to the common fields, this contains a msg field with the log message. Errors contain a separate
traceback field. These logs can be enabled or disabled in the Configure Tower User Interface ENABLE
EXTERNAL LOGGING setting.

11.1.7 Logging Aggregator Services

The logging aggregator service works with the following monitoring and data analysis systems:

• Splunk

• Loggly

• Sumologic

• Elastic stack (formerly ELK stack)

Splunk

Ansible Tower’s Splunk logging integration uses the Splunk HTTP Collector. When configuring a SPLUNK logging
aggregator, add the full URL to the HTTP Event Collector host, like in the following example:

https://yourtowerfqdn.com/api/v2/settings/logging

{
"LOG_AGGREGATOR_HOST": "https://yoursplunk:8088/services/collector/event",
"LOG_AGGREGATOR_PORT": null,
"LOG_AGGREGATOR_TYPE": "splunk",
"LOG_AGGREGATOR_USERNAME": "",
"LOG_AGGREGATOR_PASSWORD": "$encrypted$",
"LOG_AGGREGATOR_LOGGERS": [

"awx",
"activity_stream",
"job_events",
"system_tracking"

],
"LOG_AGGREGATOR_INDIVIDUAL_FACTS": false,
"LOG_AGGREGATOR_ENABLED": true,
"LOG_AGGREGATOR_TOWER_UUID": ""

}

Splunk HTTP Event Collector listens on 8088 by default so it is necessary to provide the full HEC event URL (with
port) in order for incoming requests to be processed successfully. These values are entered in the example below:

11.1. Loggers 44

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

For further instructions on configuring the HTTP Event Collector, refer to the Splunk documentation.

Loggly

To set up the sending of logs through Loggly’s HTTP endpoint, refer to https://www.loggly.com/docs/http-endpoint/.
Loggly uses the URL convention described at http://logs-01.loggly.com/inputs/TOKEN/tag/http/, which is shown in-
putted in the Logging Aggregator field in the example below:

Sumologic

In Sumologic, create a search criteria containing the json files that provide the parameters used to collect the data you
need.

11.1. Loggers 45

http://docs.splunk.com/Documentation/Splunk/latest/Data/UsetheHTTPEventCollector
https://www.loggly.com/docs/http-endpoint/
http://logs-01.loggly.com/inputs/TOKEN/tag/http/

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Elastic stack (formerly ELK stack)

If starting from scratch, standing up your own version the elastic stack, the only change you required is to add the
following lines to the logstash logstash.conf file:

filter {
json {
source => "message"

}
}

Note: Backward-incompatible changes were introduced with Elastic 5.0.0, and different configurations may be
required depending on what versions you are using.

11.1. Loggers 46

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

11.2 Set Up Logging with Tower

To set up logging to any of the aggregator types:

1. Click the Settings () icon from the left navigation bar.

2. Select the System tab.

3. Select Logging from the Sub Category drop-down menu list.

4. Set the configurable options from the fields provided:

• Enable External Logging: Click the toggle button to ON if you want to send logs to an external log aggregator.

• Logging Aggregator: Enter the hostname or IP address you want to send logs.

• Logging Aggregator Port: Specify the port for the aggregator if it requires one.

Note: When the connection type is HTTPS, you can enter the hostname as a URL with a port number and therefore,
you are not required to enter the port again. But TCP and UDP connections are determined by the hostname and port
number combination, rather than URL. So in the case of TCP/UDP connection, supply the port in the specified field. If
instead a URL is entered in host field (Logging Aggregator field), its hostname portion will be extracted as the actual
hostname.

• Logging Aggregator Type: Click to select the aggregator service from the drop-down menu:

• Logging Aggregator Username: Enter the username of the logging aggregator if it requires it.

• Logging Aggregator Password/Token: Enter the password of the logging aggregator if it requires it.

• Loggers to Send Data to the Log Aggregator Form: All four types of data are pre-populated by default. Click

the tooltip icon next to the field for additional information on each data type. Delete the data types you do
not want.

• Log System Tracking Facts Individually: Click the tooltip icon for additional information whether or
not you want to turn it on, or leave it off by default.

11.2. Set Up Logging with Tower 47

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• Logging Aggregator Protocol: Click to select a connection type (protocol) to communicate with the log aggre-
gator. Subsequent options vary depending on the selected protocol.

• TCP Connection Timeout: Specify the connection timeout in seconds. This option is only applicable to HTTPS
and TCP log aggregator protocols.

• Logging Aggeregator Level Threshold: Select the level of severity you want the log handler to report.

• Enable/Disable HTTPS Certificate Verification: Certificate verification is enabled by default for HTTPS log
protocol. Click the toggle button to OFF if you do not want the log handler to verify the HTTPS certificate sent
by the external log aggregator before establishing a connection.

5. Review your entries for your chosen logging aggregation. Below is an example of one set up for Splunk:

6. To verify if your configuration is set up correctly, click Test. This verifies the logging configuration by sending
a test log message and checking the response code is OK.

7. When done, click Save to apply the settings or Cancel to abandon the changes.

11.2. Set Up Logging with Tower 48

CHAPTER

TWELVE

THE AWX-MANAGE UTILITY

The awx-manage (formerly tower-manage) utility is used to access detailed internal information of Tower. Com-
mands for awx-manage should run as the awx or root user.

12.1 Inventory Import

awx-manage is a mechanism by which a Tower administrator can import inventory directly into Tower, for those
who cannot use Custom Inventory Scripts.

To use awx-manage properly, you must first create an inventory in Tower to use as the destination for the import.

For help with awx-manage, run the following command: awx-manage inventory_import [--help]

The inventory_import command synchronizes a Tower inventory object with a text-based inventory file, dy-
namic inventory script, or a directory of one or more of the above as supported by core Ansible.

When running this command, specify either an --inventory-id or --inventory-name, and the path to the
Ansible inventory source (--source).

awx-manage inventory_import --source=/ansible/inventory/ --inventory-id=1

By default, inventory data already stored in Tower blends with data from the external source. To use only the external
data, specify --overwrite. To specify that any existing hosts get variable data exclusively from the --source,
specify --overwrite_vars. The default behavior adds any new variables from the external source, overwriting
keys that already exist, but preserves any variables that were not sourced from the external data source.

awx-manage inventory_import --source=/ansible/inventory/ --inventory-id=1 --overwrite

Note: With the release of Ansible Tower 2.4.0, edits and additions to Inventory host variables now persist beyond an
inventory sync as long as --overwrite_vars is not set. To have inventory syncs behave as they did before, it is
now required that both --overwrite and --overwrite_vars are set.

49

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

12.2 Cleanup of old data

awx-manage has a variety of commands used to clean old data from Tower. Tower administrators can use the Tower
Management Jobs interface for access or use the command line.

• awx-manage cleanup_jobs [--help]

This permanently deletes the job details and job output for jobs older than a specified number of days.

• awx-manage cleanup_activitystream [--help]

This permanently deletes any activity stream data older than a specific number of days.

12.3 Cluster management

Refer to the Clustering section for details on the awx-manage provision_instance and awx-manage
deprovision_instance commands.

Note: Do not run other awx-manage commands unless instructed by Ansible Support.

12.2. Cleanup of old data 50

CHAPTER

THIRTEEN

TOWER CONFIGURATION

You can configure various Tower settings within the Tower user interface, in the following tabs:

• Authentication: Enable simplified login for your Tower applications.

• Jobs: Update settings pertaining to Jobs within Tower.

• System: Define system-level features and functions.

• User Interface: Set the level of data collection for use in usability analytics; and configure custom logos and
login messages.

• License: Import or view your product license.

Each tab contains fields with a Reset button, allowing you to revert any value entered back to the default value. Reset
All allows you to revert all the values in the Edit Tower Configuration to their factory default values.

Save applies changes you make, but it does not exit the edit dialog. Click the Settings () icon to return to the
Configure Tower screen.

13.1 Authentication

Through the Tower user interface, you can set up a simplified login through various authentication types: GitHub,
Google, LDAP, RADIUS, and SAML. After you create and register your developer application with the appropriate
service, you can set up authorizations for them. Since configuration files are now saved to the postgres DB in Ansible
Tower 3.1 instead of flat files, setting up authorizations in the Ansible Tower User Interface is the recommended
method.

1. From the left navigation bar, click the Settings () icon.

2. The Authentication tab displays initially by default. Select the appropriate authentication type from the drop-
down list.

51

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Different authentication types require you to enter different information. Be sure to include all the information as
required.

Note: For more detail about each authentication type, refer to the Setting Up Authentication section of the Adminis-
tration Guide.

3. Click Save to apply the settings or Cancel to abandon the changes.

13.2 Jobs

The Jobs tab allows you to configure the types of modules that are allowed to be used by Tower’s Ad Hoc Commands
feature, set limits on the number of jobs that can be scheduled, define their output size, and other details pertaining to
working with Jobs in Tower.

1. From the Settings () Menu screen, click on Configure Tower.

2. Select the Jobs tab.

3. Set the configurable options from the fields provided. Click the tooltip icon next to the field that you need
additional information or details about.

Note: The value for Default Job Timeout is in seconds.

13.2. Jobs 52

http://docs.ansible.com/ansible-tower/3.3.0/html/administration/social_auth.html#ag-authentication

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

4. Click Save to apply the settings or Cancel to abandon the changes.

13.3 System

The System tab allows you to define the base URL for the Tower host, configure alerts, enable activity capturing,
control visibility of users, enable certain Tower features and functionality through a license file, and configure logging
aggregation options.

1. From the Settings () Menu screen, click on Configure Tower.

2. Select the System tab.

3. Select an option from the Sub Category drop-down menu list:

• Activity Stream: enable or disable activity stream.

• Logging: configure logging options based on the type you choose:

13.3. System 53

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

For more information about each of the logging aggregation types, refer to the Tower Logging and Aggregation
section of the Ansible Tower Administration Guide.

• Misc. System: define the base URL for the Tower host, enable tower administration alerts, and allow all users
to be visible to organization administrators.

4. Set the configurable options from the fields provided. Click the tooltip icon next to the field that you need
additional information or details about.

Note: The Allow External Users to Create Oauth2 Tokens setting is disabled by default. This ensures external
users cannot create their own tokens. If you enable then disable it, any tokens created by external users in the meantime
will still exist, and are not automatically revoked.

5. Click Save to apply the settings or Cancel to abandon the changes.

13.3. System 54

http://docs.ansible.com/ansible-tower/3.3.0/html/administration/logging.html#ag-logging

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

13.4 User Interface

The User Interface tab allows you to set Tower analytics settings, as well as configure custom logos and login messages.

13.4.1 Usability Analytics and Data Collection

In Ansible Tower version 2.4.0, a behind the scenes functionality was added to Tower to collect usability data. This
software was introduced to better understand how Tower users specifically interact with Tower, to help enhance future
releases, and to continue streamlining your user experience.

Only users installing a trial of Tower or a fresh installation of Tower are opted-in for this data collection.

If you want to change how you participate in this analytics collection, you can opt out or change your settings using
the Configure Tower user interface.

Ansible Tower collects user data automatically to help improve the Tower product. You can control the way Tower
collects data by setting your participation level in the User Interface tab.

1. Click the Settings () icon from the left navigation bar.

2. Select the User Interface tab.

3. Select the desired level of data collection from the Analytics Tracking State drop-down list:

• Off: Prevents any data collection.

• Anonymous: Enables data collection without your specific user data.

• Detailed: Enables data collection including your specific user data.

4. Click Save to apply the settings or Cancel to abandon the changes.

Note: This setting was previously configured via PENDO, which is no longer supported.

13.4. User Interface 55

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

13.4.2 Custom Logos and Images

You can also add a custom logo by uploading an image; and supply a custom login message from the User Interface
screen in Configure Tower.

Refer to the tooltips () for acceptable formats.

13.5 License

1. From the Settings () Menu screen, click on Configure Tower.

2. Select the License tab.

Tower requires a valid license to run. If you did not receive a license from Ansible directly or via email, or have issues
with the license you received, refer to http://www.ansible.com/license for free and paid license options (including free
trial licenses) or contact Ansible via the Red Hat Customer portal at https://access.redhat.com/.

Note: To successfully add your license, you must be logged on as the Superuser. Otherwise, the operation will fail.

13.5. License 56

http://www.ansible.com/license
https://access.redhat.com/

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

To add your license:

1. Save your license (or save the license contents to a text file locally, if needed).

2. Click the Browse button and navigate to the location where the license file is saved to upload it. The uploaded
license may be a plain text file or a JSON file, and must include properly formatted JSON code.

3. Once uploaded, check to agree to the End User License Agreement and click Submit.

Once your license has been accepted, Tower navigates you to the main Ansible interface for the Dashboard (which
you can access by clicking on the Ansible Tower logo at the top left of the screen as well).

For later reference, you can view this license from the License tab of the Configure Tower screen, accessible through

the Settings () icon from the left navigation bar.

13.5. License 57

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

13.5. License 58

CHAPTER

FOURTEEN

BUBBLEWRAP FUNCTIONALITY AND VARIABLES

The bubblewrap functionality in Ansible Tower limits which directories on the Tower file system are available for
playbooks to see and use during playbook runs. You may find that you need to customize your bubblewrap settings in
some cases. To fine tune your usage of bubblewrap, there are certain variables that can be set.

To disable or enable bubblewrap support for running jobs (playbook runs only), ensure you are logged in as the Admin
user:

1. Click the Settings () icon from the left navigation bar.

2. Click the “Jobs” tab.

3. Scroll down until you see “Enable Job Isolation” and change the toggle button selection to OFF to disable
bubblewrap support or select ON to enable it.

By default, the Tower will use the system’s tmp directory (/tmp by default) as its staging area. This can be changed
in the Job Isolation Execution Path field of the Configure tower screen, or by updating the following entry in the
settings file:

AWX_PROOT_BASE_PATH = "/opt/tmp"

If there is other information on the system that is sensitive and should be hidden, you can specify those in the Configure
Tower screen in the Paths to Hide to Isolated Jobs or by updating the following entry in the settings file:

AWX_PROOT_HIDE_PATHS = ['/list/of/', '/paths']

If there are any directories that should specifically be exposed, you can specify those in the Configure Tower screen in
the Paths to Expose to Isolated Jobs or by updating the following entry in the settings file:

AWX_PROOT_SHOW_PATHS = ['/list/of/', '/paths']

Note: The primary file you may want to add to AWX_PROOT_SHOW_PATHS is /var/lib/awx/.
ssh, if your playbooks need to use keys or settings defined there.

If you made changes in the settings file, be sure to restart services with the ansible-tower-service restart
command after your changes have been saved.

59

CHAPTER

FIFTEEN

TOKEN-BASED AUTHENTICATION

Starting with Ansible Tower 3.3, OAuth 2 is used for token-based authentication. You can manage OAuth tokens
as well as applications, a server-side representation of API clients used to generate tokens. By including an OAuth
token as part of the HTTP authentication header, you can authenticate yourself and adjust the degree of restrictive
permissions in addition to the base RBAC permissions. Refer to RFC 6749 for more details of OAuth 2 specification.

15.1 Managing OAuth 2 Applications and Tokens

Applications and tokens can be managed as a top-level resource at /api/<version>/applications and /
api/<version>/tokens. These resources can also be accessed respective to the user at /api/<version>/
users/N/<resource>. Applications can be created by making a POST to either api/<version>/
applications or /api/<version>/users/N/applications.

Each OAuth 2 application represents a specific API client on the server side. For an API client to use the API via an
application token, it must first have an application and issue an access token. Individual applications are accessible via
their primary keys: /api/<version>/applications/<pk>/. Here is a typical application:

{
"id": 1,
"type": "o_auth2_application",
"url": "/api/v2/applications/2/",
"related": {

"tokens": "/api/v2/applications/2/tokens/"
},
"summary_fields": {

"organization": {
"id": 1,
"name": "Default",
"description": ""

},
"user_capabilities": {

"edit": true,
"delete": true

},
"tokens": {

"count": 0,
"results": []

}
},
"created": "2018-07-02T21:16:45.824400Z",
"modified": "2018-07-02T21:16:45.824514Z",

(continues on next page)

60

https://tools.ietf.org/html/rfc6749

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

"name": "My Application",
"description": "",
"client_id": "Ecmc6RjjhKUOWJzDYEP8TZ35P3dvsKt0AKdIjgHV",
"client_secret":

↪→"7Ft7ym8MpE54yWGUNvxxg6KqGwPFsyhYn9QQfYHlgBxai74Qp1GE4zsvJduOfSFkTfWFnPzYpxqcRsy1KacD0HH0vOAQUDJDCidByMiUIH4YQKtGFM1zE1dACYbpN44E
↪→",

"client_type": "confidential",
"redirect_uris": "",
"authorization_grant_type": "password",
"skip_authorization": false,
"organization": 1

}

As shown in the example above, name is the human-readable identifier of the application. The rest of the other fields,
like client_id and redirect_uris, are mainly used for OAuth2 authorization, which is covered later in Using
OAuth 2 Token System for Personal Access Tokens (PAT).

The values for the client_id and client_secret fields are generated during creation and are non-editable
identifiers of applications, while organization and authorization_grant_type are required upon creation
and become non-editable.

15.1.1 Access Rules for Applications

Access rules for applications are as follows:

• System administrators can view and manipulate all applications in the system

• Organization administrators can view and manipulate all applications belonging to Organization members

• Other users can only view, update, and delete their own applications, but cannot create any new applications

Tokens, on the other hand, are resources used to actually authenticate incoming requests and mask the permissions of
the underlying user. There are two ways of creating a token:

• POSTing to the /api/v2/tokens/ endpoint by providing application and scope fields to point to the
related application and specify token scope

• POSTing to /api/v2/applications/<pk>/tokens/ by providing only scope, while the parent ap-
plication will be automatically linked

Individual tokens will be accessible via their primary keys: /api/<version>/tokens/<pk>/. Here is an ex-
ample of a typical token:

{
"id": 4,
"type": "o_auth2_access_token",
"url": "/api/v2/tokens/4/",
"related": {

"user": "/api/v2/users/1/",
"application": "/api/v2/applications/1/",
"activity_stream": "/api/v2/tokens/4/activity_stream/"

},
"summary_fields": {

"application": {
"id": 1,
"name": "Default application for root",
"client_id": "mcU5J5uGQcEQMgAZyr5JUnM3BqBJpgbgL9fLOVch"

(continues on next page)

15.1. Managing OAuth 2 Applications and Tokens 61

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

},
"user": {

"id": 1,
"username": "root",
"first_name": "",
"last_name": ""

}
},
"created": "2018-02-23T14:39:32.618932Z",
"modified": "2018-02-23T14:39:32.643626Z",
"description": "App Token Test",
"user": 1,
"token": "*************",
"refresh_token": "*************",
"application": 1,
"expires": "2018-02-24T00:39:32.618279Z",
"scope": "read"

},

For an OAuth 2 token, the only fully editable fields are scope and description. The application field
is non-editable on update, and all other fields are entirely non-editable, and are auto-populated during creation, as
follows:

• user field corresponds to the user the token is created for, and in this case, is also the user creating the token

• expires is generated according to the Tower configuration setting OAUTH2_PROVIDER

• token and refresh_token are auto-generated to be non-clashing random strings

Both application tokens and personal access tokens are shown at the /api/v2/tokens/ endpoint. The
application field in the personal access tokens is always null. This is a good way to differentiate the two types of
tokens.

15.1.2 Access rules for tokens

Access rules for tokens are as follows:

• Users can create a token if they are able to view the related application; and are also able to create a personal
token for themselves

• System administrators are able to view and manipulate every token in the system

• Organization administrators are able to view and manipulate all tokens belonging to Organization members

• System Auditors can view all tokens and applications

• Other normal users are only able to view and manipulate their own tokens

Note: Users can only view the token or refresh the token value at the time of creation only.

15.1. Managing OAuth 2 Applications and Tokens 62

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

15.2 Using OAuth 2 Token System for Personal Access Tokens (PAT)

The most common use of OAuth 2 is authenticating users. The token field of a token is used as part of HTTP
authentication header, in the format of Authorization: Bearer <token field value>. The Bearer
token can be obtained by issuing a curl command at the /api/o/token/ endpoint, as shown in this example below:

curl -ku <user>:<password> -H "Content-Type: application/json" -X POST \
-d '{"description":"Tower CLI", "application":null, "scope":"write"}' \
https://<tower>/api/v2/users/1/personal_tokens/ | python -m json.tool

Note: The special OAuth 2 endpoints only support using the x-www-form-urlencoded Content-type, so as a
result, none of the api/o/* endpoints accept application/json.

Following is an example of using the personal token to access an API endpoint using curl:

curl -k -H "Authorization: Bearer <token>" -H "Content-Type: application/json" -X
↪→POST -d '{}' https://tower/api/v2/job_templates/5/launch/

According to OAuth 2 specification, users can acquire, revoke, and refresh an access token. In Ansible Tower, the
equivalent, and most efficient way to refresh a token, is create a token, delete a token, and then quickly followed by
creating a new one. To revoke a token, simply delete it in the Applications configuration of the user interface, or at the
token’s detail page in the API.

In Ansible Tower, the OAuth 2 system is built on top of the Django Oauth Toolkit, which provides dedicated endpoints
for authorizing, revoking, and refreshing tokens. Tower implements them and puts related endpoints under the /api/
o/ endpoint, which also provides detailed examples on some typical usage of those endpoints.

Note: The /api/o/ endpoints can only be used for application tokens, and are not valid for personal access tokens.

15.2.1 Token scope mask over RBAC system

The scope of an OAuth 2 token is a space-separated string composed of valid scope keywords, ‘read’ and ‘write’.
These keywords are configurable and used to specify permission level of the authenticated API client. Read and
write scopes provide a mask layer over the Role-Based Access Control (RBAC) permission system of Ansible Tower.
Specifically, a ‘write’ scope gives the authenticated user the full permissions the RBAC system provides, while a ‘read’
scope gives the authenticated user only read permissions the RBAC system provides. Note that ‘write’ implies ‘read’
as well.

For example, if you have administrative permissions to a job template, you can view, modify, launch, and delete the
job template if authenticated via session or basic authentication. In contrast, if you are authenticated using OAuth 2
token, and the related token scope is ‘read’, you can only view, but not manipulate or launch the job template, despite
being an administrator. If the token scope is ‘write’ or ‘read write’, you can take full advantage of the job template as
its administrator.

To acquire and use a token, first create an application token:

1. Make an application with authorization_grant_type set to password. HTTP POST the following to
the /api/v2/applications/ endpoint (supplying your own organization ID):

{
"name": "Admin Internal Application",
"description": "For use by secure services & clients. ",

(continues on next page)

15.2. Using OAuth 2 Token System for Personal Access Tokens (PAT) 63

https://django-oauth-toolkit.readthedocs.io/en/latest/

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

"client_type": "confidential",
"redirect_uris": "",
"authorization_grant_type": "password",
"skip_authorization": false,
"organization": <organization-id>

}

2. Make a token and POST to the /api/v2/tokens/ endpoint:

{
"description": "My Access Token",
"application": <application-id>,
"scope": "write"

}

This returns a <token-value> that you can use to authenticate with for future requests (this will not be shown again).

3. Use the token to access a resource. The following uses curl as an example:

curl -H "Authorization: Bearer <token-value>" -H "Content-Type: application/json" -X
↪→GET https://<tower>/api/v2/users/

The -k flag may be needed if you have not set up a CA yet and are using SSL.

To revoke a token, you can make a DELETE on the detail page for that token, using that token’s ID. For example:

curl -ku <user>:<password> -X DELETE https://<tower>/api/v2/tokens/<pk>/

Similarly, using a token:

curl -H "Authorization: Bearer <token-value>" -X DELETE https://<tower>/api/v2/tokens/
↪→<pk>/ -k

15.3 Application Functions

This page lists OAuth 2 utility endpoints used for authorization, token refresh, and revoke. Endpoints other than /
api/o/authorize/ are not meant to be used in browsers and do not support HTTP GET. The endpoints prescribed
here strictly follow RFC specifications for OAuth 2, so use that for detailed reference. The implicit grant type can
only be used to acquire an access token if you are already logged in via session authentication, as that confirms that
you are authorized to create an access token. The following is an example of the typical usage of these endpoints in
Tower, in particular, when creating an application using various grant types:

• Authorization Code

• Implicit

• Password

15.3. Application Functions 64

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

15.3.1 Application using authorization code grant type

The application authorization code grant type should be used when access tokens need to be issued directly to
an external application or service. To create an application named AuthCodeApp with the authorization-code
grant type, perform a POST to the /api/v2/applications/ endpoint:

{
"name": "AuthCodeApp",
"user": 1,
"client_type": "confidential",
"redirect_uris": "http://<tower>/api/v2",
"authorization_grant_type": "authorization-code",
"skip_authorization": false

}

The workflow that occurs when you issue a GET to the authorize endpoint from the client application with the
response_type, client_id, redirect_uris, and scope:

1. Tower responds with the authorization code and status to the redirect_uri specified in the application.

2. The client application then makes a POST to the api/o/token/ endpoint on Tower with the code,
client_id, client_secret, grant_type, and redirect_uri.

3. Tower responds with the access_token, token_type, refresh_token, and expires_in.

Refer to Django’s Test Your Authorization Server toolkit to test this flow.

The best way to set up app integrations with Ansible Tower using the Authorization Code grant type is to whitelist the
origins for those cross-site requests. More generally, you need to whitelist the service or application you are integrating
with Tower, for which you want to provide access tokens. To do this, have your Administrator add this whitelist to
their local Tower settings:

CORS_ORIGIN_REGEX_WHITELIST = [
r"http://django-oauth-toolkit.herokuapp.com*",
r"http://www.example.com*"

]

Where http://django-oauth-toolkit.herokuapp.com and http://www.example.com are appli-
cations needing tokens with which to access Tower.

15.3.2 Application using implicit grant type

An implicit grant type is used when a single page web application can’t keep a client_secret secure. This
method skips the authorization code part of the flow and just returns an access token. The following supposes the
application administrator’s app of grant type is implicit:

{
"id": 1,
"type": "application",
"related": {
...
"name": "admin's app",
"user": 1,
"client_id": "L0uQQWW8pKX51hoqIRQGsuqmIdPi2AcXZ9EJRGmj",
"client_secret":

↪→"9Wp4dUrUsigI8J15fQYJ3jn0MJHLkAjyw7ikBsABeWTNJbZwy7eB2Xro9ykYuuygerTPQ2gIF2DCTtN3kurkt0Me3AhanEw6peRNvNLs1NNfI4f53mhX8zo5JQX0BKy5
↪→", (continues on next page)

15.3. Application Functions 65

http://django-oauth-toolkit.readthedocs.io/en/latest/tutorial/tutorial_01.html#test-your-authorization-server

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

"client_type": "confidential",
"redirect_uris": "http://<tower>/api/",
"authorization_grant_type": "implicit",
"skip_authorization": false

}

In the API browser, first make sure you are logged in via session auth, then visit the authorization endpoint with the
given parameters:

http://localhost:8013/api/o/authorize/?response_type=token&client_
↪→id=L0uQQWW8pKX51hoqIRQGsuqmIdPi2AcXZ9EJRGmj&scope=read

This is case, the client_id must be the same as the client_id field of the underlying application. On success,
an authorization page displays with a prompt, asking you to grant or deny the access token. After you click grant, the
API browser will POST to the same endpoint with the same parameters in the POST body, on success, a “302 redirect”
will be returned:

HTTP/1.1 302 Found
Connection:keep-alive
Content-Language:en
Content-Length:0
Content-Type:text/html; charset=utf-8
Date:Tue, 05 Dec 2017 20:36:19 GMT
Location:http://localhost:8013/api/#access_token=0lVJJkolFTwYawHyGkk7NTmSKdzBen&token_
↪→type=Bearer&state=&expires_in=315360000000&scope=read
Server:nginx/1.12.2
Strict-Transport-Security:max-age=15768000
Vary:Accept-Language, Cookie

Note: Tokens created with implicit applications do not have a refresh token.

15.3.3 Application using password grant type

This type is also called the resource owner credentials grant. This is ideal for users who have native ac-
cess to the web app and should be used when the client is the Resource owner. The following supposes an application,
‘Default Application’ with grant type password:

{
"id": 6,
"type": "application",
...
"name": "Default Application",
"user": 1,
"client_id": "gwSPoasWSdNkMDtBN3Hu2WYQpPWCO9SwUEsKK22l",
"client_secret":

↪→"fI6ZpfocHYBGfm1tP92r0yIgCyfRdDQt0Tos9L8a4fNsJjQQMwp9569eIaUBsaVDgt2eiwOGe0bg5m5vCSstClZmtdy359RVx2rQK5YlIWyPlrolpt2LEpVeKXWaiybo
↪→",

"client_type": "confidential",
"redirect_uris": "",
"authorization_grant_type": "password",
"skip_authorization": false

}

15.3. Application Functions 66

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Logging in is not required for password grant type, so you can simply use curl to acquire a personal access token
through the /api/o/token/ endpoint:

curl -X POST \
-d "grant_type=password&username=<username>&password=<password>&scope=read" \
-u
↪→"gwSPoasWSdNkMDtBN3Hu2WYQpPWCO9SwUEsKK22l:fI6ZpfocHYBGfm1tP92r0yIgCyfRdDQt0Tos9L8a4fNsJjQQMwp9569e
IaUBsaVDgt2eiwOGe0bg5m5vCSstClZmtdy359RVx2rQK5YlIWyPlrolpt2LEpVeKXWaiybo" \
http://<tower>/api/o/token/ -i

In the above POST request, parameters, username and password are the username and password
of the related Tower user of the underlying application, and the authentication information is of format
<client_id>:<client_secret>, where client_id and client_secret are the corresponding fields
of the underlying application.

Note: The special OAuth 2 endpoints only support using the x-www-form-urlencoded Content-type, so as a
result, none of the api/o/* endpoints accept application/json.

Upon success, a response displays in JSON format containing the access token, refresh token and other information:

HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Tue, 05 Dec 2017 16:48:09 GMT
Content-Type: application/json
Content-Length: 163
Connection: keep-alive
Content-Language: en
Vary: Accept-Language, Cookie
Pragma: no-cache
Cache-Control: no-store
Strict-Transport-Security: max-age=15768000

{"access_token": "9epHOqHhnXUcgYK8QanOmUQPSgX92g", "token_type": "Bearer", "expires_in
↪→": 315360000000, "refresh_token": "jMRX6QvzOTf046KHee3TU5mT3nyXsz", "scope": "read"}

15.4 Application Token Functions

This section describes the refresh and revoke functions associated with tokens. Everything that follows (Refreshing
and revoking tokens at the /api/o/ endpoints) can currently only be done with application tokens. However, tokens
created with implicit applications do not have a refresh token.

15.4.1 Refresh an existing access token

The following example shows an existing access token with a refresh token provided:

{
"id": 35,
"type": "access_token",
...
"user": 1,
"token": "omMFLk7UKpB36WN2Qma9H3gbwEBSOc",
"refresh_token": "AL0NK9TTpv0qp54dGbC4VUZtsZ9r8z",

(continues on next page)

15.4. Application Token Functions 67

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

"application": 6,
"expires": "2017-12-06T03:46:17.087022Z",
"scope": "read write"

}

The /api/o/token/ endpoint is used for refreshing the access token:

curl -X POST \
-d "grant_type=refresh_token&refresh_token=AL0NK9TTpv0qp54dGbC4VUZtsZ9r8z" \
-u

↪→"gwSPoasWSdNkMDtBN3Hu2WYQpPWCO9SwUEsKK22l:fI6ZpfocHYBGfm1tP92r0yIgCyfRdDQt0Tos9L8a4fNsJjQQMwp9569eIaUBsaVDgt2eiwOGe0bg5m5vCSstClZmtdy359RVx2rQK5YlIWyPlrolpt2LEpVeKXWaiybo
↪→" \

http://<tower>/api/o/token/ -i

In the above POST request, refresh_token is provided by refresh_token field of the access token above
that. The authentication information is of format <client_id>:<client_secret>, where client_id and
client_secret are the corresponding fields of the underlying related application of the access token.

Note: The special OAuth 2 endpoints only support using the x-www-form-urlencoded Content-type, so as a
result, none of the api/o/* endpoints accept application/json.

Upon success, a response displays in JSON format containing the new (refreshed) access token with the same scope
information as the previous one:

HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Tue, 05 Dec 2017 17:54:06 GMT
Content-Type: application/json
Content-Length: 169
Connection: keep-alive
Content-Language: en
Vary: Accept-Language, Cookie
Pragma: no-cache
Cache-Control: no-store
Strict-Transport-Security: max-age=15768000

{"access_token": "NDInWxGJI4iZgqpsreujjbvzCfJqgR", "token_type": "Bearer", "expires_in
↪→": 315360000000, "refresh_token": "DqOrmz8bx3srlHkZNKmDpqA86bnQkT", "scope": "read
↪→write"}

Essentially, the refresh operation replaces the existing token by deleting the original and then immediately creating a
new token with the same scope and related application as the original one. Verify that new token is present and the old
one is deleted in the /api/v2/tokens/ endpoint.

15.4. Application Token Functions 68

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

15.4.2 Revoke an access token

Similarly, you can revoke an access token by using the /api/o/revoke-token/ endpoint.

Revoking an access token by this method is the same as deleting the token resource object, but it allows you to delete
a token by providing its token value, and the associated client_id (and client_secret if the application is
confidential). For example:

curl -X POST -d "token=rQONsve372fQwuc2pn76k3IHDCYpi7" \
-u
↪→"gwSPoasWSdNkMDtBN3Hu2WYQpPWCO9SwUEsKK22l:fI6ZpfocHYBGfm1tP92r0yIgCyfRdDQt0Tos9L8a4fNsJjQQMwp9569eIaUBsaVDgt2eiwOGe0bg5m5vCSstClZmtdy359RVx2rQK5YlIWyPlrolpt2LEpVeKXWaiybo
↪→" \
http://<tower>/api/o/revoke_token/ -i

Note: The special OAuth 2 endpoints only support using the x-www-form-urlencoded Content-type, so as a
result, none of the api/o/* endpoints accept application/json.

Note: The Allow External Users to Create Oauth2 Tokens (ALLOW_OAUTH2_FOR_EXTERNAL_USERS in the
API) setting is disabled by default. External users refer to users authenticated externally with a service like LDAP, or
any of the other SSO services. This setting ensures external users cannot create their own tokens. If you enable then
disable it, any tokens created by external users in the meantime will still exist, and are not automatically revoked.

This setting can be configured at the system-level in the Ansible Tower User Interface:

Upon success, a response of 200 OK displays. Verify the deletion by checking whether the token is present in the
/api/v2/tokens/ endpoint.

15.4. Application Token Functions 69

CHAPTER

SIXTEEN

SETTING UP SOCIAL AUTHENTICATION

Authentication methods help simplify logins for end users–offering single sign-ons using existing login information
to sign into a third party website rather than creating a new login account specifically for that website.

Prior to Ansible Tower version 3.1, account authentication can only be configured in the /etc/tower/settings.
py or the configuration files within /etc/tower/conf.d/. Starting with Ansible Tower version 3.1, instead
of flat files, the configuration files are now saved to the Postgres database. Therefore, it is important that account
authentication be configured in the Ansible Tower User Interface. For instructions, refer to the Tower Configuration
section.

This section describes setting up authentication for the following systems:

• Basic Authentication Settings

• Google OAuth2 Settings

• GitHub OAuth2 Settings

– Github Org Settings

– Github Team Settings

• Organization and Team Mapping

– Organization mapping

– Team mapping

Account authentication in Ansible Tower can be configured to centrally use OAuth2, while enterprise-level account
authentication can be configured for SAML, RADIUS, or even LDAP as a source for authentication information.

For websites, such as Microsoft Azure, Google or GitHub, that provide account information, account information is
often implemented using the OAuth standard. OAuth is a secure authorization protocol which is commonly used in
conjunction with account authentication to grant 3rd party applications a “session token” allowing them to make API
calls to providers on the user’s behalf.

SAML (Security Assertion Markup Language) is an XML-based, open-standard data format for exchanging account
authentication and authorization data between an identity provider and a service provider.

The RADIUS distributed client/server system allows you to secure networks against unauthorized access and can be
implemented in network environments requiring high levels of security while maintaining network access for remote
users.

70

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

16.1 Basic Authentication Settings

To enable or disable HTTP basic authentication as used in the API browser, edit the sessions.py file, setting the
following line as either True or False:

AUTH_BASIC_ENABLED = False

After saving your changes, run the ansible-tower-service restart command to ensure your changes take
effect.

16.2 Google OAuth2 Settings

To set up social authentication for Google, you will need to obtain an OAuth2 key and secret for a web application.
To do this, you must first create a project and set it up with Google. Refer to https://support.google.com/googleapi/
answer/6158849 for instructions. If you already completed the setup process, you can access those credentials by
going to the Credentials section of the Google API Manager Console. The OAuth2 key (Client ID) and secret (Client
secret) will be used to supply the required fields in the Ansible Tower User Interface.

1. In the Ansible Tower User Interface, click Configure Tower from the Settings () Menu screen.

The Authentication tab displays initially by default.

2. In the Sub Category field, select Google OAuth2 from the drop-down list.

The Google OAuth2 Callback URL field is already pre-populated and non-editable.

3. Using the credentials Google supplied during the web application setup process:

• Copy and paste Google’s Client ID into the Google OAuth2 Key field of the Configure Tower - Authentication
screen. Look for the value with the same format as the one shown in the text field.

• Copy and paste Google’s Client secret into the Google OAuth2 Secret field of the Configure Tower - Authenti-
cation screen. Look for the value with the same format as the one shown in the text field.

16.1. Basic Authentication Settings 71

https://support.google.com/googleapi/answer/6158849
https://support.google.com/googleapi/answer/6158849
https://console.developers.google.com/

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

4. To complete the remaining optional fields, refer to the tooltips in each of the fields for instructions and required
format.

5. For details on completing the mapping fields, see Organization and Team Mapping.

7. Click Save when done.

8. To verify that the authentication was configured correctly, logout of Ansible Tower and the login screen will
now display the Google logo to indicate it as a alternate method of logging into Ansible Tower.

16.3 GitHub OAuth2 Settings

To set up social authentication for GitHub, you will need to obtain an OAuth2 key and secret for a web application.
To do this, you must first register the new application with GitHub at https://github.com/settings/developers. In order
to register the application, you must supply it with your homepage URL, which is the Callback URL shown in the
Configure Tower user interface. The OAuth2 key (Client ID) and secret (Client Secret) will be used to supply the
required fields in the Ansible Tower User Interface.

1. In the Ansible Tower User Interface, click Configure Tower from the Settings () Menu screen.

The Authentication tab displays initially by default.

2. In the Sub Category field, select GitHub from the drop-down list.

16.3. GitHub OAuth2 Settings 72

https://github.com/settings/developers

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

3. Use the GitHub OAuth2 Callback URL to supply GitHub when it prompts for your application’s Homepage
URL.

Once the application is registered, GitHub displays the Client ID and Client Secret.

4. Copy and paste GitHub’s Client ID into the GitHub OAuth2 Key field of the Configure Tower - Authentication
screen.

5. Copy and paste GitHub’s Client Secret into the GitHub OAuth2 Secret field of the Configure Tower - Authen-
tication screen.

6. For details on completing the mapping fields, see Organization and Team Mapping.

7. Click Save when done.

8. To verify that the authentication was configured correctly, logout of Ansible Tower and the login screen will
now display the GitHub logo to allow logging in with those credentials.

16.3. GitHub OAuth2 Settings 73

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

16.3.1 Github Org Settings

When defining account authentication with either an organization or a team within an organization, you should use the
specific organization and team settings. Account authentication can be limited by an organization as well as by a team
within an organization.

You can also choose to allow all by specifying non-organization or non-team based settings (as shown above).

You can limit users who can login to Tower by limiting only those in an organization or on a team within an organiza-
tion.

To set up social authentication for a GitHub Organization, you will need to obtain an OAuth2 key and secret for a
web application. To do this, you must first register your organization-owned application at https://github.
com/organizations/<yourorg>/settings/applications. In order to register the application, you
must supply it with your Authorization callback URL, which is the Callback URL shown in the Configure Tower
user interface. Each key and secret must belong to a unique application and cannot be shared or reused between differ-
ent authentication backends. The OAuth2 key (Client ID) and secret (Client Secret) will be used to supply the required
fields in the Ansible Tower User Interface.

1. In the Ansible Tower User Interface, click Configure Tower from the Settings () Menu screen.

The Authentication tab displays initially by default.

2. In the Sub Category field, select GitHub Org from the drop-down list.

16.3. GitHub OAuth2 Settings 74

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

3. Use the GitHub Organization OAuth2 Callback URL to supply GitHUb when it prompts for the Authorization
callback URL.

Once the application is registered, GitHub displays the Client ID and Client Secret.

4. Copy and paste GitHub’s Client ID into the GitHub Organization OAuth2 Key field of the Configure Tower -
Authentication screen.

5. Copy and paste GitHub’s Client Secret into the GitHub Organization OAuth2 Secret field of the Configure
Tower - Authentication screen.

6. For details on completing the mapping fields, see Organization and Team Mapping.

7. Click Save when done.

8. To verify that the authentication was configured correctly, logout of Ansible Tower and the login screen will
now display the GitHub Organization logo to allow logging in with those credentials.

16.3. GitHub OAuth2 Settings 75

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

16.3.2 Github Team Settings

To set up social authentication for a GitHub Team, you will need to obtain an OAuth2 key and secret for a
web application. To do this, you must first register your team-owned application at https://github.com/
organizations/<yourorg>/settings/applications. In order to register the application, you must
supply it with your Authorization callback URL, which is the Callback URL shown in the Configure Tower user
interface. Each key and secret must belong to a unique application and cannot be shared or reused between different
authentication backends. The OAuth2 key (Client ID) and secret (Client Secret) will be used to supply the required
fields in the Ansible Tower User Interface.

1. Find the numeric team ID using the Github API: http://fabian-kostadinov.github.io/2015/01/16/
how-to-find-a-github-team-id/. The Team ID will be used to supply a required field in the Ansible
Tower User Interface.

2. In the Ansible Tower User Interface, click Configure Tower from the Settings () Menu screen.

The Authentication tab displays initially by default.

3. In the Sub Category field, select GitHub Team from the drop-down list.

16.3. GitHub OAuth2 Settings 76

http://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/
http://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

4. Use the GitHub Team OAuth2 Callback URL to supply GitHUb when it prompts for the Authorization call-
back URL.

Once the application is registered, GitHub displays the Client ID and Client Secret.

5. Copy and paste GitHub’s Client ID into the GitHub Team OAuth2 Key field of the Configure Tower - Authen-
tication screen.

6. Copy and paste GitHub’s Client Secret into the GitHub Team OAuth2 Secret field of the Configure Tower -
Authentication screen.

7. For details on completing the mapping fields, see Organization and Team Mapping.

8. Click Save when done.

9. To verify that the authentication was configured correctly, logout of Ansible Tower and the login screen will
now display the GitHub Team logo to allow logging in with those credentials.

16.4 Organization and Team Mapping

16.4.1 Organization mapping

You will need to control which users are placed into which Tower organizations based on their username and email
address (mapping out your organization admins/users from social or enterprise-level authentication accounts).

Dictionary keys are organization names. Organizations will be created, if not already present and if the license allows
for multiple organizations. Otherwise, the single default organization is used regardless of the key.

Values are dictionaries defining the options for each organization’s membership. For each organization, it is possible to
specify which users are automatically users of the organization and also which users can administer the organization.

admins: None, True/False, string or list/tuple of strings.

• If None, organization admins will not be updated.

16.4. Organization and Team Mapping 77

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• If True, all users using account authentication will automatically be added as admins of the organization.

• If False, no account authentication users will be automatically added as admins of the organization.

• If a string or list of strings, specifies the usernames and emails for users who will be added to the organization.
Strings beginning and ending with / will be compiled into regular expressions; modifiers i (case-insensitive)
and m (multi-line) may be specified after the ending /.

remove_admins: True/False. Defaults to True.

• When True, a user who does not match is removed from the organization’s administrative list.

users: None, True/False, string or list/tuple of strings. Same rules apply as for admins.

remove_users: True/False. Defaults to True. Same rules apply as for remove_admins.

{
"Default": {

"users": true
},
"Test Org": {

"admins": ["admin@example.com"],
"users": true

},
"Test Org 2": {

"admins": ["admin@example.com", "/^tower-[^@]+?@.*$/i"],
"users": "/^[^@].*?@example\\.com$/"

}
}

Organization mappings may be specified separately for each account authentication backend. If defined, these config-
urations will take precedence over the global configuration above.

SOCIAL_AUTH_GOOGLE_OAUTH2_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_ORG_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_ORGANIZATION_MAP = {}
SOCIAL_AUTH_SAML_ORGANIZATION_MAP = {}

16.4.2 Team mapping

Team mapping is the mapping of team members (users) from social auth accounts. Keys are team names (will be
created if not present). Values are dictionaries of options for each team’s membership, where each can contain the
following parameters:

organization: string. The name of the organization to which the team belongs. The team will be created if the com-
bination of organization and team name does not exist. The organization will first be created if it does not exist. If the
license does not allow for multiple organizations, the team will always be assigned to the single default organization.

users: None, True/False, string or list/tuple of strings.

• If None, team members will not be updated.

• If True/False, all social auth users will be added/removed as team members.

• If a string or list of strings, specifies expressions used to match users. User will be added as a team member if
the username or email matches. Strings beginning and ending with / will be compiled into regular expressions;
modifiers i (case-insensitive) and m (multi-line) may be specified after the ending /.

remove: True/False. Defaults to True. When True, a user who does not match the rules above is removed from the
team.

16.4. Organization and Team Mapping 78

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

{
"My Team": {

"organization": "Test Org",
"users": ["/^[^@]+?@test\\.example\\.com$/"],
"remove": true

},
"Other Team": {

"organization": "Test Org 2",
"users": ["/^[^@]+?@test\\.example\\.com$/"],
"remove": false

}
}

Team mappings may be specified separately for each account authentication backend, based on which of these you
setup. When defined, these configurations take precedence over the the global configuration above.

SOCIAL_AUTH_GOOGLE_OAUTH2_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_ORG_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_TEAM_MAP = {}
SOCIAL_AUTH_SAML_TEAM_MAP = {}

Uncomment the line below (i.e. set SOCIAL_AUTH_USER_FIELDS to an empty list) to prevent new user accounts
from being created. Only users who have previously logged in to Tower using social or enterprise-level authentication
or have a user account with a matching email address will be able to login.

SOCIAL_AUTH_USER_FIELDS = []

16.4. Organization and Team Mapping 79

CHAPTER

SEVENTEEN

SETTING UP ENTERPRISE AUTHENTICATION

Topics:

• Azure Active Directory (AD)

• SAML Authentication Settings

• RADIUS Authentication Settings

• TACACS+ Authentication Settings

Note: For LDAP authentication, see Setting up LDAP Authentication.

SAML, RADIUS, and TACACS+ users are categorized as ‘Enterprise’ users. The following rules apply to Enterprise
users:

• Enterprise users can only be created via the first successful login attempt from remote authentication backend.

• Enterprise users cannot be created/authenticated if non-enterprise users with the same name has already been
created in Tower.

• Tower passwords of enterprise users should always be empty and cannot be set by any user if there are enterprise
backend-enabled.

• If enterprise backends are disabled, an enterprise user can be converted to a normal Tower user by setting the
password field. However, this operation is irreversible, as the converted Tower user can no longer be treated as
enterprise user.

17.1 Azure Active Directory (AD)

To set up enterprise authentication for Microsoft Azure Active Directory (AD), you will need to obtain an OAuth2
key and secret by registering your organization-owned application from Azure at https://auth0.com/docs/connections/
enterprise/azure-active-directory. Each key and secret must belong to a unique application and cannot be shared or
reused between different authentication backends. In order to register the application, you must supply it with your
webpage URL, which is the Callback URL shown in the Configure Tower user interface.

1. In the Ansible Tower User Interface, click the Settings () icon from the left navigation bar.

The Configure Tower window opens, displaying the Authentication tab initially by default.

80

https://auth0.com/docs/connections/enterprise/azure-active-directory
https://auth0.com/docs/connections/enterprise/azure-active-directory

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

2. In the Sub Category field, select Azure AD from the drop-down list.

3. Use the Azure AD OAuth2 Callback URL to supply Azure AD when it prompts for your application’s Sign-on
URL.

Once the application is registered, Azure displays the Application ID and Object ID.

4. Copy and paste Azure’s Application ID to the Azure AD OAuth2 Key field of the Configure Tower - Authenti-
cation screen.

Following Azure AD’s documentation, Connect your app to Microsoft Azure Active Directory: Create the Key, supply
the key (shown at one time only) to the client for authentication.

5. Copy and paste the actual secret key created for your Azure AD application to the Azure AD OAuth2 Secret
field of the Configure Tower - Authentication screen.

6. For details on completing the mapping fields, see Organization and Team Mapping.

7. Click Save when done.

8. To verify that the authentication was configured correctly, logout of Ansible Tower and the login screen will
now display the Microsoft Azure logo to allow logging in with those credentials.

17.1. Azure Active Directory (AD) 81

https://auth0.com/docs/connections/enterprise/azure-active-directory/v2#4-create-the-key

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

For application registering basics in Azure AD, refer to: https://docs.microsoft.com/en-us/azure/active-directory/
develop/active-directory-authentication-scenarios#basics-of-registering-an-application-in-azure-ad

17.2 SAML Authentication Settings

Note: SAML authentication is a feature specific to Enterprise-level license holders.

SAML allows the exchange of authentication and authorization data between an Identity Provider (IdP - a system
of servers that provide the Single Sign On service) and a Service Provider (in this case, Ansible Tower). Ansible
Tower can be configured to talk with SAML in order to authenticate (create/login/logout) Tower users. User Team and
Organization membership can be embedded in the SAML response to Tower.

17.2. SAML Authentication Settings 82

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-authentication-scenarios#basics-of-registering-an-application-in-azure-ad
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-authentication-scenarios#basics-of-registering-an-application-in-azure-ad

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

To setup SAML authentication:

1. In the Ansible Tower User Interface, click the Settings () icon from the left navigation bar.

The Configure Tower window opens, displaying the Authentication tab initially by default.

2. In the Sub Category field, select SAML from the drop-down list.

3. The SAML Assertion Consume Service (ACS) URL and SAML Service Provider Metadata URL fields are
pre-populated and are non-editable. Contact the Identity Provider administrator and provide the information
contained in these fields.

4. Set the SAML Service Provider Entity ID to be the same as the Tower Base URL. The Tower Base URL

17.2. SAML Authentication Settings 83

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

can be found in the System tab of the Configure Tower screen, which you can access through the Set-

tings icon. Through the API, it can be viewed in the /api/v2/settings/system, under the
TOWER_BASE_URL variable. The Entity ID can be set to any one of the individual Tower Cluster Nodes, but
it is good practice to set it to the URL of the Service Provider. Ensure that the Base URL matches the FQDN of
the load balancer (if used).

Note: The Tower Base URL is different for each node in a cluster. Commonly, a load balancer will sit in front of
many tower cluster nodes to provide a single entry point, Tower Cluster FQDN. The SAML Service Provider must be
able establish an outbound connection and route to the Tower Cluster Node or Tower Cluster FQDN set in the SAML
Service Provider Entity ID.

In this example, the Service Provider is the Tower Cluster, and therefore, the ID is set to the Tower Cluster FQDN.

5. Create a server certificate for the Ansible cluster. Typically when an Ansible cluster is configured, the Tower
nodes will be configured to handle HTTP traffic only and the load balancer will be an SSL Termination Point.
In this case, an SSL certificate is required for the load balancer, and not for the individual Tower Cluster Nodes.
SSL can either be enabled or disabled per individual Tower node, but should be disabled when using an SSL
terminated load balancer. It is recommended to use a non-expiring self signed certificate to avoid periodically
updating certificates. This way, authentication will not fail in case someone forgets to update the certificate.

Note: The SAML Service Provider Public Certificate field should contain the entire certificate, including the
“—–BEGIN CERTIFICATE—–” and “—–END CERTIFICATE—–”.

If you are using a CA bundle with your certificate, include the entire bundle in this field.

As an example for public certs:

-----BEGIN CERTIFICATE----
... cert text ...
-----END CERTIFICATE----

6. Create an optional private key for Tower to use as a service provider (SP) and enter it in the SAML Service
Provider Private Key field.

As an example for private keys:

-----BEGIN PRIVATE KEY--
... key text ...
-----END PRIVATE KEY----

17.2. SAML Authentication Settings 84

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

7. Optionally provide the IdP with some details about the Tower cluster during the SSO process in the SAML
Service Provider Organization Info field.

{
"en-US": {
"url": "http://www.example.com",
"displayname": "Example",
"name": "example"
}

For example:

8. Provide the IdP with the technical contact information in the SAML Service Provider Technical Contact field.
Do not remove the contents of this field.

{
"givenName": "Some User",
"emailAddress": "suser@example.com"
}

For example:

9. Provide the IdP with the support contact information in the SAML Service Provider Support Contact field.
Do not remove the contents of this field.

{
"givenName": "Some User",
"emailAddress": "suser@example.com"
}

For example:

17.2. SAML Authentication Settings 85

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

10. In the SAML Enabled Identity Providers field, provide information on how to connect to each Identity
Provider listed. Tower expects the following SAML attributes in the example below:

Username(urn:oid:0.9.2342.19200300.100.1.1)
Email(urn:oid:0.9.2342.19200300.100.1.3)
FirstName(urn:oid:2.5.4.42)
LastName(urn:oid:2.5.4.4)

If these attributes are not known, map existing SAML attributes to lastname, firstname, email and username.

Configure the required keys for each IDp:

• attr_user_permanent_id - the unique identifier for the user. It can be configured to match
any of the attribute sent from the IdP. Usually, it is set to name_id if SAML:nameid attribute is
sent to the Tower node or it can be the username attribute, or a custom unique identifier.

• entity_id - the Entity ID provided by the Identity Provider administrator. The admin creates a
SAML profile for Tower and it generates a unique URL.

• url - the Single Sign On (SSO) URL Tower redirects the user to, when SSO is activated.

• x509_cert - the certificate provided by the IdP admin generated from the SAML profile created on
the Identity Provider. Remove the --BEGIN CERTIFICATE-- and --END CERTIFICATE--
headers, then enter the cert as one non-breaking string.

Multiple SAML IdPs are supported. Some IdPs may provide user data using attribute names that differ
from the default OIDs (https://github.com/omab/python-social-auth/blob/master/social/backends/saml.
py). The SAML NameID is a special attribute used by some Identity Providers to tell the Service Provider
(Tower cluster) what the unique user identifier is. If it is used, set the attr_user_permanent_id
to name_id as shown in the example. Other attribute names may be overridden for each IdP as shown
below.

{
"myidp": {

"entity_id": "https://idp.example.com",
"url": "https://myidp.example.com/sso",
"x509cert": ""

},
"onelogin": {

"entity_id": "https://app.onelogin.com/saml/metadata/123456",
"url": "https://example.onelogin.com/trust/saml2/http-post/sso/123456",
"x509cert": "",
"attr_user_permanent_id": "name_id",
"attr_first_name": "User.FirstName",
"attr_last_name": "User.LastName",
"attr_username": "User.email",
"attr_email": "User.email"
}

}

17.2. SAML Authentication Settings 86

https://github.com/omab/python-social-auth/blob/master/social/backends/saml.py
https://github.com/omab/python-social-auth/blob/master/social/backends/saml.py

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Note: The IdP provides the email, last name and firstname using the well known SAML urn. The IdP uses a custom
SAML attribute to identify a user, which is an attribute that Tower is unable to read. Instead, Tower can understand the
unique identifier name, which is the URN. Use the URN listed in the SAML “Name” attribute for the user attributes
as shown in the example below.

11. Optionally provide in the SAML Organization Map. For further detail, see Organization and Team Mapping.

12. Tower can be configured to look for particular attributes that contain Team and Organization membership to
associate with users when they log into Tower. The attribute names are defined in the SAML Organization
Attribute Mapping and the SAML Team Map fields.

Example SAML Organization Attribute Mapping Below is an example SAML attribute that embeds user organi-
zation membership in the attribute member-of.

<saml2:AttributeStatement>
<saml2:Attribute FriendlyName="member-of" Name="member-of"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue>Engineering</saml2:AttributeValue>
<saml2:AttributeValue>IT</saml2:AttributeValue>
<saml2:AttributeValue>HR</saml2:AttributeValue>
<saml2:AttributeValue>Sales</saml2:AttributeValue>

</saml2:Attribute>
<saml2:Attribute FriendlyName="admin-of" Name="admin-of"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue>Engineering</saml2:AttributeValue>

</saml2:Attribute>
</saml2:AttributeStatement>

Below is the corresponding Tower configuration.

{
"saml_attr": "member-of",
"saml_admin_attr": "admin-of",

(continues on next page)

17.2. SAML Authentication Settings 87

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

"remove": true,
"remove_admins": false

}

saml_attr: is the SAML attribute name where the organization array can be found and remove is set to True to
remove a user from all organizations before adding the user to the list of Organizations. To keep the user in whatever
Organization(s) they are in while adding the user to the Organization(s) in the SAML attribute, set remove to False.

saml_admin_attr: Similar to the saml_attr attribute, but instead of conveying organization membership, this
attribute conveys admin organization permissions.

Example SAML Team Map Below is another example of a SAML attribute that contains a Team membership in a
list.

<saml:AttributeStatement>
<saml:Attribute

xmlns:x500="urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"
x500:Encoding="LDAP"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"
Name="urn:oid:1.3.6.1.4.1.5923.1.1.1.1"
FriendlyName="eduPersonAffiliation">
<saml:AttributeValue

xsi:type="xs:string">member</saml:AttributeValue>
<saml:AttributeValue

xsi:type="xs:string">staff</saml:AttributeValue>
</saml:Attribute>

</saml:AttributeStatement>

{
"saml_attr": "eduPersonAffiliation",
"remove": true,
"team_org_map": [
{

"team": "Blue",
"organization": "Default1"

},
{

"team": "Blue",
"organization": "Default2"

},
{

"team": "Blue",
"organization": "Default3"

},
{

"team": "Red",
"organization": "Default1"

},
{

"team": "Green",
"organization": "Default1"

},
{

"team": "Green",
"organization": "Default3"

}
]

(continues on next page)

17.2. SAML Authentication Settings 88

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

}

• saml_attr: The SAML attribute name where the team array can be found.

• remove: Set remove to True to remove user from all Teams before adding the user to the list of Teams. To
keep the user in whatever Team(s) they are in while adding the user to the Team(s) in the SAML attribute, set
remove to False.

• team_org_map: An array of dictionaries of the form { "team": "<AWX Team Name>",
"organization": "<AWX Org Name>" } that defines mapping from Tower Team -> Tower Orga-
nization. This is needed because the same named Team can exist in multiple Organizations in Tower. The
organization to which a team listed in a SAML attribute belongs to, would be ambiguous without this mapping.

13. Optionally provide team membership mapping in the SAML Team Attribute Mapping field. For further detail,
see Organization and Team Mapping.

14. Optionally provide security settings in the SAML Security Config field. This field is the equivalent to the
SOCIAL_AUTH_SAML_SECURITY_CONFIG field in the API. Refer to the OneLogin’s SAML Python Toolkit
for further detail.

Tower uses the python-social-auth library when users log in through SAML. This library relies on the
python-saml library to make available the settings for the next two optional fields, SAML Service Provider
Extra Configuration Data and SAML IDP to EXTRA_DATA Attribute Mapping.

15. The SAML Service Provider Extra Configuration Data field is equivalent to the
SOCIAL_AUTH_SAML_SP_EXTRA in the API. Refer to the python-saml library documentation to learn about
the valid service provider extra (SP_EXTRA) parameters.

16. The SAML IDP to EXTRA_DATA Attribute Mapping field is equivalent to the
SOCIAL_AUTH_SAML_EXTRA_DATA in the API. See Python’s SAML Advanced Settings documenta-
tion for more information.

17. Click Save when done.

18. To verify that the authentication was configured correctly, load the auto-generated URL found in the SAML
Service Provider Metadata URL into a browser. It should output XML output, otherwise, it is not configured
correctly.

Alternatively, logout of Ansible Tower and the login screen will now display the SAML logo to indicate it as a
alternate method of logging into Ansible Tower.

17.2. SAML Authentication Settings 89

https://github.com/onelogin/python-saml#settings
https://github.com/onelogin/python-saml#settings
http://python-social-auth-docs.readthedocs.io/en/latest/backends/saml.html#advanced-settings

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

17.3 RADIUS Authentication Settings

Note: RADIUS account authentication is a feature specific to Enterprise-level license holders.

Ansible Tower can be configured to centrally use RADIUS as a source for authentication information.

1. In the Ansible Tower User Interface, click the Settings () icon from the left navigation bar.

The Configure Tower window opens, displaying the Authentication tab initially by default.

2. In the Sub Category field, select Radius from the drop-down list.

17.3. RADIUS Authentication Settings 90

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

3. Enter the Host or IP of the Radius server in the Radius Server field. If this field is left blank, Radius authenti-
cation is disabled.

4. Enter the port and secret information in the next two fields.

5. Click Save when done.

17.4 TACACS+ Authentication Settings

Note: TACACS+ account authentication is a feature specific to Enterprise-level license holders.

Terminal Access Controller Access-Control System Plus (TACACS+) is a protocol that handles remote authentication
and related services for networked access control through a centralized server. In particular, TACACS+ provides
authentication, authorization and accounting (AAA) services, in which you can configure Ansible Tower to use as a
source for authentication.

1. In the Ansible Tower User Interface, click Configure Tower from the Settings () Menu screen.

The Authentication tab displays initially by default.

2. In the Sub Category field, select TACACs+ from the drop-down list.

3. Enter information in the following fields:

• TACACS+ Server: Provide the hostname or IP address of the TACACS+ server with which to authenticate. If
this field is left blank, TACACS+ authentication is disabled.

• TACACS+ Port: TACACS+ uses port 49 by default, which is already pre-populated.

• TACACS+ Secret: Secret key for TACACS+ authentication server.

17.4. TACACS+ Authentication Settings 91

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• TACACS+ Auth Session Timeout: Session timeout value in seconds. The default is 5 seconds.

• TACACS+ Authentication Protocol: The protocol used by TACACS+ client. Options are ascii or pap.

4. Click Save when done.

17.4. TACACS+ Authentication Settings 92

CHAPTER

EIGHTEEN

SETTING UP LDAP AUTHENTICATION

Note: LDAP authentication is a feature specific to Enterprise-level license holders. You must have an active enterprise
license before beginning the configuration process. Additionally, if the LDAP server you want to connect to has a
certificate that is self-signed or signed by a corporate internal certificate authority (CA), the CA certificate must be
added to the system’s trusted CAs. Otherwise, connection to the LDAP server will result in an error that the certificate
issuer is not recognized.

Administrators use LDAP as a source for account authentication information for Tower users. User authentication is
provided, but not the synchronization of user permissions and credentials. Organization membership (as well as the
organization admin) and team memberships can be synchronized.

When so configured, a user who logs in with an LDAP username and password automatically gets a Tower account
created for them and they can be automatically placed into organizations as either regular users or organization admin-
istrators.

Users created via an LDAP login cannot change their username, first name, last name, or set a local password for
themselves. This is also tunable to restrict editing of other field names.

To configure LDAP integration for Tower:

1. First, create a user in LDAP that has access to read the entire LDAP structure.

2. Test if you can make successful queries to the LDAP server, use the ldapsearch command, which is a
command line tool that can be installed on the tower system’s command line as well as on other Linux and OSX
systems. Use the following command to query the ldap server, where josie and Josie4Cloud are replaced by
attributes that work for your setup:

ldapsearch -x -H ldap://win -D "CN=josie,CN=Users,DC=website,DC=com" -b "dc=website,
↪→dc=com" -w Josie4Cloud

Here CN=josie,CN=users,DC=website,DC=com is the Distinguished Name of the connecting user.

Note: The ldapsearch utility is not automatically pre-installed with Ansible Tower, however, you can install it
from the openldap-clients package.

3. From the left navigation bar, click the Settings () icon.

The Authentication tab displays initially by default.

4. In the Sub Category field, select LDAP from the drop-down list.

93

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Note: Starting with Ansible Tower 3.3, you can configure multiple LDAP servers by specifying the server to configure
(otherwise, leave the server at Default):

The equivalent API endpoints will show AUTH_LDAP_* repeated: AUTH_LDAP_1_*, AUTH_LDAP_2_*, . . . ,
AUTH_LDAP_5_* to denote server designations.

5. Enter the LDAP server address to connect to in the LDAP Server URI field using the same format as the one
shown in the text field. Below is an example:

Note: If the LDAP server you want to connect to has a certificate that is self-signed or signed by a corporate internal
certificate authority (CA), the CA certificate must be added to the system’s trusted CAs. Otherwise, connection to the
LDAP server will result in an error that the certificate issuer is not recognized.

6. Enter the Distinguished Name in the LDAP Bind DN text field to specify the user that Tower uses to connect
(Bind) to the LDAP server. Below uses the example, CN=josie,CN=users,DC=website,DC=com:

94

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

7. Enter the password to use for the Binding user in the LDAP Bind Password text field. In this example, the
password is ‘passme’:

8. If that name is stored in key sAMAccountName, the LDAP User DN Template populates with
(sAMAccountName=%(user)s). Active Directory stores the username to sAMAccountName. Similarly,
for OpenLDAP, the key is uid–hence the line becomes (uid=%(user)s).

9. Click to select a group type from the LDAP Group Type drop-down menu list.

LDAP Group Types include:

• PosixGroupType

• GroupOfNamesType

• GroupOfUniqueNamesType

• ActiveDirectoryGroupType

• OrganizationalRoleGroupType

• MemberDNGroupType

• NISGroupType

• NestedGroupOfNamesType

• NestedGroupOfUniqueNamesType

• NestedActiveDirectoryGroupType

• NestedOrganizationalRoleGroupType

• NestedMemberDNGroupType

• PosixUIDGroupType

The LDAP Group Types that are supported by Tower leverage the underlying django-auth-ldap library.

Each LDAP Group Type can potentially take different parameters. Tower exposes
LDAP_GROUP_TYPE_PARAMS to account for this. LDAP_GROUP_TYPE_PARAMS is a dictionary,
which will be converted by Tower to kwargs and passed to the LDAP Group Type class selected. There
are two common parameters used by any of the LDAP Group Type; name_attr and member_attr.
Where name_attr defaults to cn and member_attr defaults to member:

{"name_attr": "cn", "member_attr": "member"}

To determine what parameters a specific LDAP Group Type expects. refer to the django_auth_ldap docu-
mentation around the classes init parameters.

95

https://django-auth-ldap.readthedocs.io/en/latest/groups.html#types-of-groups
https://django-auth-ldap.readthedocs.io/en/latest/reference.html#django_auth_ldap.config.LDAPGroupType

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

10. Enter the group distinguish name to allow users within that group to access Tower in the LDAP Require Group
field, using the same format as the one shown in the text field. In this example, use: CN=Tower Users,
OU=Users,DC=website,DC=com

11. Enter the group distinguish name to prevent users within that group to access Tower in the LDAP Deny Group
field, using the same format as the one shown in the text field. In this example, leave the field blank.

12. The LDAP Start TLS is disabled by default. To enable TLS when the LDAP connection is not using SSL, click
the toggle to ON.

13. Enter where to search for users while authenticating in the LDAP USER SEARCH field using the same format
as the one shown in the text field. In this example, use:

[
"OU=Users,DC=website,DC=com",
"SCOPE_SUBTREE",
"(cn=%(user)s)"
]

The first line specifies where to search for users in the LDAP tree. In the above example, the users are searched
recursively starting from DC=website,DC=com.

The second line specifies the scope where the users should be searched:

• SCOPE_BASE: This value is used to indicate searching only the entry at the base DN, resulting in only that
entry being returned

• SCOPE_ONELEVEL: This value is used to indicate searching all entries one level under the base DN - but not
including the base DN and not including any entries under that one level under the base DN.

• SCOPE_SUBTREE: This value is used to indicate searching of all entries at all levels under and including the
specified base DN.

The third line specifies the key name where the user name is stored.

96

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Note: For multiple search queries, the proper syntax is:

[
[
"OU=Users,DC=northamerica,DC=acme,DC=com",
"SCOPE_SUBTREE",
"(sAMAccountName=%(user)s)"
],
[
"OU=Users,DC=apac,DC=corp,DC=com",
"SCOPE_SUBTREE",
"(sAMAccountName=%(user)s)"
],
[
"OU=Users,DC=emea,DC=corp,DC=com",
"SCOPE_SUBTREE",
"(sAMAccountName=%(user)s)"
]

]

14. In the LDAP Group Search text field, specify which groups should be searched and how to search them. In
this example, use:

[
"dc=example,dc=com",
"SCOPE_SUBTREE",
"(objectClass=group)"
]

• The first line specifies the BASE DN where the groups should be searched.

• The second lines specifies the scope and is the same as that for the user directive.

• The third line specifies what the objectclass of a group object is in the LDAP you are using.

97

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

15. Enter the user attributes in the LDAP User Attribute Map the text field. In this example, use:

{
"first_name": "givenName",
"last_name": "sn",
"email": "mail"
}

The above example retrieves users by last name from the key sn. You can use the same LDAP query for the user to
figure out what keys they are stored under.

16. Enter the user profile flags in the LDAP User Flags by Group the text field. In this example, use the following
syntax to set LDAP users as “Superusers” and “Auditors”:

{
"is_superuser": "cn=superusers,ou=groups,dc=website,dc=com"
"is_system_auditor": "cn=auditors,ou=groups,dc=website,dc=com"
}

The above example retrieves users who are flagged as superusers or as auditor in their profile.

17. For details on completing the mapping fields, see LDAP Organization and Team Mapping.

18. Click Save when done.

With these values entered on this form, you can now make a successful authentication with LDAP.

98

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Note: Tower does not actively sync users, but they are created during their initial login.

18.1 Referrals

Active Directory uses “referrals” in case the queried object is not available in its database. It has been noted that this
does not work properly with the django LDAP client and, most of the time, it helps to disable referrals. Disable LDAP
referrals by adding the following lines to your /etc/tower/conf.d/custom.py file:

AUTH_LDAP_GLOBAL_OPTIONS = {
ldap.OPT_REFERRALS: False,

}

Note: “Referrals” are disabled by default in Ansible Tower version 2.4.3 and above. If you are running an earlier
version of Tower, you should consider adding this parameter to your configuration file.

For details on completing the mapping fields, see LDAP Organization and Team Mapping.

18.2 Enabling Logging for LDAP

To enable logging for LDAP, you must set the level to DEBUG in the LDAP configuration file, /etc/tower/conf.
d/custom.py:

LOGGING['handlers']['tower_warnings']['level'] = 'DEBUG'

18.3 LDAP Organization and Team Mapping

Next, you will need to control which users are placed into which Tower organizations based on LDAP attributes
(mapping out between your organization admins/users and LDAP groups).

Keys are organization names. Organizations will be created if not present. Values are dictionaries defining the options
for each organization’s membership. For each organization, it is possible to specify what groups are automatically
users of the organization and also what groups can administer the organization.

admins: None, True/False, string or list/tuple of strings.

• If None, organization admins will not be updated based on LDAP values.

• If True, all users in LDAP will automatically be added as admins of the organization.

• If False, no LDAP users will be automatically added as admins of the organiation.

• If a string or list of strings, specifies the group DN(s) that will be added of the organization if they match
any of the specified groups.

remove_admins: True/False. Defaults to False.

• When True, a user who is not an member of the given groups will be removed from the organization’s
administrative list.

18.1. Referrals 99

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

users: None, True/False, string or list/tuple of strings. Same rules apply as for admins.

remove_users: True/False. Defaults to False. Same rules apply as remove_admins.

{
"LDAP Organization": {

"admins": "cn=engineering_admins,ou=groups,dc=example,dc=com",
"remove_admins": false,
"users": [
"cn=engineering,ou=groups,dc=example,dc=com",
"cn=sales,ou=groups,dc=example,dc=com",
"cn=it,ou=groups,dc=example,dc=com"

],
"remove_users": false

},
"LDAP Organization 2": {

"admins": [
"cn=Administrators,cn=Builtin,dc=example,dc=com"

],
"remove_admins": false,
"users": true,
"remove_users": false

}
}

Mapping between team members (users) and LDAP groups. Keys are team names (will be created if not present).
Values are dictionaries of options for each team’s membership, where each can contain the following parameters:

organization: string. The name of the organization to which the team belongs. The team will be created if the
combination of organization and team name does not exist. The organization will first be created if it does not
exist.

users: None, True/False, string or list/tuple of strings.

• If None, team members will not be updated.

• If True/False, all LDAP users will be added/removed as team members.

• If a string or list of strings, specifies the group DN(s). User will be added as a team member if the user is a
member of ANY of these groups.

remove: True/False. Defaults to False. When True, a user who is not a member of the given groups will be removed
from the team.

{
"LDAP Engineering": {

"organization": "LDAP Organization",
"users": "cn=engineering,ou=groups,dc=example,dc=com",
"remove": true

},
"LDAP IT": {

"organization": "LDAP Organization",
"users": "cn=it,ou=groups,dc=example,dc=com",
"remove": true

},
"LDAP Sales": {

"organization": "LDAP Organization",
"users": "cn=sales,ou=groups,dc=example,dc=com",
"remove": true

(continues on next page)

18.3. LDAP Organization and Team Mapping 100

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

}
}

18.3. LDAP Organization and Team Mapping 101

CHAPTER

NINETEEN

CHANGING THE DEFAULT TIMEOUT FOR AUTHENTICATION

Introduced in Ansible Tower 2.4 is a feature which adds an Auth-Token-Timeout to every response that
includes a valid user-supplied token. This setting changed to Session-Timeout in Ansible Tower 3.3.
The value of Session-Timeout is determined by the configuration (time expressed in seconds) of the
SESSION_COOKIE_AGE.

The value of Session-Timeout indicates the length of time, in seconds, that the supplied token is valid, from the
moment the request was initiated. Starting in Ansible Tower 3.2, you can change this setting in the Configure Tower
user interface:

1. From the Settings () Menu screen, click on Configure Tower.

2. Select the System tab.

3. Select Misc. System option from the Sub Category drop-down menu list if not already selected.

4. Enter the timeout period in seconds in the Idle Time Force Log Out text field.

5. Click Save to apply your changes.

Note: The local_settings.json file is no longer used starting with Ansible Tower 3.2.

Note: If you are accessing Tower directly and are having trouble getting your authentication to stay, in that you have
to keep logging in over and over, try clearing your web browser’s cache. In situations like this, it is often found that
the authentication token has been cached in the browser session and must be cleared.

102

CHAPTER

TWENTY

USER AUTHENTICATION WITH KERBEROS

User authentication via Active Directory (AD), also referred to as authentication through Kerberos, is supported
through Ansible Tower.

To get started, first setup the Kerberos packages in the Tower system so that you can successfully generate a Kerberos
ticket. To install the packages, use the following steps:

yum install krb5-workstation
yum install krb5-devel
yum install krb5-libs

Once installed, edit the /etc/krb.conf file, as follows, to provide the address of the AD, the domain, etc.:

[logging]
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log

[libdefaults]
default_realm = WEBSITE.COM
dns_lookup_realm = false
dns_lookup_kdc = false
ticket_lifetime = 24h
renew_lifetime = 7d
forwardable = true

[realms]
WEBSITE.COM = {
kdc = WIN-SA2TXZOTVMV.website.com
admin_server = WIN-SA2TXZOTVMV.website.com

}

[domain_realm]
.website.com = WEBSITE.COM
website.com = WEBSITE.COM

After the configuration file has been updated, you should be able to successfully authenticate and get a valid token.
The following steps show how to authenticate and get a token:

[root@ip-172-31-26-180 ~]# kinit username
Password for username@WEBSITE.COM:
[root@ip-172-31-26-180 ~]#

Check if we got a valid ticket.

(continues on next page)

103

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

(continued from previous page)

[root@ip-172-31-26-180 ~]# klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: username@WEBSITE.COM

Valid starting Expires Service principal
01/25/16 11:42:56 01/25/16 21:42:53 krbtgt/WEBSITE.COM@WEBSITE.COM
renew until 02/01/16 11:42:56

[root@ip-172-31-26-180 ~]#

Once you have a valid ticket, you can check to ensure that everything is working as expected from command line. To
test this, make sure that your inventory looks like the following:

[windows]
win01.WEBSITE.COM

[windows:vars]
ansible_user = username@WEBSITE.COM
ansible_connection = winrm
ansible_port = 5986

You should also:

• Ensure that the hostname is the proper client hostname matching the entry in AD and is not the IP address.

• In the username declaration, ensure that the domain name (the text after @) is properly entered with regard to
upper- and lower-case letters, as Kerberos is case sensitive. For Tower, you should also ensure that the inventory
looks the same.

Note: If you encounter a Server not found in Kerberos database error message, and your inventory is
configured using FQDNs (not IP addresses), ensure that the service principal name is not missing or mis-configured.

Now, running a playbook should run as expected. You can test this by running the playbook as the awx user.

Once you have verified that playbooks work properly, integration with Tower is easy. Generate the Kerberos ticket as
the awx user and Tower should automatically pick up the generated ticket for authentication.

Note: The python kerberos package must be installed. Ansible is designed to check if kerberos package is
installed and, if so, it uses kerberos authentication.

20.1 AD and Kerberos Credentials

Active Directory only:

• If you are only planning to run playbooks against Windows machines with AD usernames and passwords as
machine credentials, you can use “user@<domain>” format for the username and an associated password.

With Kerberos:

• If Kerberos is installed, you can create a machine credential with the username and password, using the
“user@<domain>” format for the username.

20.1. AD and Kerberos Credentials 104

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

20.2 Working with Kerberos Tickets

Ansible defaults to automatically managing kerberos tickets (as of Ansible 2.3) when both the username and password
are specified in the machine credential for a host that is configured for kerberos. A new ticket is created in a temporary
credential cache for each host, before each task executes (to minimize the chance of ticket expiration). The temporary
credential caches are deleted after each task, and will not interfere with the default credential cache.

To disable automatic ticket management (e.g., to use an existing SSO ticket or call kinit manually to populate the
default credential cache), set ansible_winrm_kinit_mode=manual via the inventory.

Automatic ticket management requires a standard kinit binary on the control host system path. To specify a different
location or binary name, set the ansible_winrm_kinit_cmd inventory variable to the fully-qualified path to an
MIT krbv5 kinit-compatible binary.

20.2. Working with Kerberos Tickets 105

CHAPTER

TWENTYONE

WORKING WITH SESSION LIMITS

Setting a session limit allows administrators to limit the number of simultaneous sessions per user or per IP address.

In Ansible Tower, a session is created for each browser that a user uses to log in, which forces the user to log out any
extra sessions after they exceed the administrator-defined maximum.

Session limits may be important, depending on your particular setup. For example, perhaps you only want a single
user on your system with a single login per device (where the user could log in on his work laptop, phone, or home
computer). In such a case, you would want to create a session limit equal to 1 (one). If the user logs in on his laptop, for
example, then logs in using his phone, his laptop session expires (times out) and only the login on the phone persists.

While session counts can be very limited, they can also be expanded to cover as many session logins as are needed by
your organization.

When a user logs in and their login results in other users being logged out, the session limit has been reached and those
users who are logged out are notified as to why the logout occurred.

To make changes to your session limits, navigate to /etc/tower/conf.d and edit the sessions.py file or use
the Browsable API if you are comfortable with making REST requests. The settings you should change are detailed
below:

Seconds before auth tokens expire.
SESSION_COOKIE_AGE = 1800

Maximum number of per-user valid, concurrent tokens.
-1 is unlimited
SESSIONS_PER_USER = -1

Enable / Disable HTTP Basic Authentication used in the API browser
Note: Session limits are not enforced when using HTTP Basic Authentication.
AUTH_BASIC_ENABLED = True

Note: To make the best use of session limits, disable AUTH_BASIC_ENABLED by changing the value to False, as
it falls outside of the scope of session limit enforcement.

Caution: Proactive session limits will kick the user out when the session is idle. It is strongly recommended that
you do not set the session limit to anything less than 1 minute, as doing so will break your Ansible Tower instance.

106

http://docs.ansible.com/ansible-tower/3.3.0/html/towerapi/browseable.html#api-browsable-api

CHAPTER

TWENTYTWO

BACKING UP AND RESTORING TOWER

The ability to backup and restore your system(s) has been integrated into the Tower setup playbook. Refer to Backup
and Restore for Clustered Environments for additional considerations.

Note: When restoring, be sure to restore to the same version from which it was backed up. However, you should
always use the most recent minor version of a release to backup and/or restore your Tower installation version. For
example, if the current version of Tower that you are on is 3.0.0, 3.0.1, or 3.0.2, use only the 3.0.2 installer.

The Tower setup playbook is invoked as setup.sh from the path where you unpacked the Tower installer tarball. It
uses the same inventory file used by the install playbook. The setup script takes the following arguments for backing
up and restoring:

• -b Perform a database backup rather than an installation.

• -r Perform a database restore rather than an installation.

As the root user, call setup.sh with the appropriate parameters and Tower backup or restored as configured.

root@localhost:~# ./setup.sh -b

root@localhost:~# ./setup.sh -r

A default restore path is used unless EXTRA_VARS are provided with a non-default path, as shown in the example
below:

root@localhost:~# ./setup.sh -e 'restore_backup_file=/path/to/nondefault/backup.tar.gz
↪→' -r

Optionally, you can override the inventory file used by passing it as an argument to the setup script:

setup.sh -i <inventory file>

22.1 Backup/Restore Playbooks

In addition to the install.yml file included with your setup.sh setup playbook, there are also backup.yml
and restore.yml files for your backup and restoration needs.

These playbooks serve two functions–backup and restore.

• The overall backup will backup:

1. the database

107

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

2. the SECRET_KEY file

• The per-system backups include:

1. custom user config files

2. job stdout

3. manual projects

• The restore will restore the backed up files and data to a freshly installed and working second instance of Tower.

When restoring your system, Tower checks to see that the backup file exists before beginning the restoration. If the
backup file is not available, your restoration will fail.

Note: Ensure your Tower host(s) are properly set up with SSH keys or user/pass variables in the hosts file, and that
the user has sudo access.

22.2 Backup and Restoration Considerations

• Disk Space: Review your disk space requirements to ensure you have enough room to backup configuration
files, keys, and other relevant files, plus the database of the Tower installation.

• System Credentials: Confirm you have the system credentials you need when working with a local database or
a remote database. On local systems, you may need root or sudo access, depending on how credentials were
setup. On remote systems, you may need different credentials to grant you access to the remote system you are
trying to backup or restore.

• You should always use the most recent minor version of a release to backup and/or restore your Tower installa-
tion version. For example, if the current version of Tower that you are on is 3.0.0, 3.0.1, or 3.0.2, use only the
3.0.2 installer.

• When using setup.sh to do a restore from the default restore file path, /var/lib/awx, -r is still
required in order to do the restore, but it no longer accepts an argument. If a non-default restore file
path is needed, the user must provide this as an extra var (root@localhost:~# ./setup.sh -e
'restore_backup_file=/path/to/nondefault/backup.tar.gz' -r).

• If the backup file is placed in the same directory as the setup.sh installer, the restore playbook will automat-
ically locate the restore files. In this case, you do not need to use the restore_backup_file extra var to
specify the location of the backup file.

22.3 Backup and Restore for Clustered Environments

The procedure for backup and restore for a clustered environment is similar to a single install, except with some
considerations described in this section.

• If restoring to a new cluster, make sure the old cluster is shut down before proceeding because they could conflict
with each other when accessing the database.

• Per-node backups will only be restored to nodes bearing the same hostname as the backup.

When restoring to an existing cluster, the restore contains:

• Dump of the Postgres database

• UI artifacts (included in database dump)

22.2. Backup and Restoration Considerations 108

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• Tower configuration (retrieved from /etc/tower)

• Tower secret key

• Manual projects

• Job stdout

22.3.1 Restoring to a different cluster

When restoring a backup to a separate instance or cluster, host-specific configuration (including manual projects, job
output, and custom settings under /etc/tower) is not restored to any hosts in the new environment.

The restore process will not alter instance groups present before the restore (neither will it introduce any new instance
groups). Restored Tower resources that were associated to instance groups will likely need to be reassigned to instance
groups present on the new Tower cluster.

22.3. Backup and Restore for Clustered Environments 109

CHAPTER

TWENTYTHREE

USING CUSTOM LOGOS IN ANSIBLE TOWER

Note: Custom rebranding was added to Ansible Tower with version 2.4.0 and is available to Enterprise-level license
holders.

Ansible Tower supports the use of a custom logo. To set up a custom logo, navigate to Configure Tower in the
settings menu and upload it via the Custom Logo item. For the custom logo to look its best, use a .png file with a
transparent background. GIF, PNG, and JPEG formats are supported.

Selecting Revert will result in the appearance of the standard Ansible Tower logo.

If needed, you can add specific information (such as a legal notice or a disclaimer) to a text box in the login modal by
adding it to the Custom Login Info box on the same page.

For example, if you uploaded a specific logo, and added the following text:

"The mustard indicates progress."

The Tower login dialog would look like this:

110

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

111

CHAPTER

TWENTYFOUR

TROUBLESHOOTING TOWER

24.1 Error logs

Tower server errors are logged in /var/log/tower. Supervisors logs can be found in /var/log/
supervisor/. Nginx web server errors are logged in the httpd error log. Configure other Tower logging needs
in /etc/tower/conf.d/.

Explore client-side issues using the JavaScript console built into most browsers and report any errors to Ansible via
the Red Hat Customer portal at https://access.redhat.com/.

24.2 Problems connecting to your host

If you are unable to run the helloworld.yml example playbook from the Quick Start Guide or other playbooks
due to host connection errors, try the following:

• Can you ssh to your host? Ansible depends on SSH access to the servers you are managing.

• Are your hostnames and IPs correctly added in your inventory file? (Check for typos.)

24.3 WebSockets port for live events not working

Ansible Tower uses port 80/443 on the Tower server to stream live updates of playbook activity and other events to the
client browser. These ports are configured for 80/443 by default, but if they are blocked by firewalls, close any firewall
rules that opened up or added for the previous websocket ports, this will ensure your firewall allows traffic through
this port.

24.4 Problems running a playbook

If you are unable to run the helloworld.yml example playbook from the Quick Start Guide or other playbooks
due to playbook errors, try the following:

• Are you authenticating with the user currently running the commands? If not, check how the username has been
setup or pass the --user=username or -u username commands to specify a user.

• Is your YAML file correctly indented? You may need to line up your whitespace correctly. Indentation level is
significant in YAML. You can use yamlint to check your playbook. For more information, refer to the YAML
primer at: http://docs.ansible.com/YAMLSyntax.html

112

https://access.redhat.com/
http://docs.ansible.com/YAMLSyntax.html

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

• Items beginning with a - are considered list items or plays. Items with the format of key: value operate
as hashes or dictionaries. Ensure you don’t have extra or missing - plays.

24.5 Problems when running a job

If you are having trouble running a job from a playbook, you should review the playbook YAML file. When importing
a playbook, either manually or via a source control mechanism, keep in mind that the host definition is controlled by
Tower and should be set to hosts: all.

24.6 Playbooks aren’t showing up in the “Job Template” drop-down

If your playbooks are not showing up in the Job Template drop-down list, here are a few things you can check:

• Make sure that the playbook is valid YML and can be parsed by Ansible.

• Make sure the permissions and ownership of the project path (/var/lib/awx/projects) is set up so that the “awx”
system user can view the files. You can run this command to change the ownership:

chown awx -R /var/lib/awx/projects/

24.7 Playbook stays in pending

If you are attempting to run a playbook Job and it stays in the “Pending” state indefinitely, try the following:

• Ensure all supervisor services are running via supervisorctl status.

• Check to ensure that the /var/ partition has more than 1 GB of space available. Jobs will not complete with
insufficient space on the /var/ partition.

• Run ansible-tower-service restart on the Tower server.

If you continue to have problems, run sosreport as root on the Tower server, then file a support request with the
result.

24.8 Cancel a Tower job

When issuing a cancel request on a currently running Tower job, Tower issues a SIGINT to the
ansible-playbook process. While this causes Ansible to stop dispatching new tasks and exit, in many cases,
module tasks that were already dispatched to remote hosts will run to completion. This behavior is similar to pressing
Ctrl-C during a command-line Ansible run.

With respect to software dependencies, if a running job is canceled, the job is essentially removed but the dependencies
will remain.

24.5. Problems when running a job 113

http://support.ansible.com/

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

24.9 Reusing an external database causes installations to fail

Instances have been reported where reusing the external DB during subsequent installation of nodes installations
causes installation failures.

For example, say that you performed a clustered installation. Next, say that you needed to do this again and performed
a second clustered installation reusing the same external database, only this subsequent installation failed.

When setting up an external database which has been used in a prior installation, the database used for the clustered
node must be manually cleared before any additional installations can succeed.

24.9.1 Bubblewrap functionality and variables

The bubblewrap functionality in Ansible Tower limits which directories on the Tower file system are available for
playbooks to see and use during playbook runs. You may find that you need to customize your bubblewrap settings in
some cases. To fine tune your usage of bubblewrap, there are certain variables that can be set.

To disable or enable bubblewrap support for running jobs (playbook runs only), ensure you are logged in as the Admin
user:

1. Click the Settings () icon from the left navigation bar.

2. Click the “Jobs” tab.

3. Scroll down until you see “Enable Job Isolation” and change the toggle button selection to OFF to disable
bubblewrap support or select ON to enable it.

By default, the Tower will use the system’s tmp directory (/tmp by default) as its staging area. This can be changed
in the Job Isolation Execution Path field of the Configure tower screen, or by updating the following entry in the
settings file:

AWX_PROOT_BASE_PATH = "/opt/tmp"

If there is other information on the system that is sensitive and should be hidden, you can specify those in the Configure
Tower screen in the Paths to Hide to Isolated Jobs or by updating the following entry in the settings file:

AWX_PROOT_HIDE_PATHS = ['/list/of/', '/paths']

If there are any directories that should specifically be exposed, you can specify those in the Configure Tower screen in
the Paths to Expose to Isolated Jobs or by updating the following entry in the settings file:

AWX_PROOT_SHOW_PATHS = ['/list/of/', '/paths']

Note: The primary file you may want to add to AWX_PROOT_SHOW_PATHS is /var/lib/awx/.
ssh, if your playbooks need to use keys or settings defined there.

If you made changes in the settings file, be sure to restart services with the ansible-tower-service restart
command after your changes have been saved.

24.9. Reusing an external database causes installations to fail 114

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

24.10 Private EC2 VPC Instances in Tower Inventory

By default, Tower only shows instances in a VPC that have an Elastic IP (EIP) associated with them. To see all of your
VPC instances, perform the following steps:

1. In the Tower interface, select your inventory.

2. Click on the group that has the Source set to AWS, and click on the Source tab.

3. In the Source Variables box, enter:

vpc_destination_variable: private_ip_address

Next, save and then trigger an update of the group. Once this is done, you should be able to see all of your VPC
instances.

Note: Tower must be running inside the VPC with access to those instances if you want to configure them.

24.11 Troubleshooting “Error: provided hosts list is empty”

If you receive the message “Skipping: No Hosts Matched” when you are trying to run a playbook through Tower, here
are a few things to check:

• Make sure that your hosts declaration line in your playbook matches the name of your group/host in inventory
exactly (these are case sensitive).

• If it does match and you are using Ansible Core 2.0 or later, check your group names for spaces and modify
them to use underscores or no spaces to ensure that the groups can be recognized.

• Make sure that if you have specified a Limit in the Job Template that it is a valid limit value and still matches
something in your inventory. The Limit field takes a pattern argument, described here: http://docs.ansible.com/
intro_patterns.html

Please file a support ticket if you still run into issues after checking these options.

24.10. Private EC2 VPC Instances in Tower Inventory 115

http://docs.ansible.com/intro_patterns.html
http://docs.ansible.com/intro_patterns.html

CHAPTER

TWENTYFIVE

TOWER TIPS AND TRICKS

25.1 Using the Tower CLI Tool

Ansible Tower has a full-featured command line interface. It communicates with Tower via Tower’s REST API. You
can install it from any machine with access to your Tower machine, or on Tower itself.

Installation can be done using the pip command:

pip install ansible-tower-cli

Refer to Introduction to tower-cli and https://github.com/ansible/tower-cli/blob/master/README.rst for configuration
and usage instructions.

25.2 Launching a Job Template via the API

Ansible Tower makes it simple to launch a job based on a Job Template from Tower’s API or by using the tower-cli
command line tool.

Launching a Job Template also:

• Creates a Job Record

• Gives that Job Record all of the attributes on the Job Template, combined with certain data you can give in this
launch endpoint (“runtime” data)

• Runs Ansible with the combined data from the JT and runtime data

Runtime data takes precedence over the Job Template data, contingent on the ask_ _on_launch field on the
job template being set to True. For example, a runtime credential is only accepted if the Job Template has
ask_credential_on_launch set to True.

Launching from Job Templates via the API follows the following workflow:

• GET https://your.tower.server/api/v2/job_templates/<your job template id>/
launch/. The response will contain data such as job_template_data and defaults which give in-
formation about the job template.

• Inspect returned data for runtime data that is needed to launch. Inspecting the OPTIONS of the launch endpoint
may also help deduce what POST fields are allowed.

Warning: Providing certain runtime credentials could introduce the need for a password not
listed in passwords_needed_to_start.

116

https://github.com/ansible/tower-cli/blob/master/README.rst

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

– passwords_needed_to_start: List of passwords needed

– credential_needed_to_start: Boolean

– inventory_needed_to_start: Boolean

– variables_needed_to_start: List of fields that need to be passed inside of the
extra_vars dictionary

• Inspect returned data for optionally allowed runtime data that the user should be asked for.

– ask_variables_on_launch: Boolean specifying whether to prompt the user for additional variables
to pass to Ansible inside of extra_vars

– ask_tags_on_launch: Boolean specifying whether to prompt the user for job_tags on launch
(allow allows use of skip_tags for convienience)

– ask_job_type_on_launch: Boolean specifying whether to prompt the user for job_type on
launch

– ask_limit_on_launch: Boolean specifying whether to prompt the user for limit on launch

– ask_inventory_on_launch: Boolean specifying whether to prompt the user for the related field
inventory on launch

– ask_credential_on_launch: Boolean specifying whether to prompt the user for the related field
credential on launch

– survey_enabled: Boolean specifying whether to prompt the user for additional extra_vars, fol-
lowing the job template’s survey_spec Q&A format

• POST https://your.tower.server/api/v2/job_templates/<your job template
id>/launch/ with any required data gathered during the previous step(s). The variables that can be passed
in the request data for this action include the following.

– extra_vars: A string that represents a JSON or YAML formatted dictionary (with escaped parentheses)
which includes variables given by the user, including answers to survey questions

– job_tags: A string that represents a comma-separated list of tags in the playbook to run

– limit: A string that represents a comma-separated list of hosts or groups to operate on

– inventory: A integer value for the foreign key of an inventory to use in this job run

– credential: A integer value for the foreign key of a credential to use in this job run

The POST will return data about the job and information about whether the runtime data was accepted. The job id is
given in the job field to maintain compatibility with tools written before 3.0. The response will look similar to:

{
"ignored_fields": {
"credential": 2,
"job_tags": "setup,teardown"

}
"id": 4,
...more data about the job...
"job": 4,

}

In this example, values for credential and job_tags were given while the job template
ask_credential_on_launch and ask_tags_on_launch were False. These were rejected because
the job template author did not allow using runtime values for them.

25.2. Launching a Job Template via the API 117

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

You can see details about the job in this response. To get an updated status, you will need to do a GET request to the
job page, /jobs/4, or follow the url link in the response. You can also find related links to cancel, relaunch, and
so fourth.

Note: When querying a job on a non-execution node, an error message, stdout capture is missing
displays for the result_stdout field and on the related stdout page. In order to generate the stdout, use the
format=txt_download query parameter for the related stdout page. This generates the stdout file and any re-
freshes to either the job or the related std will display the job output.

Note: You cannot assign a new inventory at the time of launch to a scan job. Scan jobs must be tied to a fixed
inventory.

Note: You cannot change the Job Type at the time of launch to or from the type of “scan”. The
ask_job_type_on_launch option only enables you to toggle “run” versus “check” at launch time.

25.3 tower-cli Job Template Launching

From the Tower command line, you can use tower-cli as a method of launching your Job Templates.

For help with tower-cli launch, use:

tower-cli job launch --help.

For launching from a job template, invoke tower-cli in a way similar to:

For an example of how to use the API, you can also add the -v flag here:

tower-cli job launch --job-template=4 -v

25.4 Changing the Tower Admin Password

During the installation process, you are prompted to enter an administrator password which is used for the admin
superuser/first user created in Tower. If you log into the instance via SSH, it will tell you the default admin password
in the prompt. If you need to change this password at any point, run the following command as root on the Tower
server:

awx-manage changepassword admin

Next, enter a new password. After that, the password you have entered will work as the admin password in the web
UI.

25.3. tower-cli Job Template Launching 118

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

25.5 Creating a Tower Admin from the commandline

Once in a while you may find it helpful to create an admin (superuser) account from the commandline. To create an
admin, run the following command as root on the Tower server and enter in the admin information as prompted:

awx-manage createsuperuser

25.6 Setting up a jump host to use with Tower

Credentials supplied by Tower will not flow to the jump host via ProxyCommand. They are only used for the end-node
once the tunneled connection is set up.

To make this work, configure a fixed user/keyfile in the AWX user’s SSH config in the ProxyCommand definition that
sets up the connection through the jump host. For example:

Host tampa
Hostname 10.100.100.11
IdentityFile [privatekeyfile]

Host 10.100..
Proxycommand ssh -W [jumphostuser]@%h:%p tampa

Note: You must disable PRoot by default if you need to use a jump host. You can disable PRoot through the Configure
Tower user interface by setting the Enable Job Isolation toggle to OFF from the Jobs tab:

You can also add a jump host to your Tower instance through Inventory variables. These variables can be set at either
the inventory, group, or host level. To add this, navigate to your inventory and in the variables field of whichever
level you choose, add the following variables:

ansible_user: <user_name>
ansible_connection: ssh
ansible_ssh_common_args: '-o ProxyCommand="ssh -W %h:%p -q <user_name>@<jump_server_
↪→name>"'

25.5. Creating a Tower Admin from the commandline 119

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

25.7 View Ansible outputs for JSON commands when using Tower

When working with Ansible Tower, you can use the API to obtain the Ansible outputs for commands in JSON format.

To view the Ansible outputs, browse to:

https://<tower server name>/api/v2/jobs/<job_id>/job_events/

25.8 Locate and configure the Ansible configuration file

While Ansible does not require a configuration file, OS packages often include a default one in /etc/ansible/
ansible.cfg for possible customization. In order to use a custom ansible.cfg file, place it at the root of your
project. Ansible Tower runs ansible-playbook from the root of the project directory, where it will then find the
custom ansible.cfg file. An ansible.cfg anywhere else in the project will be ignored.

To learn which values you can use in this file, refer to the configuration file on github.

Using the defaults are acceptable for starting out, but know that you can configure the default module path or connec-
tion type here, as well as other things.

Tower overrides some ansible.cfg options. For example, Tower stores the SSH ControlMaster sockets, the SSH agent
socket, and any other per-job run items in a per-job temporary directory, secured by multi-tenancy access control
restrictions via PRoot.

25.9 View a listing of all ansible_ variables

Ansible by default gathers “facts” about the machines under its management, accessible in Playbooks and in templates.
To view all facts available about a machine, run the setup module as an ad hoc action:

ansible -m setup hostname

This prints out a dictionary of all facts available for that particular host. For more information, refer to: https://docs.
ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts

25.10 Using virtualenv with Ansible Tower

Ansible Tower 3.0 and later uses virtualenv. Virtualenv creates isolated Python environments to avoid problems caused
by conflicting dependencies and differing versions. Virtualenv works by simply creating a folder which contains all of
the necessary executables and dependencies for a specific version of Python. Ansible Tower creates two virtualenvs
during installation–one is used to run Tower, while the other is used to run Ansible. This allows Tower to run in a
stable environment, while allowing you to add or update modules to your Ansible Python environment as necessary
to run your playbooks. For more information on virtualenv, see the Python Guide to Virtual Environments and the
Python virtualenv project itself.

By default, the virtualenv is located at /var/lib/awx/venv/ansible on the file system.

Tower also pre-installs a variety of third-party library/SDK support into this virtualenv for its integration points with
a variety of cloud providers (such as EC2, OpenStack, Azure, etc.) Periodically, you may want to add additional SDK
support into this virtualenv, which is described in further detail below.

25.7. View Ansible outputs for JSON commands when using Tower 120

https://github.com/ansible/ansible/blob/devel/examples/ansible.cfg
https://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
https://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
http://docs.python-guide.org/en/latest/dev/virtualenvs/#virtual-environments

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Note: It is highly recommended that you run umask 0022 before installing any packages to the virtual environment.
Failure to properly configure permissions can result in Tower service failures. An example follows:

source /var/lib/awx/venv/ansible/bin/activate
umask 0022
pip install --upgrade pywinrm
deactivate

In addition to adding modules to the virtualenv that Tower uses to run Ansible, you can create new virtualenvs as
described below.

25.10.1 Preparing a new custom virtualenv

Tower allows a different virtualenv to be specified and used on Job Template runs. To choose a custom virtualenv, first
create one under /var/lib/awx/venv/:

$ sudo virtualenv /var/lib/awx/venv/my-custom-venv

Your newly created virtualenv needs a few base dependencies to properly run playbooks (Tower uses memcached as a
placeholder for playbook artifacts):

$ sudo /var/lib/awx/venv/my-custom-venv/bin/pip install python-memcached psutil

From here, you can install additional Python dependencies that you care about, such as a per-virtualenv version of
Ansible itself:

$ sudo /var/lib/awx/venv/my-custom-venv/bin/pip install -U "ansible == X.Y.Z"

Or you can add an additional third-party SDK that is not included with the base Tower installation:

$ sudo /var/lib/awx/venv/my-custom-venv/bin/pip install -U python-digitalocean

If you want to copy them, the libraries included in Tower’s default virtualenv can be found using pip freeze:

$ sudo /var/lib/awx/venv/ansible/bin/pip freeze

In a clustered Tower installation, you need to ensure that the same custom virtualenv exists on every local file system at
/var/lib/awx/venv/. Custom virtualenvs are supported on isolated instances. If you are using a custom virtual
environment, it needs to also be copied or replicated on any isolated node you would be using, not just on the Tower
node.

25.10.2 Assigning custom virtualenvs

Once you have created a custom virtualenv, you can assign it at the Organization, Project, or Job Template level:

PATCH https://awx-host.example.org/api/v2/organizations/N/
PATCH https://awx-host.example.org/api/v2/projects/N/
PATCH https://awx-host.example.org/api/v2/job_templates/N/

Content-Type: application/json
{

'custom_virtualenv': '/var/lib/awx/venv/my-custom-venv'
}

25.10. Using virtualenv with Ansible Tower 121

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

An HTTP GET request to /api/v2/config/ provides a list of detected installed virtualenvs:

{
"custom_virtualenvs": [

"/var/lib/awx/venv/my-custom-venv",
"/var/lib/awx/venv/my-other-custom-venv",

],
...
}

You can also specify the virtual environment to assign to an Organization, Project, and Job Template from their
respective edit screens in the Ansible Tower User Interface. Select the virtualenv from the Ansible Environment
drop-down menu, as shown in the example below:

25.11 Configuring the towerhost hostname for notifications

In /etc/tower/settings.py, you can modify TOWER_URL_BASE='https://tower.example.com'
to change the notification hostname, replacing https://tower.example.com with your preferred hostname.
You must restart Tower services after saving your changes with ansible-tower-service restart.

Refreshing your Tower license also changes the notification hostname. New installations of Ansible Tower 3.0 should
not have to set the hostname for notifications.

25.12 Launching Jobs with curl

Note: Tower now offers a full-featured command line interface called tower-cli which may be of interest to you if
you are considering using curl.

This method works with Tower versions 2.1.x and newer.

Launching jobs with the Tower API is simple. Here are some easy to follow examples using the curl tool.

Assuming that your Job Template ID is ‘1’, your Tower IP is 192.168.42.100, and that admin and awxsecret are
valid login credentials, you can create a new job this way:

25.11. Configuring the towerhost hostname for notifications 122

http://docs.ansible.com/ansible-tower/3.3.0/html/towerapi/tower_cli.html#api-towercli

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

curl -f -k -H 'Content-Type: application/json' -XPOST \
--user admin:awxsecret \
http://192.168.42.100/api/v2/job_templates/1/launch/

This returns a JSON object that you can parse and use to extract the ‘id’ field, which is the ID of the newly created job.

You can also pass extra variables to the Job Template call, such as is shown in the following example:

curl -f -k -H 'Content-Type: application/json' -XPOST \
-d '{"extra_vars": "{\"foo\": \"bar\"}"}' \
--user admin:awxsecret http://192.168.42.100/api/v2/job_templates/1/launch/

You can view the live API documentation by logging into http://192.168.42.100/api/ and browsing around to the
various objects available.

Note: The extra_vars parameter needs to be a string which contains JSON, not just a JSON dictionary, as you
might expect. Use caution when escaping the quotes, etc.

25.13 Dynamic Inventory and private IP addresses

By default, Tower only shows instances in a VPC that have an Elastic IP (EIP) address associated with them. To view
all of your VPC instances, perform the following steps:

• In the Tower interface, select your inventory.

• Click on the group that has the Source set to AWS, and click on the Source tab.

• In the “Source Variables” box, enter: vpc_destination_variable: private_ip_address

Save and trigger an update of the group. You should now be able to see all of your VPC instances.

Note: Tower must be running inside the VPC with access to those instances in order to usefully configure them.

25.14 Filtering instances returned by the dynamic inventory sources
in Tower

By default, the dynamic inventory sources in Tower (AWS, Rackspace, etc) return all instances available to the cloud
credentials being used. They are automatically joined into groups based on various attributes. For example, AWS
instances are grouped by region, by tag name and value, by security groups, etc. To target specific instances in your
environment, write your playbooks so that they target the generated group names. For example:

- hosts: tag_Name_webserver

tasks:
...

You can also use the Limit field in the Job Template settings to limit a playbook run to a certain group, groups, hosts,
or a combination thereof. The syntax is the same as the --limit parameter on the ansible-playbook command
line.

25.13. Dynamic Inventory and private IP addresses 123

http://192.168.42.100/api/

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

You may also create your own groups by copying the auto-generated groups into your custom groups. Make sure
that the Overwrite option is disabled on your dynamic inventory source, otherwise subsequent synchronization
operations will delete and replace your custom groups.

25.15 Using an unreleased module from Ansible source with Tower

If there is a feature that is available in the latest Ansible core branch that you would like to leverage with your Tower
system, making use of it in Tower is fairly simple.

First, determine which is the updated module you want to use from the available Ansible Core Modules or Ansible
Extra Modules GitHub repositories.

Next, create a new directory, at the same directory level of your Ansible source playbooks, named /library.

Once this is created, copy the module you want to use and drop it into the /library directory–it will be consumed
first over your system modules and can be removed once you have updated the the stable version via your normal
package manager.

25.16 Using callback plugins with Tower

Ansible has a flexible method of handling actions during playbook runs, called callback plugins. You can use these
plugins with Tower to do things like notify services upon playbook runs or failures, send emails after every playbook
run, etc. For official documentation on the callback plugin architecture, refer to: http://docs.ansible.com/developing_
plugins.html#callbacks

Note: Ansible Tower does not support the stdout callback plugin because Ansible only allows one, and it is already
being used by Ansible Tower for streaming event data.

You may also want to review some example plugins, which should be modified for site-specific purposes, such as those
available at: https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/callback

To use these plugins, put the callback plugin .py file into a directory called /callback_plugins alongside your
playbook in your Tower Project.

To make callbacks apply to every playbook, independent of any projects, put the plugins .py file in one of the
following directories (depending on your particular Linux distribution and method of Ansible installation):

* /usr/lib/pymodules/python2.7/ansible/callback_plugins

* /usr/local/lib/python2.7/dist-packages/ansible/callback_plugins

* /usr/lib/python2.6/site-packages/ansible/callback_plugins

Note: To have most callbacks shipped with Ansible applied globally, you must add them to the
callback_whitelist section of your ansible.cfg.

25.15. Using an unreleased module from Ansible source with Tower 124

http://docs.ansible.com/developing_plugins.html#callbacks
http://docs.ansible.com/developing_plugins.html#callbacks
https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/callback

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

25.17 Connecting to Windows with winrm

By default Tower attempts to ssh to hosts. You must add the winrm connection info to the group variables to which
the Windows hosts belong. To get started, edit the Windows group in which the hosts reside and place the variables in
the source/edit screen for the group.

To add winrm connection info:

Edit the properties for the selected group by clicking on the button to the right of the group name that contains the
Windows servers. In the “variables” section, add your connection information as such: ansible_connection:
winrm

Once done, save your edits. If Ansible was previously attempting an SSH connection and failed, you should re-run the
job template.

25.18 Importing existing inventory files and host/group vars into
Tower

To import an existing static inventory and the accompanying host and group vars into Tower, your inventory should be
in a structure that looks similar to the following:

inventory/
|-- group_vars
| `-- mygroup
|-- host_vars
| `-- myhost
`-- hosts

To import these hosts and vars, run the awx-manage command:

awx-manage inventory_import --source=inventory/ \
--inventory-name="My Tower Inventory"

If you only have a single flat file of inventory, a file called ansible-hosts, for example, import it like the following:

awx-manage inventory_import --source=./ansible-hosts \
--inventory-name="My Tower Inventory"

In case of conflicts or to overwrite an inventory named “My Tower Inventory”, run:

awx-manage inventory_import --source=inventory/ \
--inventory-name="My Tower Inventory" \
--overwrite --overwrite-vars

If you receive an error, such as:

ValueError: need more than 1 value to unpack

Create a directory to hold the hosts file, as well as the group_vars:

mkdir -p inventory-directory/group_vars

Then, for each of the groups that have :vars listed, create a file called inventory-directory/group_vars/
<groupname> and format the variables in YAML format.

25.17. Connecting to Windows with winrm 125

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Once broken out, the importer will handle the conversion correctly.

25.18. Importing existing inventory files and host/group vars into Tower 126

CHAPTER

TWENTYSIX

INTRODUCTION TO TOWER-CLI

tower-cli is a command line tool for Ansible Tower. It allows Tower commands to be easily run from the UNIX
command line. It can also be used as a client library for other python apps, or as a reference for others developing API
interactions with Tower’s REST API.

Note: The tower-cli software is an open source project currently under development and, until a complete
implementation occurs, only implements a subset of Tower’s features.

26.1 License

While Tower is commercially licensed software, tower-cli is an open source project. Specifically, this project is
licensed under the Apache 2.0 license. Pull requests, contributions, and tickets filed in GitHub are warmly welcomed.

26.2 Capabilities

tower-cli sends commands to the Tower API. It is capable of retrieving, creating, modifying, and deleting most
objects within Tower.

A few potential uses include:

• Launching playbook runs (for instance, from Jenkins, TeamCity, Bamboo, etc)

• Checking on job statuses

• Rapidly creating objects like organizations, users, teams, and more

26.3 Installation

tower-cli is available as a package on PyPI.

The preferred way to install is through pip:

$ pip install ansible-tower-cli

The main branch of this project may also be consumed directly from source.

For more information on tower-cli, refer to the project page at: https://github.com/ansible/tower-cli/

127

https://pypi.python.org/pypi/ansible-tower-cli
https://github.com/ansible/tower-cli/

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

26.4 Configuration

tower-cli can edit its own configuration or users can directly edit the configuration file, allowing configuration to
be set in multiple ways.

26.4.1 Set configuration with tower-cli config

The preferred way to set configuration is with the tower-cli config command.

$ tower-cli config key value

By issuing the tower-cli config command without arguments, you can view a full list of configuration options
and where they are set. The default behavior allows environment variables to override your tower-cli.cfg settings,
but they will not override configuration values that are passed in on the command line at runtime. The available
environment variables and their corresponding Tower configuration keys are as follows:

• TOWER_COLOR: color

• TOWER_FORMAT: format

• TOWER_HOST: host

• TOWER_PASSWORD: password

• TOWER_USERNAME: username

• TOWER_VERIFY_SSL: verify_ssl

• TOWER_VERBOSE: verbose

• TOWER_DESCRIPTION_ON: description_on

• TOWER_CERTIFICATE: certificate

You will generally need to set at least three configuration options–host, username, and password–which correspond to
the location of your Ansible Tower instance and your credentials to authenticate to Tower.

$ tower-cli config host tower.example.com
$ tower-cli config username leeroyjenkins
$ tower-cli config password myPassw0rd

26.4.2 Write to the config files directly

The configuration file can also be edited directly. A configuration file is a simple file with keys and values, separated
by : or =:

host: tower.example.com
username: admin
password: p4ssw0rd

26.4. Configuration 128

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

26.4.3 File Locations

The order of precedence for configuration file locations is as follows, from least to greatest:

• internal defaults

• /etc/tower/tower_cli.cfg (written using tower-cli config --global)

• ~/.tower_cli.cfg (written using tower-cli config)

• run-time parameters

26.4.4 Usage

tower-cli invocation generally follows this format:

$ tower-cli {resource} {action} ...

The resource is a type of object within Tower (a noun), such as user, organization, job_template, etc.;
resource names are always singular in Tower CLI (use tower-cli user, never tower-cli users).

The action is the thing you want to do (a verb). Most tower-cli resources have the following actions–get, list,
create, modify, and delete–and have options corresponding to fields on the object in Tower.

Examples of actions and resources include (but are not limited to):

User Actions

List all users.
$ tower-cli user list

List all non-superusers
$ tower-cli user list --is-superuser=false

Get the user with the ID of 42.
$ tower-cli user get 42

Get the user with the given username.
$ tower-cli user get --username=guido

Create a new user.
$ tower-cli user create --username=guido --first-name=Guido \

--last-name="Van Rossum" --email=guido@python.org

Modify an existing user.
This would modify the first name of the user with the ID of "42" to "Guido".
$ tower-cli user modify 42 --first-name=Guido

Modify an existing user, lookup by username.
This would use "username" as the lookup, and modify the first name.
Which fields are used as lookups vary by resource, but are generally
the resource's name.
$ tower-cli user modify --username=guido --first-name=Guido

Delete a user.
$ tower-cli user delete 42

26.4. Configuration 129

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Job Actions

Launch a job.
$ tower-cli job launch --job-template=144

Monitor a job.
$ tower-cli job monitor 95

Group Actions

Get a list of groups.
$ tower-cli group list

Sync a group by the groupID.
$ tower-cli group sync $groupID

When in doubt, check the help for more options:

$ tower-cli # help
$ tower-cli user --help # resource specific help
$ tower-cli user create --help # command specific help

Workflow Actions

Starting with Tower 3.1.0 and Tower-CLI 3.1.0, workflow networks can be managed from Tower-CLI either by normal
CRUD actions or by using a YAML file that defines the workflow network.

Print out the schema for a workflow
$ tower-cli workflow schema workflow_name

Create the network defined in file "schema.yml"
$ tower-cli workflow schema workflow_name @schema.yml

The following is an example of what a schema might look like.

- job_template: Hello world
failure:
- inventory_source: AWS servers (AWS servers - 42)
success:
- project: Ansible Examples
always:
- job_template: Echo variable

success:
- job_template: Scan localhost

For more details, see the tower-cli workflow doc at https://github.com/ansible/tower-cli/blob/master/docs/
WORKFLOWS.md

26.4. Configuration 130

https://github.com/ansible/tower-cli/blob/master/docs/WORKFLOWS.md
https://github.com/ansible/tower-cli/blob/master/docs/WORKFLOWS.md

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

26.4.5 Specify extra variables

There are a number of ways to pass extra variables to the Tower server when launching a job:

• Pass data in a file using the flag --extra-vars="@filename.yml"

• Include yaml data at runtime with the flag --extra-vars="var: value"

• A command line editor automatically pops up when the job template is marked to prompt on launch

• If the job template has extra variables, these are not over-ridden

These methods can also be combined. For instance, if you give the flag multiple times on the command line, specifying
a file in addition to manually giving extra variables, these two sources are combined and sent to the Tower server.

Launch a job with extra variables from filename.yml, and also a=5
$ tower-cli job launch --job-template=1 --extra-vars="a=5 b=3" \

--extra-vars="@filename.yml"

Create a job template with that same set of extra variables
$ tower-cli job_template create --name=test_job_template --project=1 \

--inventory=1 --playbook=helloworld.yml \
--machine-credential=1 --extra-vars="a=5 b=3" \
--extra-vars="@filename.yml"

You may not combine multiple sources when modifying a job template. Whitespace can be used in strings like
--extra-vars="a='white space'", and list-valued parameters can be sent as JSON or YAML, but not
key=value pairs. For instance, --extra-vars="a: [1, 2, 3, 4, 5]" sends the parameter "a" with
that list as its value.

Note: Additional strict extra_vars validation was added in Ansible Tower 3.0.0. extra_vars passed to the job
launch API are only honored if one of the following is true:

• They correspond to variables in an enabled survey

• ask_variables_on_launch is set to True

26.4.6 SSL warnings

By default, tower-cli raises an error if the SSL certificate of the Tower server cannot be verified. To allow unverified
SSL connections, set the config variable, verify_ssl = false. To allow it for a single command to override
verify_ssl if set to true, add the --insecure flag:

Disable insecure connection warnings permanently
$ tower-cli config verify_ssl false

Disable insecure connection warnings for just this command
$ tower-cli job_template list --insecure

26.4. Configuration 131

CHAPTER

TWENTYSEVEN

USABILITY ANALYTICS AND DATA COLLECTION

In Ansible Tower version 2.4.0, a behind the scenes functionality was added to Tower to collect usability data. This
software was introduced to better understand how Tower users specifically interact with Tower, to help enhance future
releases, and to continue streamlining your user experience.

Only users installing a trial of Tower or a fresh installation of Tower are opted-in for this data collection.

If you want to change how you participate in this analytics collection, you can opt out or change your settings using
the Configure Tower user interface.

Ansible Tower collects user data automatically to help improve the Tower product. You can control the way Tower
collects data by setting your participation level in the User Interface tab.

1. Click the Settings () icon from the left navigation bar.

2. Select the User Interface tab.

3. Select the desired level of data collection from the Analytics Tracking State drop-down list:

• Off: Prevents any data collection.

• Anonymous: Enables data collection without your specific user data.

• Detailed: Enables data collection including your specific user data.

4. Click Save to apply the settings or Cancel to abandon the changes.

Note: This setting was previously configured via PENDO, which is no longer supported.

132

CHAPTER

TWENTYEIGHT

POSTFACE

Through community efforts, rigorous testing, dedicated engineers, enterprising sales teams, imaginative marketing,
and outstanding professional services and support teams, the growing but always impressive group of individuals that
make the Ansible-branded products can feel proud in saying:

Ansible, Ansible Tower, Tower CLI, and Ansible Galaxy are all, as Doge would say, “much approved.”1

1 http://knowyourmeme.com/memes/doge

133

http://knowyourmeme.com/memes/doge

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

134

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

Josie Tested - Doge Approved.

135

CHAPTER

TWENTYNINE

INDEX

• genindex

136

CHAPTER

THIRTY

COPYRIGHT © 2018 RED HAT, INC.

Ansible, Ansible Tower, Red Hat, and Red Hat Enterprise Linux are trademarks of Red Hat, Inc., registered in the
United States and other countries.

If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide
a link to the original version.

Third Party Rights

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Rackspace trademarks, service marks, logos and domain names are either common-law trademarks/service marks or
registered trademarks/service marks of Rackspace US, Inc., or its subsidiaries, and are protected by trademark and
other laws in the United States and other countries.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

137

INDEX

Symbols
: API

launching a Job Template, 116

A
Active Directory (AD)

Kerberos, 103
activity stream cleanup management

job, 15
admin creation

commandline, 119
tips, 119

admin password
changing password, 118

admin password change
tips, 118

admin utility script, 4
analytics collection, 55, 132
Ansible configuration file, 120
Ansible modules, unreleased

tips, 124
Ansible output for JSON commands, 120
Ansible, executing in a virtual

enviroment, 120
ansible.cfg, 120

tips, 120
ansible_variables, viewing all

tips, 120
ansible-tower script replacement, 4
API

configure, 23
assignment

credentials, 10
AUTH_BASIC_ENABLED

session limits, 106
authentication, 51, 60, 70, 80

Azure AD, 80
basic auth, 71
configuration, 51
Github OAuth2, 72
Github Org, 74
Github Team, 76

Google OAuth2, 71
LDAP, 93, 99
LDAP mapping, 99
LDAP team mapping, 99
organization mapping, 77, 99
RADIUS Authentication Settings, 90
SAML Service Provider, 82
TACACS+ Authentication Settings, 91
team mapping, 77, 99

authentication expiring, 102
authentication timeout

changing the default, 102
troubleshooting, 102

authentication token, 102
awx-manage

change password, 118
high availability management, 50
inventory import, 49
super user creation, 119

awx-manage, data cleanup, 50
Azure AD

authentication, 80

B
backups, 107

considerations, 108
playbooks, 107

basic auth
authentication, 71

best practices, 116
bubblewrap

functionality, 59, 114
troubleshooting, 59, 114
variables, 59, 114

C
callback plugins

tips, 124
Centos

clustering, 20
change password

awx-manage, 118

138

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

changing password
admin password, 118

changing the default
authentication timeout, 102

cleaning old data, 15
cleanup activity stream

management jobs, 15
cleanup job history

management jobs, 19
cluster

configure, 23
deprovisioning, 31

clustering
backup, 108
Centos, 20
instance group policies, 24
isolated instance groups, 25
operating systems, 20
pinning, 25
Postgresql, 21
RabbitMQ, 21
redundancy, 20
restore, 108
RHEL, 20
setup considerations, 21
SSH authentication, 27
Ubuntu, 20

command line interface
tips, 116
Tower CLI, 116

commandline
admin creation, 119

components
licenses, 3

configuration
authentication, 51
custom login message, 55
custom logo, 55
data collection, 55
jobs, 52
OpenShift, 32
system, 53
UI, 55

configuration file configuration
tips, 120

configuration file location
tips, 120

configure
API, 23
cluster, 23

configure Tower, 51
credentials, 10

assignment, 10
multi, 10

curl
tips, 122

custom
login message, 55
logo, 55, 110

custom inventory scripts, 5
custom login message

configuration, 55
custom logo, 110

configuration, 55

D
data collection, 55, 132

configuration, 55
DEB files

licenses, 3
deployment

OpenShift, 32
dynamic inventory and instance

filtering
tips, 123

dynamic inventory and private IPs
tips, 123

E
EC2

VPC instances, 115
EC2 VPC instances

tips, 123
troubleshooting, 115

Elastic stack
logging, 42

ELK stack
logging, 42

enterprise authentication, 51, 80
error logs

troubleshooting, 112
evaluation, 2
external database

installation failure, 114

F
features, 1
filtering instances

tips, 123
functionality

bubblewrap, 59, 114

G
general help

troubleshooting, 112
Github OAuth2

authentication, 72
Github Org

Index 139

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

authentication, 74
Github Team

authentication, 76
Google OAuth2

authentication, 71
groups

deprovisioning, 31

H
help, 112, 116
host connections

troubleshooting, 112
host/group vars import

tips, 125
hostname configuration

notifications, 122
hosts list

troubleshooting, 115
hosts lists (empty), 115

I
import

license, 56
importing host/group vars

importing inventory, 125
importing inventory

importing host/group vars, 125
init script replacement, 4
installation bundle

licenses, 3
installation failure

external database, 114
installation wizard

playbook backup/restore arguments,
107

instance filtering
tips, 123

instance group policies
clustering, 24

instance groups
isolated, 25
pinning, 25
policies, 24
redundancy, 20

inventory file importing, 8
inventory import

tips, 125
inventory scripts

custom, 5, 8
writing, 7

isolated
instance groups, 25

isolated instance groups
clustering, 25

J
job cancellation

troubleshooting, 113
job does not run

troubleshooting, 113
job history cleanup management job, 19
Job Template drop-down list

playbooks are not viewable, 113
jobs, 52

configuration, 52
JSON commands, Ansible output, 120
jump host

ProxyCommand, 119
tips, 119

K
Kerberos

Active Directory (AD), 103
user authentication, 103

L
launching a Job Template

: API, 116
LDAP, 93, 99

authentication, 93, 99
referrals, 99

LDAP mapping, 99
authentication, 99

LDAP referrals
troubleshooting, 99

LDAP team mapping
authentication, 99

license, 1, 2
import, 56
nodes, 3
trial, 2
types, 2
UI, 56

license features, 1
licenses

components, 3
DEB files, 3
installation bundle, 3
RPM files, 3

live events
port changes, 112
troubleshooting, 112

log, 102
logfiles, 41
logging, 42

Elastic stack, 42
ELK stack, 42
loggly, 42
logstash, 42

Index 140

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

schema, 42
splunk, 42
sumologic, 42

loggly
logging, 42

login message
custom, 55

login timeout, 102
logo

custom, 55, 110
logstash

logging, 42

M
management jobs, 15

cleanup activity stream, 15
cleanup job history, 19

modules, using unreleased
tips, 124

multi
credentials, 10

N
no proxy

proxy support, 38
notifications

hostname configuration, 122

O
OpenShift

configuration, 32
deployment, 32

organization mapping, 77, 99
authentication, 77, 99

P
pending playbook

troubleshooting, 113
Pendo, 55, 132
PENDO_TRACKING_STATE, 55, 132
pinning

clustering, 25
instance groups, 25

playbook setup
backup/restore arguments, 107

playbooks are not viewable
Job Template drop-down list, 113

playbooks not appearing
troubleshooting, 113

plugins, callback
tips, 124

policies
instance groups, 24

port changes

live events, 112
postface, 133
Postgresql

clustering, 21
private IPs with dynamic inventory

tips, 123
PRoot

troubleshooting, 113
proxy support, 38

no proxy, 38
reverse proxy, 40

ProxyCommand
jump host, 119
tips, 119

R
RabbitMQ

clustering, 21
RADIUS Authentication Settings

authentication, 90
rebranding, 110
redundancy

clustering, 20
instance groups, 20

referrals
LDAP, 99

removing old data, 15
restart Tower, 4
restorations, 107

considerations, 108
playbooks, 107

restore
clustering, 108

reverse proxy, 40
proxy support, 40

RHEL
clustering, 20

RPM files
licenses, 3

S
SAML Service Provider

authentication, 82
schema

logging, 42
scripts, admin utility, 4
session

timeout, 102
session limits, 106

AUTH_BASIC_ENABLED, 106
SESSIONS_PER_USER, 106

session.py, 106
SESSIONS_PER_USER

session limits, 106

Index 141

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

social authentication, 51, 70
splunk

logging, 42
SSH

authentication, 27
SSH authentication

clustering, 27
start Tower, 4
stop Tower, 4
sumologic

logging, 42
super user creation

awx-manage, 119
support, 1, 2
system

configuration, 53

T
TACACS+ Authentication Settings

authentication, 91
team mapping, 77, 99

authentication, 77, 99
timeout

session, 102
timeout login, 102
tips, 116

admin creation, 119
admin password change, 118
Ansible modules, unreleased, 124
ansible.cfg, 120
ansible_variables, viewing all, 120
callback plugins, 124
command line interface, 116
configuration file configuration,

120
configuration file location, 120
curl, 122
dynamic inventory and instance

filtering, 123
dynamic inventory and private IPs,

123
EC2 VPC instances, 123
filtering instances, 123
host/group vars import, 125
instance filtering, 123
inventory import, 125
jump host, 119
modules, using unreleased, 124
plugins, callback, 124
private IPs with dynamic inventory,

123
ProxyCommand, 119
Tower CLI, 116
unreleased modules, 124

Windows connection, 125
winrm, 125

token-based authentication, 60
tools

tower-cli, 127
Tower admin utility script, 4
Tower CLI

command line interface, 116
tips, 116

tower-cli, 127
capabilities, 127
installation, 127

tower-manage, 49
trial, 2
troubleshooting, 112

authentication timeout, 102
bubblewrap, 59, 114
EC2 VPC instances, 115
error logs, 112
general help, 112
host connections, 112
hosts list, 115
job cancellation, 113
job does not run, 113
LDAP referrals, 99
live events, 112
pending playbook, 113
playbooks not appearing, 113
PRoot, 113
websockets, 112

U
Ubuntu

clustering, 20
UI

configuration, 55
license, 56

unreleased modules
tips, 124

updates, 2
usability data collection, 55, 132
user authentication

Kerberos, 103
user data tracking, 55, 132

V
variables

bubblewrap, 59, 114
virtual enviroment, 120
VPC instances

EC2, 115

W
websockets

Index 142

Ansible Tower Administration Guide, Release Ansible Tower 3.3.0

troubleshooting, 112
Windows connection

tips, 125
winrm

tips, 125

Index 143

	Tower Licensing, Updates, and Support
	Support
	Trial / Evaluation
	Subscription Types
	Node Counting in Licenses
	Tower Component Licenses

	Starting, Stopping, and Restarting Tower
	Custom Inventory Scripts
	Writing Inventory Scripts

	Inventory File Importing
	Custom Dynamic Inventory Scripts
	SCM Inventory Source Fields

	Multi-Credential Assignment
	Background
	Important Changes
	Launch Time Considerations
	Backwards Compatibility Concerns
	Multi-Vault Credentials

	Management Jobs
	Removing Old Activity Stream Data
	Removing Old Job History

	Clustering
	Setup Considerations
	Install and Configure
	Configuring Instances and Instance Groups from the API
	Instance group policies
	Isolated Instance Groups
	Status and Monitoring via Browser API
	Instance Services and Failure Behavior
	Job Runtime Behavior
	Deprovision Instances and Instance Groups

	OpenShift Deployment and Configuration
	Tower and OpenShift Basics
	Configuration Options
	Basic Configuration
	Resource Requests and Request Planning
	Database Configuration and Usage
	Backup and Restore
	Upgrading
	Migrating
	Build custom virtual environments

	Proxy Support
	Configure Known Proxies
	Reverse Proxy

	Tower Logfiles
	Tower Logging and Aggregation
	Loggers
	Set Up Logging with Tower

	The awx-manage Utility
	Inventory Import
	Cleanup of old data
	Cluster management

	Tower Configuration
	Authentication
	Jobs
	System
	User Interface
	License

	Bubblewrap functionality and variables
	Token-Based Authentication
	Managing OAuth 2 Applications and Tokens
	Using OAuth 2 Token System for Personal Access Tokens (PAT)
	Application Functions
	Application Token Functions

	Setting up Social Authentication
	Basic Authentication Settings
	Google OAuth2 Settings
	GitHub OAuth2 Settings
	Organization and Team Mapping

	Setting up Enterprise Authentication
	Azure Active Directory (AD)
	SAML Authentication Settings
	RADIUS Authentication Settings
	TACACS+ Authentication Settings

	Setting up LDAP Authentication
	Referrals
	Enabling Logging for LDAP
	LDAP Organization and Team Mapping

	Changing the Default Timeout for Authentication
	User Authentication with Kerberos
	AD and Kerberos Credentials
	Working with Kerberos Tickets

	Working with Session Limits
	Backing Up and Restoring Tower
	Backup/Restore Playbooks
	Backup and Restoration Considerations
	Backup and Restore for Clustered Environments

	Using Custom Logos in Ansible Tower
	Troubleshooting Tower
	Error logs
	Problems connecting to your host
	WebSockets port for live events not working
	Problems running a playbook
	Problems when running a job
	Playbooks aren’t showing up in the “Job Template” drop-down
	Playbook stays in pending
	Cancel a Tower job
	Reusing an external database causes installations to fail
	Private EC2 VPC Instances in Tower Inventory
	Troubleshooting “Error: provided hosts list is empty”

	Tower Tips and Tricks
	Using the Tower CLI Tool
	Launching a Job Template via the API
	tower-cli Job Template Launching
	Changing the Tower Admin Password
	Creating a Tower Admin from the commandline
	Setting up a jump host to use with Tower
	View Ansible outputs for JSON commands when using Tower
	Locate and configure the Ansible configuration file
	View a listing of all ansible_ variables
	Using virtualenv with Ansible Tower
	Configuring the towerhost hostname for notifications
	Launching Jobs with curl
	Dynamic Inventory and private IP addresses
	Filtering instances returned by the dynamic inventory sources in Tower
	Using an unreleased module from Ansible source with Tower
	Using callback plugins with Tower
	Connecting to Windows with winrm
	Importing existing inventory files and host/group vars into Tower

	Introduction to tower-cli
	License
	Capabilities
	Installation
	Configuration

	Usability Analytics and Data Collection
	Postface
	Index
	Copyright © 2018 Red Hat, Inc.
	Index

