
Ansible Tower Installation and
Reference Guide

Release Ansible Tower 3.5.4

Red Hat, Inc.

Jul 09, 2021

CONTENTS

1 Tower Licensing, Updates, and Support 2
1.1 Support . 2
1.2 Trial / Evaluation . 2
1.3 Subscription Types . 2
1.4 Node Counting in Licenses . 3
1.5 Tower Component Licenses . 3

2 Release Notes 4
2.1 Ansible Tower Version 3.5.4 . 4

3 Installation Notes 5
3.1 Flags and extra vars passed with Tower . 5
3.2 Installing Tower on Systems with FIPS Mode Enabled . 6
3.3 Notes for Red Hat Enterprise Linux and CentOS setups . 7
3.4 Notes for Ubuntu setups . 7
3.5 Configuration and Installation on OpenShift . 7

4 Requirements 8
4.1 Additional Notes on Tower Requirements . 9
4.2 Ansible Software Requirements . 10

5 Obtaining the Tower Installation Program 11
5.1 Using the Bundled Tower Installation Program . 11
5.2 Using Vagrant/Amazon AMI Images . 12

6 Installing Ansible Tower 13
6.1 Tower Installation Scenarios . 13
6.2 Setting up the Inventory File . 14
6.3 The Setup Playbook . 17
6.4 Changing the Password . 18

7 Upgrading an Existing Tower Installation 19
7.1 Requirements . 19
7.2 Backing Up Your Tower Installation . 19
7.3 Get the Tower Installer . 20
7.4 The Setup Playbook . 20

8 Usability Analytics and Data Collection 22

9 Glossary 23

i

10 Index 26

11 Copyright © 2019 Red Hat, Inc. 27

Index 28

ii

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

Thank you for your interest in Red Hat Ansible Tower. Ansible Tower is a commercial offering that helps teams man-
age complex multi-tier deployments by adding control, knowledge, and delegation to Ansible-powered environments.

The Ansible Tower Installation and Reference Guide helps you to understand the installation requirements and pro-
cesses behind installing Ansible Tower. This document has been updated to include information for the latest release
of Ansible Tower 3.5.4.

We Need Feedback!

If you spot a typo in this documentation, or if you have thought of a way to make this manual better, we would love to
hear from you! Please send an email to: docs@ansible.com

If you have a suggestion, try to be as specific as possible when describing it. If you have found an error, please include
the manual’s title, chapter number/section number, and some of the surrounding text so we can find it easily. We may
not be able to respond to every message sent to us, but you can be sure that we will be reading them all!

Ansible Tower Version 3.5.4; December 16, 2019; https://access.redhat.com/

CONTENTS 1

mailto:docs@ansible.com
https://access.redhat.com/

CHAPTER

ONE

TOWER LICENSING, UPDATES, AND SUPPORT

Red Hat Ansible Tower (“Ansible Tower”) is a software product provided as part of an annual subscription entered
into between you and Red Hat, Inc. (“Red Hat”).

Ansible is an open source software project and is licensed under the GNU General Public License version 3, as detailed
in the Ansible source code: https://github.com/ansible/ansible/blob/devel/COPYING

1.1 Support

Red Hat offers support to paid Red Hat Ansible Automation customers.

If you or your company has purchased a subscription for Ansible Automation, you can contact the support team at
https://access.redhat.com. To better understand the levels of support which match your Ansible Tower Subscription,
refer to Subscription Types. For details of what is covered under an Ansible Automation subscription, please see
the Scopes of Support at: https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4 and
https://access.redhat.com/support/policy/updates/ansible-engine.

1.2 Trial / Evaluation

While a license is required for Ansible Tower to run, there is no fee for a trial license.

• Trial licenses for Red Hat Ansible Automation are available at: http://ansible.com/license

• Support is not included in a trial license or during an evaluation of the Tower Software.

1.3 Subscription Types

Red Hat Ansible Automation is provided at various levels of support and number of machines as an annual Subscrip-
tion.

• Standard (F.K.A. “Enterprise: Standard”)

– Manage any size environment

– Enterprise 8x5 support and SLA

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

2

https://github.com/ansible/ansible/blob/devel/COPYING
https://access.redhat.com
https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4
https://access.redhat.com/support/policy/updates/ansible-engine
http://ansible.com/license
https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

• Enterprise (F.K.A. “Enterprise: Premium”)

– Manage any size environment, including mission-critical environments

– Premium 24x7 support and SLA

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

All Subscription levels include regular updates and releases of Ansible Tower.

For more information, contact Ansible via the Red Hat Customer portal at https://access.redhat.com/ or at http://www.
ansible.com/pricing/.

1.4 Node Counting in Licenses

The Tower license defines the number of Managed Nodes that can be managed by Ansible Tower. A typical license
will say ‘License Count: 500’, which sets the maximum number of Managed Nodes at 500.

Ansible Tower counts Managed Nodes by the number of nodes in inventory. If more Managed Nodes are in the
Ansible Tower inventory than are supported by the license, you will be unable to start any Jobs in Ansible Tower.
If a dynamic inventory sync causes Ansible Tower to exceed the Managed Node count specified in the license, the
dynamic inventory sync will fail.

For more information on managed node requirements for licensing, please see https://access.redhat.com/articles/
3331481.

1.5 Tower Component Licenses

To view the license information for the components included within Ansible Tower, refer to /usr/share/doc/
ansible-tower-<version>/README where <version> refers to the version of Ansible Tower you have
installed.

To view a specific license, refer to /usr/share/doc/ansible-tower-<version>/*.txt, where * is re-
placed by the license file name to which you are referring.

1.4. Node Counting in Licenses 3

https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity
https://access.redhat.com/
http://www.ansible.com/pricing/
http://www.ansible.com/pricing/
https://access.redhat.com/articles/3331481
https://access.redhat.com/articles/3331481

CHAPTER

TWO

RELEASE NOTES

The following list summarizes the additions, changes, and modifications which were made to Ansible Tower 3.5.4.

2.1 Ansible Tower Version 3.5.4

• Added a command to generate a new SECRET_KEY and rekey the database

• Removed the guest user from the optionally-configured RabbitMQ admin interface (CVE-2019-19340)

• Fixed assorted issues with preserving permissions in the Ansible Tower backup playbook (CVE-2019-19341)

• Fixed a partial password disclosure when special characters existed in the RabbitMQ password (CVE-2019-
19342)

• Fixed a file descriptor leak in the Tower service during project updates

• Fixed an issue where AUTHORIZATION_CODE_EXPIRE_SECONDS and
ACCESS_TOKEN_EXPIRE_SECONDS were not properly honored

• Fixed an issue where some timezones in schedules could not be parsed

• Fixed isolated execution of playbooks with blanks in the filename

• Fixed saving of workflow extra_vars

• Updated Ansible Tower to disallow Jinja in inventory hostnames

• Updated analytics data collection to match Ansible Tower 3.6

• Updated bundled oVirt SDK to version 4.3.0

For older version of the release notes, as well as other reference materials, refer to the Ansible Tower Release Notes.

4

http://docs.ansible.com/ansible-tower/3.5.4/html/release-notes/index.html#releasenotes-start

CHAPTER

THREE

INSTALLATION NOTES

• Ansible Tower on RHEL 8 requires Ansible 2.8 or greater. Older versions of Ansible will not work on RHEL
8.

• If you need to access a HTTP proxy to install software from your OS vendor, ensure that the environment
variable “HTTP_PROXY” is set accordingly before running setup.sh.

• The Tower installer creates a self-signed SSL certificate and keyfile at /etc/tower/tower.cert and /
etc/tower/tower.key for HTTPS communication. These can be replaced after install with your own
custom SSL certificates if you desire, but the filenames are required to be the same.

• If using Ansible version 1.8 or later, ensure that fact caching using Redis is not enabled in ansible.cfg on
the Tower machine.

• Note that the Tower installation must be run from an internet connected machine that can install software from
trusted 3rd-party places such as Ansible’s software repository, and your OS vendor’s software repositories.
In some cases, access to the Python Package Index (PyPI) is necessary as well. If you need to be able to
install in a disconnected environment and the bundled installation program is not a solution for you (refer to
Using the Bundled Tower Installation Program), please contact Ansible via the Red Hat Customer portal at
https://access.redhat.com/.

• If installing Tower on OpenShift, refer to OpenShift Deployment and Configuration.

3.1 Flags and extra vars passed with Tower

Flags and/or extra variables that you can use with the Ansible Tower installer include (but are not limited to) the
following:

Usage: setup.sh [Options] [-- Ansible Options]
Options:

-i INVENTORY_FILE Path to ansible inventory file (default: ${INVENTORY_
↪→FILE})

-e EXTRA_VARS Set additional ansible variables as key=value or YAML/
↪→JSON

i.e. -e bundle_install=false will force an online
↪→install

-b Perform a database backup in lieu of installing.
-r Perform a database restore in lieu of installing.
-h Show this help message and exit

Ansible Options:
Additional options to be passed to ansible-playbook can be added following

↪→the -- separator.

5

https://access.redhat.com/
http://docs.ansible.com/ansible-tower/3.5.4/html/administration/openshift_configuration.html#ag-openshift-configuration

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

Use the -- separator to add any Ansible arguments you wish to apply. For example: ./setup.sh -i
my_awesome_inventory.yml -e matburt_is_awesome=True -- -K

3.1.1 Examples

The following are examples of common scenarios - be sure to supply your own values appropriate to your specific
case.

• To upgrade core:

./setup.sh -e upgrade_ansible_with_tower=1

• To disable https handling at nginx:

./setup.sh -e nginx_disable_https=true

• To specify a non-default path when restoring from a backup file:

./setup.sh -e 'restore_backup_file=/path/to/nondefault/location' -r

• To override an inventory file used by passing it as an argument to the setup script:

setup.sh -i <inventory file>

3.2 Installing Tower on Systems with FIPS Mode Enabled

Tower can run on systems where FIPS mode is enabled, though there are a few limitations to keep in mind:

• Only Enterprise Linux 7+ is supported. The standard python that ships with RHEL must be used for Ansible
Tower to work in FIPS mode. Using any non-standard, non-system python for Tower is therefore, unsupported.

• By default, Tower configures PostgreSQL using password-based authentication, and this process relies on the
usage of md5 when CREATE USER is run at install time. If you intend to run the Tower installer from a
FIPS-enabled system, you’ll need to pre-compute an md5 hash yourself at install time and add its value to the
inventory file described in Setting up the Inventory File.

Specifically, you must pre-compute the hashed value on a system without FIPS enabled:

$ python -c 'from hashlib import md5; print("md5" + md5("choose-a-password" + "awx
↪→").hexdigest())'
md57d08dde7e95e862eaadfff09565e92e6

. . . and specify both pg_password and pg_hashed_password in your inventory file:

pg_password='choose-a-password'
pg_hashed_password='md57d08dde7e95e862eaadfff09565e92e6'

The “awx” implies the Postgres username. If you have an alternative username, provide that rather than “awx”.

• The ssh-keygen command generates keys in a format (RFC4716) which uses the md5 digest algorithm at
some point in the process (as part of a transformation performed on the input passphrase). On a FIPS-enforcing
system, md5 is completely disabled, so these types of encrypted SSH keys (RFC4716 private keys protected by
a passphrase) will not be usable. When FIPS mode is enabled, any encrypted SSH key you import into Ansible
Tower must be a PKCS8-formatted key. Existing AES128 keys can be converted to PKCS8 by running the
following openssl command:

3.2. Installing Tower on Systems with FIPS Mode Enabled 6

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

$ openssl pkcs8 -topk8 -v2 aes128 -in <INPUT_KEY> -out <NEW_OUTPUT_KEY>

For more details, see: https://access.redhat.com/solutions/1519083

• Use of Ansible features that use the paramiko library will not be FIPS compliant. This includes setting
ansible_connection=paramiko as a transport and using network modules that utilize the ncclient
NETCONF library.

• The TACACS+ protocol uses md5 to obfuscate the content of authorization packets; TACACS+ Authentication
is not supported for systems where FIPS mode is enabled.

• The RADIUS protocol uses md5 to encrypt passwords in Access-Request queries; RADIUS Authentication
is not supported for systems where FIPS mode is enabled.

3.3 Notes for Red Hat Enterprise Linux and CentOS setups

• In order for Ansible Tower to run on RHEL 8, Ansible 2.8 or greater must be installed. Ansible 2.8 and greater
are supported versions for RHEL 8.

• Starting with Ansible Tower 3.5, Tower runs with Python 3, which is automatically installed on RHEL 8 when
installing Tower.

• PackageKit can frequently interfere with the installation/update mechanism. Consider disabling or removing
PackageKit if installed prior to running the setup process.

• Only the “targeted” SELinux policy is supported. The targeted policy can be set to disabled, permissive, or
enforcing.

• When performing a bundled install, refer to Using the Bundled Tower Installation Program for more informa-
tion.

• When installing Ansible Tower, you only need to run setup.sh, any repositories needed by Tower are installed
automatically.

• The latest version of Ansible is installed automatically during the setup process. No additional installation or
configuration is required.

3.4 Notes for Ubuntu setups

Ubuntu support is deprecated in Ansible Tower 3.5, and will be removed in a future release. Refer to previous versions
of the Ansible Tower Installation and Reference Guide for details on Ubuntu.

3.5 Configuration and Installation on OpenShift

For OpenShift-based deployments, refer to OpenShift Deployment and Configuration.

3.3. Notes for Red Hat Enterprise Linux and CentOS setups 7

https://access.redhat.com/solutions/1519083
http://docs.ansible.com/ansible-tower/3.5.4/html/administration/ent_auth.html#tacacs-plus
http://docs.ansible.com/ansible-tower/3.5.4/html/administration/ent_auth.html#radius
http://docs.ansible.com/ansible-tower/3.5.4/html/administration/openshift_configuration.html#ag-openshift-configuration

CHAPTER

FOUR

REQUIREMENTS

Note: Tower is a full application and the installation process installs several dependencies such as PostgreSQL,
Django, NGINX, and others. It is required that you install Tower on a standalone VM or cloud instance and do not
co-locate any other applications on that machine (beyond possible monitoring or logging software). Although Tower
and Ansible are written in Python, they are not just simple Python libraries. Therefore, Tower cannot be installed in
a Python virtualenv or any similar subsystem; you must install it as described in the installation instructions in this
guide. For OpenShift-based deployments, refer to OpenShift Deployment and Configuration.

Ansible Tower has the following requirements:

• Supported Operating Systems:

– Red Hat Enterprise Linux 8.0 or later 64-bit (only Ansible Tower 3.5 and greater can be installed)

– Red Hat Enterprise Linux 7.4 or later 64-bit

– CentOS 7.4 or later 64-bit

– Ubuntu 16.04 LTS 64-bit (Ubuntu support is deprecated and will be removed in a future release)

Note: Support for Ubuntu 14.04 as a Tower platform has been removed as of Ansible Tower version 3.4.

• A currently supported version of Mozilla Firefox or Google Chrome

– Other HTML5 compliant web browsers may work but are not fully tested or supported.

• 2 CPUs minimum for Tower installations. Refer to the capacity algorithm section of the Ansible Tower User
Guide for determining the CPU capacity required for the number of forks in your particular configuration.

• 4 GB RAM minimum for Tower installations

– 4 GB RAM (minimum and recommended for Vagrant trial installations)

– 4 GB RAM (minimum for external standalone Postgres databases)

– For specific RAM needs, refer to the capacity algorithm section of the Ansible Tower User Guide for
determining capacity required based on the number of forks in your particular configuration

• 20 GB of dedicated hard disk space for Tower service nodes

– 10 GB of the 20 GB requirement must be dedicated to /var/, where Tower stores its files and working
directories

– The storage volume should be rated for a minimum baseline of 750 IOPS.

• 20 GB of dedicated hard disk space for nodes containing a database (150 GB+ recommended)

8

http://docs.ansible.com/ansible-tower/3.5.4/html/administration/openshift_configuration.html#ag-openshift-configuration
http://docs.ansible.com/ansible-tower/3.5.4/html/userguide/jobs.html#ug-job-concurrency
http://docs.ansible.com/ansible-tower/3.5.4/html/userguide/jobs.html#ug-job-concurrency

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

– The storage volume should be rated for a high baseline IOPS (1000 or more.)

– All Tower data is stored in the database. Database storage increases with the number of hosts managed,
number of jobs run, number of facts stored in the fact cache, and number of tasks in any individual job.
For example, a playbook run every hour (24 times a day) across 250, hosts, with 20 tasks will store over
800000 events in the database every week.

– If not enough space is reserved in the database, old job runs and facts will need cleaned on a regular basis.
Refer to Management Jobs in the Ansible Tower Administration Guide for more information

• 64-bit support required (kernel and runtime)

• PostgreSQL version 9.6.X required to run Ansible Tower 3.2 and later

• Ansible version 2.2 (at minimum) required to run Ansible Tower versions 3.2 and later

Note: You cannot use versions of PostgreSQL and Ansible older than those stated above and be able to run Ansible
Tower 3.2 and later. Both are installed by the install script if they aren’t already present.

• For Amazon EC2:

– Instance size of m4.large or larger

– An instance size of m4.xlarge or larger if there are more than 100 hosts

4.1 Additional Notes on Tower Requirements

While other operating systems may technically function, currently only the above list is supported to host an Ansible
Tower installation. If you have a firm requirement to run Tower on an unsupported operating system, please contact
Ansible via the Red Hat Customer portal at https://access.redhat.com/. Management of other operating systems (nodes)
is documented by the Ansible project itself and allows for a wider list.

Actual RAM requirements vary based on how many hosts Tower will manage simultaneously (which is controlled by
the forks parameter in the job template or the system ansible.cfg file). To avoid possible resource conflicts,
Ansible recommends 1 GB of memory per 10 forks + 2GB reservation for Tower, see the capacity algorithm for further
details. If forks is set to 400, 40 GB of memory is recommended.

For the hosts on which we install Ansible Tower, Tower checks whether or not umask is set to 0022. If not, the setup
fails. Be sure to set umask=0022 to avoid encountering this error.

A larger number of hosts can of course be addressed, though if the fork number is less than the total host count, more
passes across the hosts are required. These RAM limitations are avoided when using rolling updates or when using
the provisioning callback system built into Tower, where each system requesting configuration enters a queue and is
processed as quickly as possible; or in cases where Tower is producing or deploying images such as AMIs. All of
these are great approaches to managing larger environments. For further questions, please contact Ansible via the Red
Hat Customer portal at https://access.redhat.com/.

The requirements for systems managed by Tower are the same as for Ansible at: http://docs.ansible.com/intro_getting_
started.html

4.1. Additional Notes on Tower Requirements 9

http://docs.ansible.com/ansible-tower/3.5.4/html/administration/management_jobs.html#ag-management-jobs
https://access.redhat.com/
http://docs.ansible.com/ansible-tower/3.5.4/html/userguide/jobs.html#ug-job-concurrency
https://access.redhat.com/
http://docs.ansible.com/intro_getting_started.html
http://docs.ansible.com/intro_getting_started.html

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

4.1.1 Postgres Configurations

Optionally, you can configure the Postgres database as separate nodes that are not managed by the Tower installer.
When the Tower installer manages the database server, it configures the server with defaults that are generally recom-
mended for most workloads. However, you can adjust these PostgreSQL settings for standalone database server node
where ansible_memtotal_mb is the total memory size of the database server:

max_connections ==1024
shared_buffers == ansible_memtotal_mb*0.3
work_mem == ansible_memtotal_mb*0.03
maintenance_work_mem == ansible_memtotal_mb*0.04

Refer to PostgreSQL documentation for more detail on tuning your PostgresSQL server.

4.2 Ansible Software Requirements

While Ansible Tower depends on Ansible Playbooks and requires the installation of the latest stable version of Ansible
before installing Tower, manual installations of Ansible are no longer required.

Beginning with Ansible Tower version 2.3, the Tower installation program attempts to install Ansible as part of the
installation process. Previously, Tower required manual installations of the Ansible software release package before
running the Tower installation program. Now, Tower attempts to install the latest stable Ansible release package.

If performing a bundled Tower installation, the installation program attempts to install Ansible (and its dependencies)
from the bundle for you (refer to Using the Bundled Tower Installation Program for more information).

If you choose to install Ansible on your own, the Tower installation program will detect that Ansible has been installed
and will not attempt to reinstall it. Note that you must install Ansible using a package manager like yum and that
the latest stable version must be installed for Ansible Tower to work properly. At minimum, Ansible version 2.2 is
required for Ansible Tower versions 3.2 and later.

4.2. Ansible Software Requirements 10

https://wiki.postgresql.org/wiki/Main_Page
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

CHAPTER

FIVE

OBTAINING THE TOWER INSTALLATION PROGRAM

Note: To obtain a trial version of Ansible Tower, visit: http://www.ansible.com/tower-trial

For pricing information, visit: http://www.ansible.com/pricing

To download the latest version of Tower directly (note, you must also obtain a license before using this), visit: https:
//releases.ansible.com/ansible-tower/setup/ansible-tower-setup-latest.tar.gz

For the OpenShift installer, go to http://releases.ansible.com/ansible-tower/setup_openshift

You may install standalone Tower or use the bundled installer:

• if you set up Tower on an environment with a direct Internet access, you can download the standalone Tower
installer

• if you set up Tower on an environment without direct access to online repositories, or your environment enforces
a proxy, you must use the bundled installer

Download and then extract the Ansible Tower installation/upgrade tool: http://releases.ansible.com/ansible-tower/
setup/

root@localhost:~$ tar xvzf ansible-tower-setup-latest.tar.gz
root@localhost:~$ cd ansible-tower-setup-<tower_version>

To install or upgrade, start by editing the inventory file in the ansible-tower-setup-<tower_version>
directory, replacing <tower_version> with the version number, such as 3.5.4 or 3.5.0 directory.

5.1 Using the Bundled Tower Installation Program

Beginning in Ansible Tower version 2.3.0, Tower installations can be performed using a bundled installation program.
The bundled installation program is meant for customers who cannot, or would prefer not to, install Tower (and its
dependencies) from online repositories. Access to Red Hat Enterprise Linux or Centos repositories is still needed.

To download the latest version of the bundled Tower installation program directly (note, you must also obtain a license
before using this), visit: https://releases.ansible.com/ansible-tower/setup-bundle/

Note: The bundled installer only supports Red Hat Enterprise Linux and CentOS. Ubuntu is not available in the
bundled installer, and Ubuntu support is deprecated and will be removed in a future release.

Next, select the installation program which matches your distribution (el7):

11

http://www.ansible.com/tower-trial
http://www.ansible.com/pricing
https://releases.ansible.com/ansible-tower/setup/ansible-tower-setup-latest.tar.gz
https://releases.ansible.com/ansible-tower/setup/ansible-tower-setup-latest.tar.gz
http://releases.ansible.com/ansible-tower/setup_openshift
http://releases.ansible.com/ansible-tower/setup/
http://releases.ansible.com/ansible-tower/setup/
https://releases.ansible.com/ansible-tower/setup-bundle/

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

ansible-tower-setup-bundle-latest.el7.tar.gz

Note: On Red Hat Enterprise Linux 7, Ansible Tower 3.5.0 requires the Python 3 Software Collection. If you are
installing Tower offline, you need either CentOS-SCL or RH-SCL repositories enabled through a local mirror:

• Red Hat Subscription Manager: rhel-server-rhscl-7-rpms

• Red Hat UI: rhui-rhel-server-rhui-rhscl-7-rpms

• CentOS: centos-release-scl

A list of package dependencies from Red Hat Enterprise Linux repositories can be found in the bundle/
base_packages.txt file inside the setup bundle. Depending on what minor version of Red Hat Enterprise Linux
you are running, the version and release specified in that file may be slightly different than what is available in your
configured repository.

5.2 Using Vagrant/Amazon AMI Images

One easy way to try Ansible Tower is to use a Vagrant box or an Amazon EC2 instance, and launching a trial of
Ansible Tower just takes a few minutes.

If you use the Vagrant box or Amazon AMI Tower images provided by Ansible, you can find the auto-generated admin
password by connecting to the image and reading it from the message of the day (MOTD) shown at login.

5.2.1 Vagrant

For Vagrant images, use the following commands to connect:

$ vagrant init ansible/tower
$ vagrant up --provider virtualbox
$ vagrant ssh

That last command provides your admin password and the Tower log-in URL. Upon login, you will receive directions
on obtaining a trial license.

An up-to-date link to Ansible’s Vagrant image is available from the LAUNCH TOWER IN VAGRANT section of
Ansible’s main website.

5.2.2 Amazon EC2

To launch the AMI, you must have an AMI ID (which varies based on you particular AWS region). A list of regions
with links to AMI IDs is available in the LAUNCH TOWER IN AMAZON EC2 section of Ansible’s main website.

To connect to Amazon AMI images, use the following command:

ssh centos@<your amazon instance>

You must use the SSH key that you configured the instance to accept at launch time.

5.2. Using Vagrant/Amazon AMI Images 12

http://www.ansible.com/tower-trial#hs_cos_wrapper_module_144352331448329539
http://www.ansible.com/tower-trial#hs_cos_wrapper_module_144352331448329539

CHAPTER

SIX

INSTALLING ANSIBLE TOWER

Tower can be installed in various ways by choosing the best mode for your environment and making any necessary
modifications to the inventory file. For OpenShift-based deployments, refer to OpenShift Deployment and Configura-
tion.

6.1 Tower Installation Scenarios

Tower can be installed using one of the following scenarios:

Single Machine:

• As an integrated installation:

– This is a single machine install of Tower - the web frontend, REST API backend, and database are all
on a single machine. This is the standard installation of Tower. It also installs PostgreSQL from your
OS vendor repository, and configures the Tower service to use that as its database.

• With an external database (2 options available):

– Tower with remote DB configuration: This installs the Tower server on a single machine and config-
ures it to talk to a remote instance of PostgreSQL 9.6 as its database. This remote PostgreSQL can be
a server you manage, or can be provided by a cloud service such as Amazon RDS.

– Tower with a playbook install of a remote Postgres system: This installs the Tower server on a single
machine and installs a remote Postgres database via the playbook installer (managed by Tower).

Note: 1). Tower will not configure replication or failover for the database that it uses, although Tower should work
with any replication that you have. 2). The database server should be on the same network or in the same datacenter
as the Tower server for performance reasons.

High Availability Multi-Machine Cluster:

Tower can be installed in a high availability cluster mode. In this mode, multiple Tower nodes are installed and active.
Any node can receive HTTP requests and all nodes can execute jobs.

• A Clustered Tower setup must be installed with an external database (2 options available):

– Tower with remote DB configuration: This installs the Tower server on a single machine and config-
ures it to talk to a remote instance of PostgreSQL as its database. This remote PostgreSQL can be a
server you manage, or can be provided by a cloud service such as Amazon RDS.

– Tower with a playbook install of a remote Postgres system: This installs the Tower server on a single
machine and installs a remote Postgres database via the playbook installer (managed by Tower).

• For more information on configuring a clustered setup, refer to Clustering.

13

http://docs.ansible.com/ansible-tower/3.5.4/html/administration/openshift_configuration.html#ag-openshift-configuration
http://docs.ansible.com/ansible-tower/3.5.4/html/administration/openshift_configuration.html#ag-openshift-configuration
http://docs.ansible.com/ansible-tower/3.5.4/html/administration/clustering.html#ag-clustering

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

Note: Running in a cluster setup requires any database that Tower uses to be external–Postgres must be installed on
a machine that is not one of the primary or secondary tower nodes. When in a redundant setup, the remote Postgres
version requirements is PostgreSQL 9.6.

6.2 Setting up the Inventory File

As you edit your inventory file, there are a few things you must keep in mind:

• The contents of the inventory file should be defined in ./inventory, next to the ./setup.sh installer
playbook.

• For installations and upgrades: If you need to make use of external databases, you must ensure the database
sections of your inventory file are properly setup. Edit this file and add your external database information
before running the setup script.

• For upgrading an existing cluster: When upgrading a cluster, you may decide that you want to also reconfigure
your cluster to omit existing instances or instance groups. Omitting the instance or the instance group from
the inventory file will not be enough to remove them from the cluster. In addition to omitting instances or
instance groups from the inventory file, you must also deprovision instances or instance groups before starting
the upgrade. Otherwise, omitted instances or instance groups will continue to communicate with the cluster,
which can cause issues with tower services during the upgrade.

• For clustered installations: If you are creating a clustered setup, you must replace localhost with the
hostname or IP address of all instances. All nodes/instances must be able to reach any others using this hostname
or address. In other words, you cannot use the localhost ansible_connection=local on one of the
nodes AND all of the nodes should use the same format for the host names.

Therefore, this will not work:

[tower]
localhost ansible_connection=local
hostA
hostB.example.com
172.27.0.4

Instead, use these formats:

[tower]
hostA
hostB
hostC

OR

hostA.example.com
hostB.example.com
hostC.example.com

OR

[tower]
172.27.0.2
172.27.0.3
172.27.0.4

6.2. Setting up the Inventory File 14

http://docs.ansible.com/ansible-tower/3.5.4/html/administration/clustering.html#ag-cluster-deprovision

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

• For all standard installations: When performing an installation, you must supply any necessary passwords in
the inventory file.

Note: Changes made to the installation process now require that you fill out all of the password fields in the inventory
file. If you need to know where to find the values for these they should be:

admin_password='' <— Tower local admin password

pg_password='' <—- Found in /etc/tower/conf.d/postgres.py

rabbitmq_password='' <—- create a new password here (alpha-numeric with no special charac-
ters)

Example Inventory file

• For provisioning new nodes: When provisioning new nodes add the nodes to the inventory file with all current
nodes, make sure all passwords are included in the inventory file.

• For upgrading a single node: When upgrading, be sure to compare your inventory file to the current release
version. It is recommended that you keep the passwords in here even when performing an upgrade.

Example Single Node Inventory File

[tower]
localhost ansible_connection=local

[database]

[all:vars]
admin_password='password'

pg_host=''
pg_port=''

pg_database='awx'
pg_username='awx'
pg_password='password'

rabbitmq_port=5672
rabbitmq_username=tower
rabbitmq_password='password'
rabbitmq_cookie=rabbitmqcookie

Needs to be true for fqdns and ip addresses
rabbitmq_use_long_name=false
Needs to remain false if you are using localhost

Example Multi Node Cluster Inventory File

[tower]
clusternode1.example.com
clusternode2.example.com
clusternode3.example.com

[database]
dbnode.example.com

[all:vars]

(continues on next page)

6.2. Setting up the Inventory File 15

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

(continued from previous page)

ansible_become=true

admin_password='password'

pg_host='dbnode.example.com'
pg_port='5432'

pg_database='tower'
pg_username='tower'
pg_password='password'

rabbitmq_port=5672
rabbitmq_username=tower
rabbitmq_password=tower
rabbitmq_cookie=rabbitmqcookie

Needs to be true for fqdns and ip addresses
rabbitmq_use_long_name=true

Example Inventory file for an external existing database

[tower]
node.example.com ansible_connection=local

[database]

[all:vars]
admin_password='password'
pg_password='password'
rabbitmq_password='password'

pg_host='database.example.com'
pg_port='5432'

pg_database='awx'
pg_username='awx'

Example Inventory file for external database which needs installation

[tower]
node.example.com ansible_connection=local

[database]
database.example.com

[all:vars]
admin_password='password'
pg_password='password'
rabbitmq_password='password'

pg_host='database.example.com'
pg_port='5432'

pg_database='awx'
pg_username='awx'

6.2. Setting up the Inventory File 16

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

Once any necessary changes have been made, you are ready to run ./setup.sh.

Note: Root access to the remote machines is required. With Ansible, this can be achieved in different ways:

• ansible_user=root ansible_ssh_pass=”your_password_here” inventory host or group variables

• ansible_user=root ansible_ssh_private_key_file=”path_to_your_keyfile.pem” inventory host or group variables

• ANSIBLE_BECOME_METHOD=’sudo’ ANSIBLE_BECOME=True ./setup.sh

• ANSIBLE_SUDO=True ./setup.sh (Only applies to Ansible 2.7)

The DEFAULT_SUDO Ansible configuration parameter was removed in Ansible 2.8, which causes the
ANSIBLE_SUDO=True ./setup.sh method of privilege escalation to no longer work. For more information
on become plugins, refer to Understanding Privilege Escalation and the list of become plugins.

6.3 The Setup Playbook

Note: Ansible Tower 3.0 simplifies installation and removes the need to run ./configure/ as part of the instal-
lation setup. Users of older versions should follow the instructions available in the v.2.4.5 (or earlier) releases of the
Tower Documentation available at: http://docs.ansible.com/

The Tower setup playbook script uses the inventory file and is invoked as ./setup.sh from the path where you
unpacked the Tower installer tarball.

root@localhost:~$./setup.sh

The setup script takes the following arguments:

• -h – Show this help message and exit

• -i INVENTORY_FILE – Path to Ansible inventory file (default: inventory)

• -e EXTRA_VARS – Set additional Ansible variables as key=value or YAML/JSON (i.e. -e
bundle_install=false forces an online installation)

• -b – Perform a database backup in lieu of installing

• -r – Perform a database restore in lieu of installing (a default restore path is used unless EXTRA_VARS are
provided with a non-default path, as shown in the code example below)

./setup.sh -e 'restore_backup_file=/path/to/nondefault/location' -r

Note: Please note that a issue was discovered in Tower 3.0.0 and 3.0.1 that prevented proper system backups and
restorations.

If you need to back up or restore your Tower v3.0.0 or v3.0.1 installation, use the v3.0.2 installer to do so.

After calling ./setup.sh with the appropriate parameters, Tower is installed on the appropriate machines as has
been configured. Setup installs Tower from RPM or Deb packages using repositories hosted on ansible.com.

6.3. The Setup Playbook 17

https://docs.ansible.com/ansible/latest/user_guide/become.html#understanding-privilege-escalation
https://docs.ansible.com/ansible/latest/plugins/become.html#plugin-list
http://docs.ansible.com/

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

Once setup is complete, use your web browser to access the Tower server and view the Tower login screen. Your
Tower server is accessible from port 80 (https://<TOWER_SERVER_NAME>/) but will redirect to port 443 so 443
needs to be available also.

If the installation of Tower fails and you are a customer who has purchased a valid license for Ansible Tower, please
contact Ansible via the Red Hat Customer portal at https://access.redhat.com/.

6.4 Changing the Password

Once installed, if you log into the Tower instance via SSH, the default admin password is provided in the prompt. You
can then change it with the following command (as root or as AWX user):

awx-manage changepassword admin

After that, the password you have entered will work as the admin password in the web UI.

6.4. Changing the Password 18

https://access.redhat.com/

CHAPTER

SEVEN

UPGRADING AN EXISTING TOWER INSTALLATION

You can upgrade your existing Tower installation to the latest version easily. Tower looks for existing configuration
files and recognizes when an upgrade should be performed instead of an installation.

As with installation, the upgrade process requires that the Tower server be able to access the Internet. The upgrade
process takes roughly the same amount of time as a Tower installation, plus any time needed for data migration.

This upgrade procedure assumes that you have a working installation of Ansible and Tower.

Note: You can not convert an embedded-database Tower to a Active/Passive Redundancy mode installation as part
of an upgrade. Users who want to deploy Tower in a Redundant configuration should back up their Tower database,
install a new Redundant configuration on a different VM or physical host, and then restore the database. It is possible
to add a primary or secondary instance later on to Tower if it is already operating on an external database. Refer to the
Active/Passive Redundancy chapter of the Ansible Tower Administration Guide.

7.1 Requirements

Before upgrading your Tower installation, refer to Requirements to ensure you have enough disk space and RAM as
well as to review any software needs. For example, you should have the latest stable release of Ansible installed before
performing an upgrade.

Note: All upgrades should be no more than two major versions behind what you are currently upgrading to. For
example, in order to upgrade to Ansible Tower 3.5.x, you must first be on version 3.3.x; i.e., there is no direct upgrade
path from version 3.2.x. Refer to the recommended upgrade path article off your customer portal.

In order to run Ansible Tower 3.5 on RHEL 8, you must also have Ansible 2.8 or later installed.

7.2 Backing Up Your Tower Installation

It is advised that you create a backup before upgrading the system. After the backup process has been accomplished,
proceed with OS/Ansible/Tower upgrades.

Refer to Backing Up and Restoring Tower in the Ansible Tower Administration Guide.

Note: Please note that an issue was discovered in Tower 3.0.0 and 3.0.1 that prevented proper system backups and
restorations.

19

http://docs.ansible.com/ansible-tower/3.5.4/html/administration/clustering.html#ag-clustering
https://access.redhat.com/articles/4098921
http://docs.ansible.com/ansible-tower/3.5.4/html/administration/backup_restore.html#ag-backup-restore

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

If you need to backup or restore your Tower v3.0.0 or v3.0.1 installation, use the v3.0.2 installer to do so.

7.3 Get the Tower Installer

You may install standalone Tower or use the bundled installer:

• if you set up Tower on an environment with a direct Internet access, you can download the standalone Tower
installer

• if you set up Tower on an environment without direct access to online repositories, or your environment enforces
a proxy, you must use the bundled installer

Download and then extract the Ansible Tower installation/upgrade tool: http://releases.ansible.com/ansible-tower/
setup/

root@localhost:~$ tar xvzf ansible-tower-setup-latest.tar.gz
root@localhost:~$ cd ansible-tower-setup-<tower_version>

To install or upgrade, start by editing the inventory file in the ansible-tower-setup-<tower_version>
directory, replacing <tower_version> with the version number, such as 3.5.4 or 3.5.0 directory.

Note: As part of the upgrade process, database schema migration may be done. Depending on the size of your Tower
installation, this may take some time.

If the upgrade of Tower fails or if you need assistance, please contact Ansible via the Red Hat Customer portal at
https://access.redhat.com/.

7.4 The Setup Playbook

Note: Ansible Tower 3.0 simplifies installation and removes the need to run ./configure/ as part of the instal-
lation setup. Users of older versions should follow the instructions available in the v.2.4.5 (or earlier) releases of the
Tower Documentation available at: http://docs.ansible.com/

The Tower setup playbook script uses the inventory file and is invoked as ./setup.sh from the path where you
unpacked the Tower installer tarball.

root@localhost:~$./setup.sh

The setup script takes the following arguments:

• -h – Show this help message and exit

• -i INVENTORY_FILE – Path to Ansible inventory file (default: inventory)

• -e EXTRA_VARS – Set additional Ansible variables as key=value or YAML/JSON (i.e. -e
bundle_install=false forces an online installation)

• -b – Perform a database backup in lieu of installing

• -r – Perform a database restore in lieu of installing (a default restore path is used unless EXTRA_VARS are
provided with a non-default path, as shown in the code example below)

7.3. Get the Tower Installer 20

http://releases.ansible.com/ansible-tower/setup/
http://releases.ansible.com/ansible-tower/setup/
https://access.redhat.com/
http://docs.ansible.com/

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

./setup.sh -e 'restore_backup_file=/path/to/nondefault/location' -r

Note: Please note that a issue was discovered in Tower 3.0.0 and 3.0.1 that prevented proper system backups and
restorations.

If you need to back up or restore your Tower v3.0.0 or v3.0.1 installation, use the v3.0.2 installer to do so.

7.4. The Setup Playbook 21

CHAPTER

EIGHT

USABILITY ANALYTICS AND DATA COLLECTION

Usability data collection is included with Tower to collect data to better understand how Tower users specifically
interact with Tower, to help enhance future releases, and to continue streamlining your user experience.

Only users installing a trial of Tower or a fresh installation of Tower are opted-in for this data collection.

If you want to change how you participate in this analytics collection, you can opt out or change your settings using

the Configure Tower user interface, accessible from the Settings () icon from the left navigation bar.

Ansible Tower collects user data automatically to help improve the Tower product. You can control the way Tower
collects data by setting your participation level in the User Interface tab in the settings menu.

1. Select the desired level of data collection from the User Analytics Tracking State drop-down list:

• Off: Prevents any data collection.

• Anonymous: Enables data collection without your specific user data.

• Detailed: Enables data collection including your specific user data.

2. Click Save to apply the settings or Cancel to abandon the changes.

For more information, see the Red Hat privacy policy at https://www.redhat.com/en/about/privacy-policy.

22

https://www.redhat.com/en/about/privacy-policy

CHAPTER

NINE

GLOSSARY

Ad Hoc Refers to running Ansible to perform some quick command, using /usr/bin/ansible, rather than the orchestra-
tion language, which is /usr/bin/ansible-playbook. An example of an ad hoc command might be rebooting 50
machines in your infrastructure. Anything you can do ad hoc can be accomplished by writing a Playbook, and
Playbooks can also glue lots of other operations together.

Callback Plugin Refers to some user-written code that can intercept results from Ansible and do something with
them. Some supplied examples in the GitHub project perform custom logging, send email, or even play sound
effects.

Check Mode Refers to running Ansible with the --check option, which does not make any changes on the remote
systems, but only outputs the changes that might occur if the command ran without this flag. This is analogous
to so-called “dry run” modes in other systems, though the user should be warned that this does not take into
account unexpected command failures or cascade effects (which is true of similar modes in other systems). Use
this to get an idea of what might happen, but it is not a substitute for a good staging environment.

Credentials Authentication details that may be utilized by Tower to launch jobs against machines, to synchronize
with inventory sources, and to import project content from a version control system.

Credential Plugin Python code that contains definitions for an external credential type, its metadata fields, and the
code needed for interacting with a secret management system.

Distributed Job A job that consists of a job template, an inventory, and slice size. When executed, a distributed job
slices each inventory into a number of “slice size” chunks, which are then used to run smaller job slices.

External Credential Type A managed credential type for Tower used for authenticating with a secret management
system.

Facts Facts are simply things that are discovered about remote nodes. While they can be used in playbooks and
templates just like variables, facts are things that are inferred, rather than set. Facts are automatically discovered
when running plays by executing the internal setup module on the remote nodes. You never have to call the
setup module explicitly, it just runs, but it can be disabled to save time if it is not needed. For the convenience of
users who are switching from other configuration management systems, the fact module also pulls in facts from
the ‘ohai’ and ‘facter’ tools if they are installed, which are fact libraries from Chef and Puppet, respectively.

Forks Ansible and Tower talk to remote nodes in parallel and the level of parallelism can be set serveral ways–during
the creation or editing of a Job Template, by passing --forks, or by editing the default in a configuration file.
The default is a very conservative 5 forks, though if you have a lot of RAM, you can easily set this to a value
like 50 for increased parallelism.

Group A set of hosts in Ansible that can be addressed as a set, of which many may exist within a single Inventory.

Group Vars The group_vars/ files are files that live in a directory alongside an inventory file, with an optional
filename named after each group. This is a convenient place to put variables that will be provided to a given
group, especially complex data structures, so that these variables do not have to be embedded in the inventory
file or playbook.

23

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

Handlers Handlers are just like regular tasks in an Ansible playbook (see Tasks), but are only run if the Task contains
a “notify” directive and also indicates that it changed something. For example, if a config file is changed then the
task referencing the config file templating operation may notify a service restart handler. This means services
can be bounced only if they need to be restarted. Handlers can be used for things other than service restarts, but
service restarts are the most common usage.

Host A system managed by Tower, which may include a physical, virtual, cloud-based server, or other device. Typi-
cally an operating system instance. Hosts are contained in Inventory. Sometimes referred to as a “node”.

Host Specifier Each Play in Ansible maps a series of tasks (which define the role, purpose, or orders of a system) to
a set of systems. This “hosts:” directive in each play is often called the hosts specifier. It may select one system,
many systems, one or more groups, or even some hosts that are in one group and explicitly not in another.

Instance Group A group that contains instances for use in a clustered environment. An instance group provides the
ability to group instances based on policy.

Inventory A collection of hosts against which Jobs may be launched.

Inventory Script A very simple program (or a complicated one) that looks up hosts, group membership for hosts, and
variable information from an external resource–whether that be a SQL database, a CMDB solution, or something
like LDAP. This concept was adapted from Puppet (where it is called an “External Nodes Classifier”) and works
more or less exactly the same way.

Inventory Source Information about a cloud or other script that should be merged into the current inventory group,
resulting in the automatic population of Groups, Hosts, and variables about those groups and hosts.

Job One of many background tasks launched by Tower, this is usually the instantiation of a Job Template; the launch
of an Ansible playbook. Other types of jobs include inventory imports, project synchronizations from source
control, or administrative cleanup actions.

Job Detail The history of running a particular job, including its output and success/failure status.

Job Slice See Distributed Job.

Job Template The combination of an Ansible playbook and the set of parameters required to launch it.

JSON Ansible and Tower use JSON for return data from remote modules. This allows modules to be written in any
language, not just Python.

Metadata Information for locating a secret in the external system once authenticated. The uses provides this infor-
mation when linking an external credential to a target credential field.

Notifier An instance of a notification type (Email, Slack, Webhook, etc.) with a name, description, and a defined
configuration.

Notification A manifestation of the notifier; for example, when a job fails a notification is sent using the configuration
defined by the notifier.

Notify The act of a task registering a change event and informing a handler task that another action needs to be run at
the end of the play. If a handler is notified by multiple tasks, it will still be run only once. Handlers are run in
the order they are listed, not in the order that they are notified.

Organization A logical collection of Users, Teams, Projects, and Inventories. The highest level in the Tower object
hierarchy is the Organization.

Organization Administrator An Tower user with the rights to modify the Organization’s membership and settings,
including making new users and projects within that organization. An organization admin can also grant per-
missions to other users within the organization.

Permissions The set of privileges assigned to Users and Teams that provide the ability to read, modify, and administer
Projects, Inventories, and other Tower objects.

24

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

Plays A playbook is a list of plays. A play is minimally a mapping between a set of hosts selected by a host specifier
(usually chosen by groups, but sometimes by hostname globs) and the tasks which run on those hosts to define
the role that those systems will perform. There can be one or many plays in a playbook.

Playbook An Ansible playbook. Refer to http://docs.ansible.com/ for more information.

Policy Policies dictate how instance groups behave and how jobs are executed.

Project A logical collection of Ansible playbooks, represented in Tower.

Roles Roles are units of organization in Ansible and Tower. Assigning a role to a group of hosts (or a set of groups,
or host patterns, etc.) implies that they should implement a specific behavior. A role may include applying
certain variable values, certain tasks, and certain handlers–or just one or more of these things. Because of the
file structure associated with a role, roles become redistributable units that allow you to share behavior among
playbooks–or even with other users.

Secret Management System A server or service for securely storing and controlling access to tokens, passwords,
certificates, encryption keys, and other sensitive data.

Schedule The calendar of dates and times for which a job should run automatically.

Sliced Job See Distributed Job.

Source Credential An external credential that is linked to the field of a target credential.

Sudo Ansible does not require root logins and, since it is daemonless, does not require root level daemons (which can
be a security concern in sensitive environments). Ansible can log in and perform many operations wrapped in
a sudo command, and can work with both password-less and password-based sudo. Some operations that do
not normally work with sudo (like scp file transfer) can be achieved with Ansible’s copy, template, and fetch
modules while running in sudo mode.

Superuser An admin of the Tower server who has permission to edit any object in the system, whether associated to
any organization. Superusers can create organizations and other superusers.

Survey Questions asked by a job template at job launch time, configurable on the job template.

Target Credential A non-external credential with an input field that is linked to an external credential.

Team A sub-division of an Organization with associated Users, Projects, Credentials, and Permissions. Teams provide
a means to implement role-based access control schemes and delegate responsibilities across Organizations.

User An Tower operator with associated permissions and credentials.

Workflow Job Template A set consisting of any combination of job templates, project syncs, and inventory syncs,
linked together in order to execute them as a single unit.

YAML Ansible and Tower use YAML to define playbook configuration languages and also variable files. YAML has
a minimum of syntax, is very clean, and is easy for people to skim. It is a good data format for configuration
files and humans, but is also machine readable. YAML is fairly popular in the dynamic language community
and the format has libraries available for serialization in many languages (Python, Perl, Ruby, etc.).

25

http://docs.ansible.com/

CHAPTER

TEN

INDEX

• genindex

26

CHAPTER

ELEVEN

COPYRIGHT © 2019 RED HAT, INC.

Ansible, Ansible Tower, Red Hat, and Red Hat Enterprise Linux are trademarks of Red Hat, Inc., registered in the
United States and other countries.

If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide
a link to the original version.

Third Party Rights

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Rackspace trademarks, service marks, logos and domain names are either common-law trademarks/service marks or
registered trademarks/service marks of Rackspace US, Inc., or its subsidiaries, and are protected by trademark and
other laws in the United States and other countries.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

27

INDEX

Symbols
2.2

Ansible, 10

A
active/passive, external database,

clustered
installation multi-machine, 13

Ad Hoc, 23
Amazon AMI image, 12
analytics collection, 22
Ansible

2.2, 10
latest, 10
stable, 10

B
bundled installer, 11

C
Callback Plugin, 23
Check Mode, 23
components

licenses, 3
configuration

Postgres, 10
Credential Plugin, 23
Credentials, 23
current

release notes, 4
custom SSL certificates, 5

D
data collection, 22
database

Postgres, 10
DEB files

licenses, 3
Distributed Job, 23
download Ansible Tower, 11

E
evaluation, 2
External Credential Type, 23
external database

installation single machine, 13
extra vars

flags, 5
installation, 5

F
Facts, 23
features, 1
flags

extra vars, 5
installation, 5

Forks, 23

G
glossary, 23
Group, 23
Group Vars, 23

H
Handlers, 24
Host, 24
Host Specifier, 24
http

proxy, 5

I
installation, 13

extra vars, 5
flags, 5
general notes, 5
multi-machine active/passive,

external database, clustered,
13

platform-specific notes, 6
scenarios, 13
single machine external database, 13
single machine integrated, 13

installation bundle

28

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

licenses, 3
installation program, 11

upgrade, 19
installation requirements, 8
installation script

inventory file setup, 14
playbook setup, 17, 20

Instance Group, 24
integrated

installation single machine, 13
Inventory, 24
inventory file setup, 14
Inventory Script, 24
Inventory Source, 24

J
Job, 24
Job Detail, 24
Job Slice, 24
Job Template, 24
JSON, 24

L
latest

Ansible, 10
license, 1, 2

nodes, 3
trial, 2
types, 2

license features, 1
licenses

components, 3
DEB files, 3
installation bundle, 3
RPM files, 3

M
Metadata, 24
multi-machine

active/passive, external database,
clustered, installation, 13

N
Notification, 24
Notifier, 24
Notify, 24

O
Organization, 24
Organization Administrator, 24

P
password, changing, 18
Pendo, 22

Permissions, 24
platform-specfic notes

CentOS, 6
Red Hat Enterprise Linux, 6

Playbook, 25
playbook setup, 17, 20

installation script, 17, 20
setup.sh, 17, 20

Plays, 25
Policy, 25
Postgres

configuration, 10
database, 10
tuning, 10

Project, 25

R
release notes, 4

current, 4
requirements, 8
Roles, 25
RPM files

licenses, 3

S
Schedule, 25
Secret Management System, 25
self-signed SSL certificate, 5
setup.sh

playbook setup, 17, 20
single machine

external database, installation, 13
integrated, installation, 13

Sliced Job, 25
Source Credential, 25
stable

Ansible, 10
Sudo, 25
Superuser, 25
support, 1, 2
Survey, 25

T
Target Credential, 25
Team, 25
trial, 2
tuning

Postgres, 10

U
updates, 2
upgrade, 19

installation program, 19
usability data collection, 22

Index 29

Ansible Tower Installation and Reference Guide, Release Ansible Tower 3.5.4

User, 25
user data tracking, 22
USER_ANALYTICS_TRACKING_STATE, 22

V
Vagrant image, 12

W
Workflow Job Template, 25

Y
YAML, 25

Index 30

	Tower Licensing, Updates, and Support
	Support
	Trial / Evaluation
	Subscription Types
	Node Counting in Licenses
	Tower Component Licenses

	Release Notes
	Ansible Tower Version 3.5.4

	Installation Notes
	Flags and extra vars passed with Tower
	Installing Tower on Systems with FIPS Mode Enabled
	Notes for Red Hat Enterprise Linux and CentOS setups
	Notes for Ubuntu setups
	Configuration and Installation on OpenShift

	Requirements
	Additional Notes on Tower Requirements
	Ansible Software Requirements

	Obtaining the Tower Installation Program
	Using the Bundled Tower Installation Program
	Using Vagrant/Amazon AMI Images

	Installing Ansible Tower
	Tower Installation Scenarios
	Setting up the Inventory File
	The Setup Playbook
	Changing the Password

	Upgrading an Existing Tower Installation
	Requirements
	Backing Up Your Tower Installation
	Get the Tower Installer
	The Setup Playbook

	Usability Analytics and Data Collection
	Glossary
	Index
	Copyright © 2019 Red Hat, Inc.
	Index

