
Ansible Tower User Guide
Release Ansible Tower 3.6.3

Red Hat, Inc.

Nov 12, 2021

CONTENTS

1 Overview 2
1.1 Real-time Playbook Output and Exploration . 2
1.2 “Push Button” Automation . 2
1.3 Enhanced and Simplified Role-Based Access Control and Auditing 2
1.4 Cloud & Autoscaling Flexibility . 3
1.5 The Ideal RESTful API . 3
1.6 Backup and Restore . 3
1.7 Ansible Galaxy Integration . 3
1.8 Inventory Support for OpenStack . 3
1.9 Remote Command Execution . 4
1.10 System Tracking . 4
1.11 Integrated Notifications . 4
1.12 Satellite and CloudForms Integration . 4
1.13 Run-time Job Customization . 5
1.14 Red Hat Insights Integration . 5
1.15 Enhanced Tower User Interface . 5
1.16 Custom Virtual Environments . 5
1.17 Authentication Enhancements . 5
1.18 Cluster Management . 5
1.19 Container Platform Support . 6
1.20 Workflow Enhancements . 6
1.21 Job Distribution . 6
1.22 Support for deployment in a FIPS-enabled environment . 6
1.23 Limit the number of hosts per organization . 6
1.24 Inventory Plugins . 7
1.25 Secret Management System . 7

2 Tower Licensing, Updates, and Support 8
2.1 Support . 8
2.2 Trial / Evaluation . 8
2.3 Subscription Types . 8
2.4 Node Counting in Licenses . 9
2.5 Tower Component Licenses . 9

3 Logging In 10

4 Import a License 11
4.1 Adding a Tower License Manually . 13

5 The Tower User Interface 15

i

5.1 Activity Streams . 15
5.2 Views . 17
5.3 Resources and Access . 21
5.4 Tower Administration Menu . 21

6 Search 23
6.1 Searching Tips . 23
6.2 Sort . 25

7 Organizations 27
7.1 Creating a New Organization . 28
7.2 Work with Users . 30
7.3 Work with Permissions . 31
7.4 Work with Notifications . 37
7.5 Organization Summary . 38

8 Users 39
8.1 Create a User . 39
8.2 User Types - Quick View . 41
8.3 Users - Organizations . 42
8.4 Users - Teams . 42
8.5 Users - Permissions . 43
8.6 Users - Tokens . 46

9 Teams 48
9.1 Create a Team . 48

10 Credentials 54
10.1 Understanding How Credentials Work . 54
10.2 Getting Started with Credentials . 54
10.3 Add a New Credential . 56
10.4 Credential Types . 57

11 Custom Credential Types 72
11.1 Backwards-Compatible API Considerations . 72
11.2 Getting Started with Credential Types . 73
11.3 Create a New Credential Type . 74

12 Secret Management System 79
12.1 Configure and link secret lookups . 79

13 Applications 86
13.1 Getting Started with Applications . 86
13.2 Create a new application . 87

14 Projects 91
14.1 Add a new project . 93
14.2 Work with Permissions . 98
14.3 Work with Notifications . 102
14.4 Work with Job Templates . 103
14.5 Work with Schedules . 103
14.6 Ansible Galaxy Support . 104
14.7 Collections Support . 105

15 Inventories 107
15.1 Smart Inventories . 109

ii

15.2 Inventory Plugins . 110
15.3 Add a new inventory . 111
15.4 Running Ad Hoc Commands . 135

16 Job Templates 139
16.1 Create a Job Template . 140
16.2 Add Permissions . 146
16.3 Work with Notifications . 151
16.4 View Completed Jobs . 152
16.5 Scheduling . 152
16.6 Surveys . 153
16.7 Launch a Job Template . 156
16.8 Copy a Job Template . 159
16.9 Scan Job Templates . 159
16.10 Fact Caching . 163
16.11 Utilizing Cloud Credentials . 164
16.12 Provisioning Callbacks . 167
16.13 Extra Variables . 169

17 Job Slicing 171
17.1 Job slice considerations . 171
17.2 Job slice execution behavior . 172
17.3 Search job slices . 173

18 Workflows 174
18.1 Workflow scenarios and considerations . 174
18.2 Extra Variables . 176
18.3 Workflow States . 178
18.4 Role-Based Access Controls . 178

19 Workflow Job Templates 179
19.1 Create a Workflow Template . 180
19.2 Work with Permissions . 183
19.3 Work with Notifications . 184
19.4 View Completed Jobs . 185
19.5 Work with Schedules . 187
19.6 Surveys . 187
19.7 Workflow Visualizer . 190
19.8 Launch a Workflow Template . 203
19.9 Copy a Workflow Template . 204
19.10 Extra Variables . 205

20 Instance Groups 207
20.1 Create an instance group . 207

21 Jobs 212
21.1 Job Details - Inventory Sync . 214
21.2 Job Details - SCM . 216
21.3 Job Details - Playbook Run . 217
21.4 Ansible Tower Capacity Determination and Job Impact . 222
21.5 Job branch overriding . 225

22 Working with Webhooks 230
22.1 GitHub webhook setup . 230
22.2 GitLab webhook setup . 236

iii

22.3 Payload output . 242

23 Notifications 244
23.1 Notification Hierarchy . 244
23.2 Workflow . 245
23.3 Create a Notification Template . 245
23.4 Notification Types . 246
23.5 Create custom notifications . 254
23.6 Enable and Disable Notifications . 259
23.7 Configure the towerhost hostname . 260
23.8 Notifications API . 260

24 Schedules 262
24.1 Add a new schedule . 263

25 Setting up an Insights Project 265
25.1 Create Insights Credential . 265
25.2 Create an Insights Project . 267
25.3 Create Insights Inventory . 268
25.4 Create a Scan Project . 269
25.5 Create a Scan Job Template . 270
25.6 Remediate Insights Inventory . 273

26 Best Practices 277
26.1 Use Source Control . 277
26.2 Ansible file and directory structure . 277
26.3 Use Dynamic Inventory Sources . 277
26.4 Variable Management for Inventory . 278
26.5 Autoscaling . 278
26.6 Larger Host Counts . 278
26.7 Continuous integration / Continuous Deployment . 278
26.8 LDAP authentication performance tips . 278

27 Security 279
27.1 Playbook Access and Information Sharing . 279
27.2 Role-Based Access Controls . 282
27.3 Function of roles: editing and creating . 290

28 Index 293

29 Copyright © 2020 Red Hat, Inc. 294

Index 295

iv

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Thank you for your interest in Red Hat Ansible Tower. Ansible Tower is a commercial offering that helps teams man-
age complex multi-tier deployments by adding control, knowledge, and delegation to Ansible-powered environments.

The Ansible Tower User Guide discusses all of the functionality available in Ansible Tower and assumes moderate
familiarity with Ansible, including concepts such as Playbooks, Variables, and Tags. For more information on these
and other Ansible concepts, please see the Ansible documentation at http://docs.ansible.com/. This document has been
updated to include information for the latest release of Ansible Tower 3.6.3.

We Need Feedback!

If you spot a typo in this documentation, or if you have thought of a way to make this manual better, we would love to
hear from you! Please send an email to: docs@ansible.com

If you have a suggestion, try to be as specific as possible when describing it. If you have found an error, please include
the manual’s title, chapter number/section number, and some of the surrounding text so we can find it easily. We may
not be able to respond to every message sent to us, but you can be sure that we will be reading them all!

Ansible Tower Version 3.6.3; February 20, 2020; https://access.redhat.com/

CONTENTS 1

http://docs.ansible.com/
mailto:docs@ansible.com
https://access.redhat.com/

CHAPTER

ONE

OVERVIEW

Thank you for your interest in Ansible Tower. Tower is a graphically-enabled framework accessible via a web interface
and a REST API endpoint for Ansible, the open source IT orchestration engine. Whether sharing operations tasks with
your team or integrating with Ansible through the Tower REST API, Tower provides many powerful tools to make
your automation life easier.

1.1 Real-time Playbook Output and Exploration

Watch playbooks run in real time, seeing each host as they check in. Easily go back and explore the results for specific
tasks and hosts in great detail. Search for specific plays or hosts and see just those results, or quickly zero in on errors
that need to be corrected.

1.2 “Push Button” Automation

Access your favorite projects and re-trigger execution from the web interface with a minimum of clicking. Tower will
ask for input variables, prompt for your credentials, kick off and monitor the job, and display results and host history
over time.

1.3 Enhanced and Simplified Role-Based Access Control and Audit-
ing

Ansible Tower allows for the granting of permissions to perform a specific task (such as to view, create, or modify a
file) to different teams or explicit users through role-based access control (RBAC).

Keep some projects private, while allowing some users to edit inventory and others to run playbooks against only
certain systems–either in check (dry run) or live mode. You can also allow certain users to use credentials without
exposing the credentials to them. Regardless of what you do, Tower records the history of operations and who made
them–including objects edited and jobs launched.

Based on user feedback, Ansible Tower both expands and simplifies its role-based access control. No longer is job
template visibility configured via a combination of permissions on inventory, projects, and credentials. If you want to
give any user or team permissions to use a job template, just assign permissions directly on the job template. Similarly,
credentials are now full objects in Tower’s RBAC system, and can be assigned to multiple users and/or teams for use.

A new ‘Auditor’ type has been introduced in Tower as well, who can see all aspects of the systems automation, but
has no permission to run or change automation, for those that need a system-level auditor. (This may also be useful
for a service account that scrapes automation information from Tower’s API.) Refer to Role-Based Access Controls
for more information.

2

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Subsequent releases of Ansible Tower provides more granular permissions, making it easier to delegate inside your
organizations and remove automation bottlenecks.

1.4 Cloud & Autoscaling Flexibility

Tower features a powerful provisioning callback feature that allows nodes to request configuration on demand. While
optional, this is an ideal solution for a cloud auto-scaling scenario, integrating with provisioning servers like Cobbler,
or when dealing with managed systems with unpredictable uptimes. Requiring no management software to be installed
on remote nodes, the callback solution can be triggered via a simple call to ‘curl’ or ‘wget’, and is easily embeddable in
init scripts, kickstarts, or preseeds. Access is controlled such that only machines in inventory can request configuration.

1.5 The Ideal RESTful API

The Tower REST API is the ideal RESTful API for a systems management application, with all resources fully
discoverable, paginated, searchable, and well modeled. A styled API browser allows API exploration from the API
root at http://<Tower server name>/api/, showing off every resource and relation. Everything that can
be done in the user interface can be done in the API - and more.

1.6 Backup and Restore

The ability to backup and restore your system(s) has been integrated into the Tower setup playbook, making it easy
for you to backup and replicate your Tower instance as needed.

1.7 Ansible Galaxy Integration

When it comes to describing your automation, everyone repeats the DRY mantra–“Don’t Repeat Yourself.” Using
centralized copies of Ansible roles, such as in Ansible Galaxy, allows you to bring that philosophy to your playbooks.
By including an Ansible Galaxy requirements.yml file in your project directory, Tower automatically fetches the roles
your playbook needs from Galaxy, GitHub, or your local source control. Refer to Ansible Galaxy Support for more
information.

1.8 Inventory Support for OpenStack

Ansible is committed to making OpenStack simple for everyone to use. As part of that, dynamic inventory support has
been added for OpenStack. This allows you to easily target any of the virtual machines or images that you’re running
in your OpenStack cloud.

1.4. Cloud & Autoscaling Flexibility 3

Ansible Tower User Guide, Release Ansible Tower 3.6.3

1.9 Remote Command Execution

Often times, you just need to do a simple task on a few hosts, whether it’s add a single user, update a single security
vulnerability, or restart a misbehaving service. Beginning with version 2.2.0, Tower includes remote command execu-
tion–any task that you can describe as a single Ansible play can be run on a host or group of hosts in your inventory,
allowing you to get managing your systems quickly and easily. Plus, it is all backed by Tower’s RBAC engine and
detailed audit logging, removing any questions regarding who has done what to what machines.

1.10 System Tracking

System tracking (historical facts) feature was deprecated starting with Ansible Tower 3.2. However, you can collect
facts by using the fact caching feature. Refer to Fact Caching for more detail.

1.11 Integrated Notifications

Ansible Tower allows you to easily keep track of the status of your automation. You can configure stackable notifica-
tions for job templates, projects, or entire organizations, and configure different notifications for job start, job success,
job failure, and job approval (for workflow nodes). The following notification sources are supported:

• Email

• Grafana

• HipChat

• IRC

• Mattermost

• PagerDuty

• Rocket.Chat

• Slack

• Twilio

• Webhook (post to an arbitrary webhook, for integration into other tools)

Additionally, you can customize notification messages for each of the above notification types.

1.12 Satellite and CloudForms Integration

Ansible Tower 3.0 also adds dynamic inventory sources for Red Hat Satellite 6 and Red Hat CloudForms.

1.9. Remote Command Execution 4

Ansible Tower User Guide, Release Ansible Tower 3.6.3

1.13 Run-time Job Customization

Bringing the flexibility of the command line to Tower, you can now prompt for any of the following:

• inventory

• credential

• job tags

• limits

1.14 Red Hat Insights Integration

Ansible Tower 3.1 supports integration with Red Hat Insights, which allows Insights playbooks to be used as a Tower
Project.

1.15 Enhanced Tower User Interface

In Ansible Tower 3.3, the layout of the user interface was reorganized to improve navigational elements. With more
information displayed at-a-glance, it is more intuitive to find and use the automation you need. Compact and expanded
viewing modes show and hide information as needed, and various built-in attributes make it easy to sort.

1.16 Custom Virtual Environments

Custom Ansible environment support allows you to have different Ansible environments and specify custom paths for
different teams and jobs.

1.17 Authentication Enhancements

Ansible Tower 3.3 enhanced LDAP and SAML support and introduced token-based authentication. Enhanced LDAP
and SAML support allows you to integrate your enterprise account information in a more flexible manner. Token-
based Authentication allows for easily authentication of third-party tools and services with Tower via integrated OAuth
2 token support.

1.18 Cluster Management

Run-time management of cluster groups allows for easily configurable scaling.

1.13. Run-time Job Customization 5

Ansible Tower User Guide, Release Ansible Tower 3.6.3

1.19 Container Platform Support

Tower is available as a containerized pod service for Red Hat OpenShift Container Platform that can be scaled up and
down easily as needed.

1.20 Workflow Enhancements

In order to better model your complex provisioning, deployment, and orchestration workflows, Ansible Tower ex-
panded workflows in a number of ways:

• Inventory overrides for Workflows. You can now override an inventory across a workflow at workflow defini-
tion time, or even at launch time. Define your application deployment workflow, and then easily re-use them in
multiple environments.

• Convergence nodes for Workflows. When modeling complex processes, you sometimes need to wait for
multiple steps to finish before proceeding. Now Ansible Tower workflows can easily replicate this; workflow
steps can now wait for any number of prior workflow steps to complete properly before proceeding.

• Workflow Nesting. Re-use individual workflows as components of a larger workflow. Examples include com-
bining provisioning and application deployment workflows into a single master workflow.

• Workflow Pause and Appproval. You can build workflows containing approval nodes that require user inter-
vention. This makes it possible to pause workflows in between playbooks so that a user can give approval (or
denial) for continuing on to the next step in the workflow.

1.21 Job Distribution

As automation moves enterprise-wide, the need to automate at scale grows. Now with Ansible Tower 3.4, we offer the
ability to take a fact gathering or configuration job running across thousands of machines and slice it into individual
job slices that can be distributed across your Ansible Tower cluster for increased reliability, faster job completion, and
better cluster utilization. If you need to change a parameter across 15,000 switches at scale, or gather information
across your multi-thousand-node RHEL estate, you can now do so easily.

1.22 Support for deployment in a FIPS-enabled environment

If you require running your environment in restricted modes such as FIPS, Ansible Tower now deploys and runs in
such environments.

1.23 Limit the number of hosts per organization

Lots of large organizations have Tower instances shared among many organizations. They do not want any one
organization to be able to use all the licensed hosts, this feature allows superusers to set a specified upper limit on
how many licensed hosts may be allocated to each organization. The Tower algorithm factors changes in the limit for
an organization and the number of total hosts across all organizations. Any inventory updates will fail if an inventory
sync brings an organization out of compliance with the policy. Additionally, superusers are able to ‘over-allocate’ their
licenses, with a warning.

1.19. Container Platform Support 6

Ansible Tower User Guide, Release Ansible Tower 3.6.3

1.24 Inventory Plugins

Added the use of inventory plugins for inventory updates running in Ansible version 2.8 and higher, for various sources.

1.25 Secret Management System

With a secret management system, external credentials are stored and supplied for use in Tower so you don’t have to
provide them to Tower directly.

1.24. Inventory Plugins 7

CHAPTER

TWO

TOWER LICENSING, UPDATES, AND SUPPORT

Red Hat Ansible Tower (“Ansible Tower”) is a software product provided as part of an annual Red Hat Ansible
Automation Platform subscription entered into between you and Red Hat, Inc. (“Red Hat”).

Ansible is an open source software project and is licensed under the GNU General Public License version 3, as detailed
in the Ansible source code: https://github.com/ansible/ansible/blob/devel/COPYING

2.1 Support

Red Hat offers support to paid Red Hat Ansible Automation Platform customers.

If you or your company has purchased a subscription for Ansible Automation Platform, you can contact the support
team at https://access.redhat.com. To better understand the levels of support which match your Ansible Automa-
tion Platform subscription, refer to Subscription Types. For details of what is covered under an Ansible Automa-
tion Platform subscription, please see the Scopes of Support at: https://access.redhat.com/support/policy/updates/
ansible-tower#scope-of-coverage-4 and https://access.redhat.com/support/policy/updates/ansible-engine.

2.2 Trial / Evaluation

While a license is required for Ansible Tower to run, there is no fee for a trial license.

• Trial licenses for Red Hat Ansible Automation are available at: http://ansible.com/license

• Support is not included in a trial license or during an evaluation of the Tower Software.

2.3 Subscription Types

Red Hat Ansible Automation Platform is provided at various levels of support and number of machines as an annual
Subscription.

• Standard

– Manage any size environment

– Enterprise 8x5 support and SLA

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

8

https://github.com/ansible/ansible/blob/devel/COPYING
https://access.redhat.com
https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4
https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4
https://access.redhat.com/support/policy/updates/ansible-engine
http://ansible.com/license
https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Premium

– Manage any size environment, including mission-critical environments

– Premium 24x7 support and SLA

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

All Subscription levels include regular updates and releases of Ansible Tower, Ansible, and any other components of
the Platform.

For more information, contact Ansible via the Red Hat Customer portal at https://access.redhat.com/ or at http://www.
ansible.com/contact-us/.

2.4 Node Counting in Licenses

The Tower license defines the number of Managed Nodes that can be managed as part of a Red Hat Ansible Automation
Platform subscription. A typical license will say ‘License Count: 500’, which sets the maximum number of Managed
Nodes at 500.

For more information on managed node requirements for licensing, please see https://access.redhat.com/articles/
3331481.

2.5 Tower Component Licenses

To view the license information for the components included within Ansible Tower, refer to /usr/share/doc/
ansible-tower-<version>/README where <version> refers to the version of Ansible Tower you have
installed.

To view a specific license, refer to /usr/share/doc/ansible-tower-<version>/*.txt, where * is re-
placed by the license file name to which you are referring.

2.4. Node Counting in Licenses 9

https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity
https://access.redhat.com/
http://www.ansible.com/contact-us/
http://www.ansible.com/contact-us/
https://access.redhat.com/articles/3331481
https://access.redhat.com/articles/3331481

CHAPTER

THREE

LOGGING IN

To log in to Tower, browse to the Tower interface at: http://<Tower server name>/

Log in using a valid Tower username and password.

The default username and password set during installation are admin and password, but the Tower administrator may
have changed these settings during installation. If the default settings have not been changed, you can do so by

accessing the Users () icon from the left navigation bar.

10

CHAPTER

FOUR

IMPORT A LICENSE

Tower requires a valid subscription to run. If you do not already have one, request one from the initial screen when
you launch Tower. If you have issues with your subscription, contact Red Hat via the Red Hat Customer portal at
https://access.redhat.com/.

Note: To successfully add your license, you must be logged on as the Superuser. Otherwise, the operation will fail.

When Tower launches for the first time, the license screen automatically displays. Use your Red Hat credentials to
retrieve and import your subscription, or import the license key you received from Red Hat:

1. Enter your Red Hat customer credentials on the right side of the screen. Alternatively, if you have a license file,
click the Browse button and navigate to the location where the license file is saved to upload it. The uploaded
license may be a plain text file or a JSON file, and must include properly formatted JSON code.

11

https://access.redhat.com/

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: The license import will work for Tower nodes with RHEL only. For non-RHEL (e.g. CentOS based Tower
nodes), activate the license using the license file instead. When using Red Hat customer credentials, you must use
your Red Hat username and password, not your Red Hat account email address and password.

2. If you entered your credential information, click Get Licenses.

Once your credential information (or license) is recognized, and you are on RHEL 7 and later, you will see a prompt
with your Red Hat subscription(s). Choose the subscription you want to run (the example below has only one sub-
scription). You can log in over time and retrieve new subscriptions if you have renewed.

Other non-RHEL subscribers, after uploading the license file, proceed by checking the End User License Agreement.

3. The bottom half of the license screen involves analytics data collection. This helps Red Hat improve the product
by delivering you a much better user experience. For more information about data collection, refer to Usability
Analytics and Data Collection. This option is checked by default, but you may opt out of any of the following:

• User analytics collects data from the Tower User Interface.

• Automation analytics provides a high level analysis of your automation with Ansible Tower, which is used to
help you identify trends and anomalous use of Tower. For opt-in of Automation Analytics to have any effect,
your instance of Ansible Tower must be running on Red Hat Enterprise Linux. See instructions described in the
Automation Analytics section.

Note: At this time, Automation Insights is not supported when Ansible Tower is running in the OpenShift Con-
tainer Platform. You may change your analytics data collection preferences at any time, as described in the Usability
Analytics and Data Collection section.

4. After you have specified your tracking and analytics preferences, click Submit.

Once your license has been accepted, Tower briefly displays the license screen and navigates you to the Dashboard of
the Ansible Tower interface (which you can access by clicking on the Ansible Tower logo at the top left of the screen
as well).

12

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/usability_data_collection.html#usability-data-collection
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/usability_data_collection.html#usability-data-collection
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/usability_data_collection.html#user-data-insights
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/usability_data_collection.html#usability-data-collection
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/usability_data_collection.html#usability-data-collection

Ansible Tower User Guide, Release Ansible Tower 3.6.3

For later reference, you can return to the license screen by clicking the Settings () icon from the left navigation
bar and select the License tab from the Settings screen.

4.1 Adding a Tower License Manually

If you are in a situation where uploading a file is not allowed due to a locked down environment, you can add the
Ansible Tower license by hand using Tower’s API.

Note: To successfully add your license, you must be logged on as the Superuser. Otherwise, the operation will fail.
Use only the procedure described here for applying a license via the API. Do not put the license in a file, and manually
placing it in the license directory of your Ansible Tower install. The ability to do so has been deprecated in version
3.1.0.

To add the license file manually:

1. In Tower’s REST API, at the /api/v2/config/ endpoint, scroll down to the POST text entry box.

2. Add your valid license, the one you received directly from Ansible, to the POST box using the following as an
example:

{"eula_accepted" : "true",
"subscription_name": "Enterprise Tower up to 100000 Nodes",
"features": {},
"instance_count": 100000,
"trial": false,
"contact_email": "maddux@hotdog.com",
"company_name": "Dr. Maddux Golden",
"license_type": "enterprise",
"contact_name": "Dr. Maddux Golden",

(continues on next page)

4.1. Adding a Tower License Manually 13

Ansible Tower User Guide, Release Ansible Tower 3.6.3

(continued from previous page)

"license_date": 0000000000,
"license_key":

↪→"xxx111xx111xxx1x1x1x1x1x11x1xxxx1x1xx1x1xx1x1x1x1xxx111xx1x1xx1x"

}

3. When finished, click the POST button and review your license.

4.1. Adding a Tower License Manually 14

CHAPTER

FIVE

THE TOWER USER INTERFACE

The Tower User Interface offers a friendly graphical framework for your IT orchestration needs. The left navigation
bar provides quick access to resources, such as Projects, Inventories, Job Templates, and Jobs.

Across the top-right side of the interface, you can access your user profile, the About page, view related documentation,
and log out. Right below these options, you can view the activity stream for that user by clicking on the Activity Stream

button.

5.1 Activity Streams

Most screens in Tower have an Activity Stream () button. Clicking this brings up the Activity Stream for this
object.

15

Ansible Tower User Guide, Release Ansible Tower 3.6.3

An Activity Stream shows all changes for a particular object. For each change, the Activity Stream shows the time of
the event, the user that initiated the event, and the action. The information displayed varies depending on the type of

event. Clicking on the Examine () button shows the event log for the change.

The Activity Stream can be filtered by the initiating user (or the system, if it was system initiated), and by any related
Tower object, such as a particular credential, job template, or schedule.

5.1. Activity Streams 16

Ansible Tower User Guide, Release Ansible Tower 3.6.3

The Activity Stream on the main Dashboard shows the Activity Stream for the entire Tower instance. Most pages in
Tower allow viewing an activity stream filtered for that specific object.

5.2 Views

The Tower User Interface provides several options for viewing information.

5.2.1 Dashboard view

The Dashboard view begins with a summary of your hosts, inventories, and projects. Each of these is linked to the
corresponding objects in Tower for easy access.

On the main Tower Dashboard screen, a summary appears listing your current Job Status. Also available for review
are summaries of Recently Used Templates and Recent Job Runs.

5.2. Views 17

Ansible Tower User Guide, Release Ansible Tower 3.6.3

The Job Status graph displays the number of successful and failed jobs over a specified time period. You can choose
to limit the job types that are viewed, and to change the time horizon of the graph.

The Recently Used Templates section of this display shows a summary of the most recently used templates. You can

also access this summary by clicking the Templates () icon from the left navigation bar.

The Recent Job Runs section displays which jobs were most recently run, their status, and time when they were run
as well.

Note: Clicking on the Dashboard () icon from the left navigation bar or the Ansible Tower logo at any time
returns you to the Dashboard.

5.2.2 Jobs view

Access the Jobs view by clicking the Jobs () icon from the left navigation bar. This view shows all the jobs
that have ran in Tower, including projects, templates, management jobs, SCM updates, playbook runs, etc.

5.2. Views 18

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5.2.3 Schedules view

Access the Schedules view by clicking the Schedules () icon from the left navigation bar. This view shows all
the scheduled jobs that are configured.

5.2.4 My View

My View, is a user’s single-page view of jobs and job templates. It can be accessed by clicking the My View ()
icon from the left navigation bar or by navigating to https://<Tower server name>/portal.

My View is a simplified interface for users who need to run Ansible jobs, but that do not need an advanced knowledge
of Ansible or Tower. My View could be used by, for instance, development teams, or even departmental users in
non-technical fields.

My View offers Tower users a simplified, clean interface to the jobs that they are able to run, and the results of jobs
that they have run in the past.

5.2. Views 19

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Pressing the button beside a job in My View launches it, potentially asking some survey questions if the job is
configured to do so.

My View displays two main sections–Job Templates and Jobs. The Job Templates panel shows the job templates that

are available to be run. To launch a job template, click the button. This launches the job, which can be viewed
in the Jobs panel.

The Jobs pane shows the list of jobs that have run in the past. Sort for jobs specific to you by clicking the My Jobs
button or review all jobs you have access to view by clicking the All Jobs button, above the search bar.

• My Jobs: View jobs that you (as the user) ran.

• All Jobs: View your team members’ completed jobs, viewable based on your RBAC permissions.

For each job, you can view and sort by any number of the job’s attributes shown. Clicking on the link for the job opens
a new window with the Job Details for that job (refer to Jobs for more information).

Other portions of the interface are hidden from view until My View is exited.

5.2. Views 20

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5.3 Resources and Access

The Resources and Access menus provide you access to the various components of Ansible Tower and allow you to
configure who has permissions for which of those resources.

5.4 Tower Administration Menu

The Administration menu provides access to the various administrative options:

5.3. Resources and Access 21

Ansible Tower User Guide, Release Ansible Tower 3.6.3

From here, you can create, view, and edit custom credential types, notifications, management jobs, tokens and appli-
cations, and configure Tower settings. Configuring Tower settings is accomplished through the Settings menu, which
is described in further detail in the proceeding section.

5.4.1 Settings Menu

Starting with Ansible Tower 3.0, the Settings () menu offers access to administrative configuration options.
Users of older versions of Ansible Tower (2.4.5 or older) can access most of these through the top-level navigational
menu or from their “Setup” menu button.

To enter the Settings window for Ansible Tower, click the Settings icon at the bottom of the left navigation
bar. This page allows you to modify your Tower’s configuration, such as settings associated with authentication, jobs,
system, user interface, and view or import your license.

For more information on configuring these settings, refer to Tower Configuration section of the Ansible Tower Admin-
istration Guide.

5.4. Tower Administration Menu 22

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/configure_tower_in_tower.html#configure-tower-overview

CHAPTER

SIX

SEARCH

Ansible Tower release 3.1 introduced the Tower Search, a powerful search tool that provides both search and filter
capabilities that span across multiple functions.

Acceptable search criteria are provided in an expandable “cheat-sheet” accessible from the Key button.

Use the Clear All to clear the search criteria.

6.1 Searching Tips

These searching tips assume that you are not searching hosts. Most of this section still applies to hosts but with some
subtle differences. A typical syntax of a search consists a field (left-hand side) and a value (right-hand side). A colon
is used to separate the field that you want to search from the value. If a search doesn’t have a colon (see example 3)
it is treated as a simple string search where ?search=foobar is sent. Here are the examples of syntax used for
searching:

1. name:localhost In this example, the string before the colon represents the field that you want to search on.
If that string does not match something from Fields or Related Fields then it’s treated the same way Example 3
is (string search). The string after the colon is the string that you want to search for within the name attribute.

23

Ansible Tower User Guide, Release Ansible Tower 3.6.3

2. organization.name:Default This example shows a Related Field Search. The period in the left-hand
portion separates the model from the field in this case. Depending on how deep/complex the search is, you could
have multiple periods in that left-hand portion.

3. foobar Simple string (key term) search that will find all instances of that term using an icontains search
against the name and description fields. If a space is used between terms (e.g. foo bar), then any results that
contain both terms will be returned. If the terms are wrapped in quotes (e.g. “foo bar”), Tower will search for
the entire string with the terms appearing together. Specific name searches will search against the API name.
For example, Management job in the user interface is system_job in the API.

4. organization:Default This example shows a Related Field search but without specifying a field to go
along with the organization. This is supported by the API and is analogous to a simple string search but done
against the organization (will do an icontains search against both the name and description).

6.1.1 Values for search fields

To find values for certain fields, refer to the API endpoint for extensive options and their valid values. For example,
if you want to search against /api/v2/jobs -> type field, you can find the values by performing an OPTIONS
request to /api/v2/jobs and look for entries in the API for "type". Additionally, you can view the related
searches by scrolling to the bottom of each screen. In the example for /api/v2/jobs, the related search shows:

"related_search_fields": [
"modified_by__search",
"project__search",
"project_update__search",
"credentials__search",
"unified_job_template__search",
"created_by__search",
"inventory__search",
"labels__search",
"schedule__search",
"webhook_credential__search",
"job_template__search",
"job_events__search",
"dependent_jobs__search",
"launch_config__search",
"unifiedjob_ptr__search",
"notifications__search",
"unified_job_node__search",
"instance_group__search",
"hosts__search",
"job_host_summaries__search"

The values for Fields come from the keys in a GET request. url, related, and summary_fields are not used.
The values for Related Fields also come from the OPTIONS response, but from a different attribute. Related Fields
is populated by taking all the values from related_search_fields and stripping off the __search from the
end.

Any search that does not start with a value from Fields or a value from the Related Fields, will be treated as a generic
string search. Searching for something like localhost will result in the UI sending ?search=localhost as a
query parameter to the API endpoint. This is a shortcut for an icontains search on the name and description fields.

6.1. Searching Tips 24

Ansible Tower User Guide, Release Ansible Tower 3.6.3

6.1.2 Searching using values from Related Fields

Searching a Related Field requires you to start the search string with the Related Field. This example describes how
to search using values from the Related Field, organization.

The left-hand side of the search string must start with organization (ex: organization:Default). Depending
on the related field, you might want to provide more specific direction for the search by providing secondary/tertiary
fields. An example of this would be to specify that you want to search for all job templates that use a project matching
a certain name. The syntax on this would look like: job_template.project.name:"A Project".

Note: This query would execute against the unified_job_templates endpoint which is why it starts with
job_template. If we were searching against the job_templates endpoint, then you wouldn’t need the
job_template portion of that query.

6.1.3 Other search considerations

The following are a few things about searching in Tower that you should be aware of:

• There’s currently no supported syntax for OR queries. All search terms get AND’d in the query parameters.

• The left-hand portion of a search parameter can be wrapped in quotes to support searching for strings with
spaces.

• Currently, the values in the Fields are direct attributes expected to be returned in a GET request. Whenever
you search against one of the values, Tower essentially does an __icontains search. So, for example,
name:localhost would send back ?name__icontains=localhost. Tower currently performs this
search for every Field value, even id, which is not ideal.

6.2 Sort

Where applicable, use the arrows in each column to sort by ascending or descending order (following is an example
from the schedules list).

The direction of the arrow indicates the sort order of the column.

6.2. Sort 25

Ansible Tower User Guide, Release Ansible Tower 3.6.3

6.2. Sort 26

CHAPTER

SEVEN

ORGANIZATIONS

An Organization is a logical collection of Users, Teams, Projects, and Inventories, and is the highest level in the
Tower object hierarchy.

Access the Organizations page by clicking the Organizations () icon from the left navigation bar. The Organi-
zations page displays all of the existing organizations for your installation of Tower. Organizations can be searched by
Name or Description. Modify and remove organizations using the Edit and Delete buttons.

Note: Tower creates a default organization automatically. Users of Tower with a Self-Support level license (formerly
called Basic) only have the default organization available and should not delete it. Users of older versions of Tower
(prior to 2.2) will not see this default organization.

27

http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/glossary.html#term-Organization

Ansible Tower User Guide, Release Ansible Tower 3.6.3

7.1 Creating a New Organization

You can create a new organization by selecting the button.

An organization has several attributes that may be configured:

1. Enter the Name for your organization (required).

2. Enter a Description for the organization.

3. Enter an Instance Group on which to run this organization.

4. Select from the drop-down menu list a custom virtual Ansible Environment on which to run this organization.
This field is only present if custom environments were previously created. See Using virtualenv with Ansible
Tower in the Ansible Tower Upgrade and Migration Guide.

5. The Max Hosts is only editable by a superuser to set an upper limit on the number of license hosts that an
organization can have. Setting this value to 0 signifies no limit. If you try to add a host to an organization that
has reached or exceeded its cap on hosts, an error message displays:

7.1. Creating a New Organization 28

http://docs.ansible.com/ansible-tower/3.6.3/html/upgrade-migration-guide/virtualenv.html#upgrade-venv
http://docs.ansible.com/ansible-tower/3.6.3/html/upgrade-migration-guide/virtualenv.html#upgrade-venv

Ansible Tower User Guide, Release Ansible Tower 3.6.3

The inventory sync output view also shows the host limit error. Click the icon for additional detail about the
error.

6. Click Save to finish creating the organization.

Once created, Tower displays the Organization details, and allows for the managing of users and administrators for the
organization.

7.1. Creating a New Organization 29

Ansible Tower User Guide, Release Ansible Tower 3.6.3

7.2 Work with Users

Clicking on Users (beside Details when viewing your organization), displays all the Users associated with this Or-
ganization. A User is someone with access to Tower with associated roles and Credentials. Adding a user to an
organization adds them as a member only, specifying a role for the user can be done in the the Permissions tab, as
shown in the example below.

As you can manage the user membership for this Organization here, you can manage user membership on a per-user

basis from the Users page by clicking the Users () icon from the left navigation bar. The user list from the
Organizations view may be sorted by username. Use the Tower Search to search for users by various attributes. Click
Key for using the search, or refer to the Search chapter for more information.

Clicking on a user brings up that user’s details, allowing you to review, grant, edit, and remove associated permissions
for that user. For more information, refer to Users.

7.2.1 Add a User

In order to add a user to an organization, the user must already be created in Tower. Refer to Create a User to create a
user. To add existing users to the Organization:

1. Click the button.

2. Select one or more users from the list of available users by clicking the check box next to the user(s) to add them
as members of the organization.

7.2. Work with Users 30

Ansible Tower User Guide, Release Ansible Tower 3.6.3

In this example, two users have been selected to be added to this organization.

3. Click the Save button when done.

7.3 Work with Permissions

Clicking on Permissions (beside Users when viewing your organization), allows you to easily manage the permissions
for this organization.

7.3. Work with Permissions 31

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Organizations have a unique set of roles not described here. You can assign specific users certain levels of permissions
within your organization, or allow them to act as an admin for a particular resource. Refer to Role-Based Access
Controls for more information.

Note: A credential with roles associated will retain them even after the credential has been reassigned to another
organization.

The Permissions tab allows you to review, grant, edit, and remove associated permissions for users as well as team
members. To assign permissions to a particular user for this resource:

1. Click the Permissions tab.

2. Click the button to open the Add Users/Teams window.

7.3. Work with Permissions 32

Ansible Tower User Guide, Release Ansible Tower 3.6.3

3. Specify the users or teams that will have access then assign them specific roles:

a. Click to select one or multiple check boxes beside the name(s) of the user(s) or team(s) to select
them.

Note: You can select multiple users and teams at the same time by navigating between the Users and
Teams tabs without saving.

After selections are made, the window expands to allow you to select a role from the drop-down menu list
for each user or team you chose.

7.3. Work with Permissions 33

Ansible Tower User Guide, Release Ansible Tower 3.6.3

The example above shows options associated with inventories. Different resources have different options
available:

• Admin allows read, run, and edit privileges (applies to all resources)

• Use allows use of a resource in a job template (applies all resources except job templates)

• Update allows updating of project via the SCM Update (applies to projects and inventories)

• Ad Hoc allows use of Ad Hoc commands (applies to inventories)

• Execute allows launching of a job template (applies to job templates)

• Read allows view-only access (applies to all resources)

Tip: Use the Key button in the roles selection pane to display a description of each of the roles. For more
information, refer to the Roles section of this guide.

b. Select the role to apply to the selected user or team.

Note:

You can assign roles to multiple users and teams by navigating between the Users and Teams
tabs without saving.

7.3. Work with Permissions 34

Ansible Tower User Guide, Release Ansible Tower 3.6.3

4. Review your role assignments for each user and team.

7.3. Work with Permissions 35

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5. Click Save when done, and the Add Users/Teams window closes to display the updated roles assigned for each
user and team.

To remove Permissions for a particular user, click the Disassociate (x) button next to its resource.

This launches a confirmation dialog, asking you to confirm the disassociation.

7.3. Work with Permissions 36

Ansible Tower User Guide, Release Ansible Tower 3.6.3

7.4 Work with Notifications

Clicking the Notifications tab allows you to review any notification integrations you have setup.

Use the toggles to enable or disable the notifications to use with your particular organization. For more detail, see
Enable and Disable Notifications.

If no notifications have been set up, click the NOTIFICATIONS link from above or inside the gray box to add or
create a new notification.

Refer to Notification Types for additional details on configuring various notification types.

7.4. Work with Notifications 37

Ansible Tower User Guide, Release Ansible Tower 3.6.3

7.5 Organization Summary

An at-a-glance view of various resources associated with an organization displays at the bottom of each Organization
view, called the Organization Summary.

Click on each of the categories to view a list of resources associated with them. Some allow resources to be added,
edited, or deleted, such as Users and Admins, while others require editing from another area of the user interface.

From the summary, you can edit the details of an organization () or delete it altogether ().

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

7.5. Organization Summary 38

CHAPTER

EIGHT

USERS

A User is someone who has access to Tower with associated permissions and credentials. Access the Users page by

clicking the Users () icon from the left navigation bar. The Users page allows you to manage all Tower users.
The User list may be sorted and searched by Username, First Name, or Last Name and click the headers to toggle
your sorting preference.

8.1 Create a User

To create a new user:

1. Click the button, which opens the Create User dialog.

2. Enter the appropriate details into the following required fields:

• First Name

• Last Name

• Organization (Choose from an existing organization–this is the default organization if you are using a Self-
Supported level license.)

• Email

• Username

• Password

• Confirmation Password

• User Type

39

http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/glossary.html#term-User

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: When modifying your own password, log out and log back in again in order for it to take effect.

Three types of Tower Users can be assigned:

• Normal User: Normal Users have read and write access limited to the resources (such as inventory, projects,
and job templates) for which that user has been granted the appropriate roles and privileges.

• System Auditor: Auditors implicitly inherit the read-only capability for all objects within the Tower environ-
ment.

• System Administrator: A Tower System Administrator (also known as Superuser) has full system adminis-
tration privileges for Tower – with full read and write privileges over the entire Tower installation. A System
Administrator is typically responsible for managing all aspects of Tower and delegating responsibilities for
day-to-day work to various Users. Assign with caution!

Note: The initial user (usually “admin”) created by the Tower installation process is a Superuser. One Superuser must
always exist. To delete the “admin” user account, you must first create another Superuser account.

3. Select Save when finished.

Once the user is successfully created, the User dialog opens for that newly created User.

The count for the number of users has also been updated, and a new entry for the new user is added to the list of users

below the edit form. The same window opens whether you click on the user’s name, or the Edit () button beside
the user. Here, the User’s Organizations, Teams, and Permissions, as well as other user membership details, may be
reviewed and modified.

8.1. Create a User 40

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: If the user is not a newly-created user, the user’s edit screen displays the last login activity of that user. This
information persists at the top of the screen regardless of which tab you’re viewing.

When you log in as yourself, and view the details of your own user profile, you can manage tokens from your user
profile. See Users - Tokens for more detail.

8.2 User Types - Quick View

Once a user has been created, you can easily view permissions and user type information by looking beside their user
name in the User overview screen.

If the user account is associated with an enterprise-level authentication method (such as SAML, RADIUS, or LDAP),
the user type may look like:

8.2. User Types - Quick View 41

Ansible Tower User Guide, Release Ansible Tower 3.6.3

If the user account is associated with a social authentication method, the user type will look like:

8.3 Users - Organizations

This displays the list of organizations of which that user is a member. This list may be searched by Organization Name
or Description. Organization membership cannot be modified from this display panel.

8.4 Users - Teams

This displays the list of teams of which that user is a member. This list may be searched by Team Name or Descrip-
tion. Team membership cannot be modified from this display panel. For more information, refer to Teams.

Until a Team has been created and the user has been assigned to that team, the assigned Teams Details for the User
appears blank.

8.3. Users - Organizations 42

Ansible Tower User Guide, Release Ansible Tower 3.6.3

8.5 Users - Permissions

The set of Permissions assigned to this user (role-based access controls) that provide the ability to read, modify, and
administer projects, inventories, job templates, and other Tower elements are Privileges.

Note: It is important to note that the job template administrator may not have access to any inventory, project, or
credentials associated with the template. Without access to these, certain fields in the job template aren’t editable.

This screen displays a list of the roles that are currently assigned to the selected User and can be sorted and searched
by Name, Type, or Role.

8.5. Users - Permissions 43

Ansible Tower User Guide, Release Ansible Tower 3.6.3

8.5.1 Add Permissions

To add permissions to a particular user:

1. Click the button, which opens the Add Permissions Wizard.

2. Click to select the Tower object for which the user will have access:

• Job Templates. This is the default tab displayed in the Add Permissions Wizard.

• Workflow Templates

• Projects

• Inventories

• Credentials

• Organizations

Note: You can assign different roles to different resources all at once to avoid having to click the button. To
do so, simply go from one tab to another after making your selections without saving.

3. Perform the following steps to assign the user specific roles for each type of resource:

a. In the desired tab, click the checkbox beside the name of the resource to select it.

The dialog expands to allow you to select the role for the resource you chose.

b. Select the role from the drop-down menu list provided. Only some roles are applicable to certain resources.

8.5. Users - Permissions 44

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Tip: Use the Key button to display the help text for each of the roles applicable to the resource selected.

c. Review your role assignments for each of the Tower objects by clicking on their respective buttons in the
expanded section 2 of the Add Permissions Wizard.

d. Click Save when done, and the Add Permissions Wizard closes to display the updated profile for the user
with the roles assigned for each selected resource.

8.5. Users - Permissions 45

Ansible Tower User Guide, Release Ansible Tower 3.6.3

To remove Permissions for a particular User, click the Disassociate () button under Actions. This
launches a Remove Role dialog, asking you to confirm the disassociation.

Note: You can also add teams or individual users and assign them permissions at the object level (projects, inventories,
job templates, and workflow templates) as well. Ansible Tower release 3.1 introduces the ability to batch assign
permissions. This feature reduces the time for an organization to onboard many users at one time. For more details,
refer to their respective chapters in the Ansible Tower User Guide v3.6.3.

8.6 Users - Tokens

The Tokens tab will only be present for your user (yourself). Before you add a token for your user, you may want
to create an application if you want to associate your token to it. You may also create a personal access token (PAT)
without associating it with any application. To create a token for your user:

1. If not already selected, click on your user from the Users list view to configure your OAuth 2 tokens.

2. Click the Tokens tab from your user’s profile.

When no tokens are present, the Tokens screen prompts you to add them:

3. Click the button, which opens the Create Token window.

4. Enter the following details in Create Token window:

• Application: enter the name of the application with which you want to associate your token. Alternatively, you

can search for it by clicking the button. This opens a separate window that allows you to choose from the

8.6. Users - Tokens 46

Ansible Tower User Guide, Release Ansible Tower 3.6.3

available options. Use the Search bar to filter by name if the list is extensive. Leave this field blank if you want
to create a Personal Access Token (PAT) that is not linked to any application.

• Description: optionally provide a short description for your token.

• Scope (required): specify the level of access you want this token to have.

5. When done, click Save or Cancel to abandon your changes.

After the token is saved, the newly created token for the user displays with the token information and when it expires.

Note: This is the only time the token value and associated refresh token value will ever be shown.

In the user’s profile, the application for which it is assigned to and its expiration displays in the token list view.

8.6. Users - Tokens 47

CHAPTER

NINE

TEAMS

A Team is a subdivision of an organization with associated users, projects, credentials, and permissions. Teams
provide a means to implement role-based access control schemes and delegate responsibilities across organizations.
For instance, permissions may be granted to a whole Team rather than each user on the Team.

You can create as many Teams of users as make sense for your Organization. Each Team can be assigned permissions,
just as with Users. Teams can also scalably assign ownership for Credentials, preventing multiple Tower interface
click-throughs to assign the same Credentials to the same user.

Access the Teams page by clicking the Teams () icon from the left navigation bar. The Teams page allows you
to manage the teams for Tower. The team list may be sorted and searched by Name or Organization.

9.1 Create a Team

To create a new Team:

1. Click the button.

2. Enter the appropriate details into the following fields:

48

http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/glossary.html#term-Team

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Name

• Description (optional)

• Organization (Choose from an existing organization)

3. Click Save.

Once the Team is successfully created, Tower opens the Details dialog, which also allows you to review and edit your

Team information. This is the same menu that is opened if the Edit () button is clicked from the Teams link. You
can also review Users and Permissions associated with this Team.

9.1.1 Teams - Users

This tab displays the list of Users that are members of this Team. This list may be searched by Username, First
Name, or Last Name. For more information, refer to Users.

9.1. Create a Team 49

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Add a User

In order to add a user to a team, the user must already be created in Tower. Refer to Create a User to create a user.
Adding a user to a team adds them as a member only, specifying a role for the user on different resources can be done
in the Permissions tab . To add existing users to the Team:

1. Click the button.

2. Select one or more users from the list of available users by clicking the checkbox next to the user(s) to add them
as members of the team.

In this example, one user has been selected to be added to this team.

4. Click the Save button when done.

9.1. Create a Team 50

Ansible Tower User Guide, Release Ansible Tower 3.6.3

9.1.2 Teams - Permissions

Selecting the Permissions view displays a list of the permissions that are currently available for this Team. The
permissions list may be sorted and searched by Name, Inventory, Project or Permission type.

The set of privileges assigned to Teams that provide the ability to read, modify, and administer projects, inventories,
and other Tower elements are permissions. By default, the Team is given the “read” permission (also called a role).

Permissions must be set explicitly via an Inventory, Project, Job Template, or within the Organization view.

Add Team Permissions

To add permissions to a Team:

1. Click the button, which opens the Add Permissions Wizard.

2. Click to select the Tower object for which the user will have access:

• Job Templates. This is the default tab displayed in the Add Permissions Wizard.

• Workflow Templates

• Projects

• Inventories

• Credentials

9.1. Create a Team 51

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Organizations

Note: You can assign different roles to different resources all at once to avoid having to click the button. To
do so, simply go from one tab to another after making your selections without saving.

3. Perform the following steps to assign the user specific roles for each type of resource:

a. In the desired tab, click the checkbox beside the name of the resource to select it.

The dialog expands to allow you to select the role for the resource you chose.

b. Select the role from the drop-down menu list provided. Only some roles are applicable to certain resources.

Tip: Use the Key button to display the help text for each of the roles applicable to the resource selected.

c. Review your role assignments for each of the Tower objects by clicking on their respective buttons in the
expanded section 2 of the Add Permissions Wizard.

9.1. Create a Team 52

Ansible Tower User Guide, Release Ansible Tower 3.6.3

d. Click Save when done, and the Add Permissions Wizard closes to display the updated profile for the user with
the roles assigned for each selected resource.

To remove Permissions for a particular User, click the Disassociate () button under Actions. This launches
a Remove Role dialog, asking you to confirm the disassociation.

Note: You can also add teams or individual users and assign them permissions at the object level (projects, inventories,
job templates, and workflow templates) as well. Ansible Tower release 3.1 introduces the ability to batch assign
permissions. This feature reduces the time for an organization to onboard many users at one time. For more details,
refer to their respective chapters in the Ansible Tower User Guide v3.6.3.

9.1. Create a Team 53

CHAPTER

TEN

CREDENTIALS

Credentials are utilized by Tower for authentication when launching Jobs against machines, synchronizing with inven-
tory sources, and importing project content from a version control system.

You can grant users and teams the ability to use these credentials, without actually exposing the credential to the user.
If you have a user move to a different team or leave the organization, you don’t have to re-key all of your systems just
because that credential was available in Tower.

Note: Tower encrypts passwords and key information in the Tower database and never makes secret information
visible via the API. See Ansible Tower Administration Guide for details.

10.1 Understanding How Credentials Work

Ansible Tower uses SSH to connect to remote hosts (or the Windows equivalent). In order to pass the key from Tower
to SSH, the key must be decrypted before it can be written a named pipe. Tower then uses that pipe to send the key to
SSH (so that it is never written to disk).

If passwords are used, Ansible Tower handles those by responding directly to the password prompt and decrypting the
password before writing it to the prompt.

10.2 Getting Started with Credentials

Access the Credentials page by clicking the Credentials () icon from the left navigation bar. The Credentials
page displays a search-able list of all available Credentials and can be sorted by Name.

54

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/secret_handling.html#ag-secret-handling

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Credentials added to a Team are made available to all members of the Team, whereas credentials added to a User are
only available to that specific User by default.

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

To help you get started, a Demo Credential has been created for your use.

Clicking on the link for the Demo Credential takes you to the Details view of this Credential.

10.2. Getting Started with Credentials 55

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Clicking on Permissions shows you users and teams associated with this Credential and their granted roles (owner,
admin, auditor, etc.)

Note: A credential with roles associated will retain them even after the credential has been reassigned to another
organization.

You can click the button to assign this Demo Credential to additional Users or Teams. If no users exist, add

them from the menu and refer to the Users section for further detail.

10.3 Add a New Credential

To create a new credential:

1. Click the button located in the upper right corner of the Credentials screen.

2. Enter the name for your new credential in the Name field.

3. Optionally enter or select the name of the organization with which the credential is associated.

4. Enter or select the credential type you want to create.

10.3. Add a New Credential 56

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5. Enter the appropriate details depending on the type of credential selected, as described in the next section,
Credential Types.

6. Click Save when done.

10.4 Credential Types

The following credential types are supported with Ansible Tower:

• Amazon Web Services

• Ansible Tower

• GitHub Personal Access Token

• GitLab Personal Access Token

• Google Compute Engine

• Insights

• Machine

• Microsoft Azure Resource Manager

• Network

• OpenShift or Kubernetes API Bearer Token

• OpenStack

• Red Hat CloudForms

• Red Hat Satellite 6

• Red Hat Virtualization

10.4. Credential Types 57

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Source Control

• Vault

• VMware vCenter

The credential types associated with CyberArk, HashiCorp Vault, and Microsoft Azure Key Management System
(KMS) are part of the credential plugins capability. See the Secret Management System section for further detail.

10.4.1 Amazon Web Services

Selecting this credential type enables synchronization of cloud inventory with Amazon Web Services.

Tower uses the following environment variables for AWS credentials and are fields prompted in the user interface:

AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
AWS_SECURITY_TOKEN

Traditional Amazon Web Services credentials consist of the AWS Access Key and Secret Key.

Ansible Tower version 2.4.0 introduced support for EC2 STS tokens (sometimes referred to as IAM STS credentials).
Security Token Service (STS) is a web service that enables you to request temporary, limited-privilege credentials
for AWS Identity and Access Management (IAM) users. To learn more about the IAM/EC2 STS Token, refer to:
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Note: If the value of your tags in EC2 contain booleans (yes/no/true/false), you must remember to quote them.

Warning: To use implicit IAM role credentials, do not attach AWS cloud credentials in Tower when relying on
IAM roles to access the AWS API. While it may seem to make sense to attach your AWS cloud credential to your
job template, doing so will force the use of your AWS credentials and will not “fall through” to use your IAM role
credentials (this is due to the use of the boto library.)

10.4. Credential Types 58

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Ansible Tower User Guide, Release Ansible Tower 3.6.3

10.4.2 Ansible Tower

Selecting this credential allows you to access another Tower instance.

Ansible Tower credentials have the following inputs that are required:

• Ansible Tower Hostname: The base URL or IP address of the other Tower instance to connect to.

• Username: The username to use to connect to it.

• Password: The password to use to connect to it.

10.4.3 GitHub Personal Access Token

Selecting this credential allows you to access GitHub using a Personal Access Token (PAT), which is obtained through
GitHub. See Working with Webhooks for detail. Entering the provided token is the only required value in this screen.

This credential can be used for establishing an API connection to GitHub for use in webhook listener jobs, to post
status updates.

10.4.4 GitLab Personal Access Token

Selecting this credential allows you to access GitLab using a Personal Access Token (PAT), which is obtained through
GitLab. See Working with Webhooks for detail. Entering the provided token is the only required value in this screen.

10.4. Credential Types 59

Ansible Tower User Guide, Release Ansible Tower 3.6.3

This credential can be used for establishing an API connection to GitLab for use in webhook listener jobs, to post
status updates.

10.4.5 Google Compute Engine

Selecting this credential type enables synchronization of cloud inventory with Google Compute Engine (GCE).

Tower uses the following environment variables for GCE credentials and are fields prompted in the user interface:

GCE_EMAIL
GCE_PROJECT
GCE_CREDENTIALS_FILE_PATH

GCE credentials have the following inputs that are required:

• Service Account Email Address: The email address assigned to the Google Compute Engine service account.

• Project: Optionally provide the GCE assigned identification or the unique project ID you provided at project
creation time.

• Service Account JSON File: Optionally upload a GCE service account file. Use the folder () icon to
browse for the file that contains the special account information that can be used by services and applications
running on your GCE instance to interact with other Google Cloud Platform APIs. This grants permissions to
the service account and virtual machine instances.

• RSA Private Key: The PEM file associated with the service account email.

10.4. Credential Types 60

Ansible Tower User Guide, Release Ansible Tower 3.6.3

10.4.6 Insights

Selecting this credential type enables synchronization of cloud inventory with Red Hat Insights.

Insights credentials consist of the Insights Username and Password, which is the user’s Red Hat Customer Portal
Account username and password.

10.4.7 Machine

Machine credentials enable Tower to invoke Ansible on hosts under your management. Just like using Ansible on
the command line, you can specify the SSH username, optionally provide a password, an SSH key, a key password,
or even have Tower prompt the user for their password at deployment time. They define ssh and user-level privilege
escalation access for playbooks, and are used when submitting jobs to run playbooks on a remote host. Network
connections (httpapi, netconf, and network_cli) use Machine for the credential type.

Machine/SSH credentials do not use environment variables. Instead, they pass the username via the ansible -u
flag, and interactively write the SSH password when the underlying SSH client prompts for it.

Machine credentials have several attributes that may be configured:

• Username: The username to be used for SSH authentication.

• Password: The actual password to be used for SSH authentication. This password will be stored encrypted in
the Tower database, if entered. Alternatively, you can configure Tower to ask the user for the password at launch

10.4. Credential Types 61

Ansible Tower User Guide, Release Ansible Tower 3.6.3

time by selecting Prompt on launch. In these cases, a dialog opens when the job is launched, promoting the
user to enter the password and password confirmation.

• SSH Private Key: Copy or drag-and-drop the SSH private key for the machine credential.

• Private Key Passphrase: If the SSH Private Key used is protected by a password, you can configure a Key
Password for the private key. This password will be stored encrypted in the Tower database, if entered. Alterna-
tively, you can configure Tower to ask the user for the password at launch time by selecting Prompt on launch.
In these cases, a dialog opens when the job is launched, prompting the user to enter the password and password
confirmation.

• Privilege Escalation Method: Specifies the type of escalation privilege to assign to specific users. This is
equivalent to specifying the --become-method=BECOME_METHOD parameter, where BECOME_METHOD
could be any of the typical methods described below, or a custom method you’ve written. Begin entering the
name of the method, and the appropriate name auto-populates.

• empty selection: If a task/play has become set to yes and is used with an empty selection, then it will default
to sudo

• sudo: Performs single commands with super user (root user) privileges

• su: Switches to the super user (root user) account (or to other user accounts)

• pbrun: Requests that an application or command be run in a controlled account and provides for advanced root
privilege delegation and keylogging

• pfexec: Executes commands with predefined process attributes, such as specific user or group IDs

• dzdo: An enhanced version of sudo that uses RBAC information in an Centrify’s Active Directory service (see
Centrify’s site on DZDO)

• pmrun: Requests that an application is run in a controlled account (refer to Privilege Manager for Unix 6.0)

• runas: Allows you to run as the current user

• enable: Switches to elevated permissions on a network device

• doas: Allows your remote/login user to execute commands as another user via the doas (“Do as user”) utility

• ksu: Allows your remote/login user to execute commands as another user via Kerberos access

• machinectl: Allows you to manage containers via the systemd machine manager

• sesu: Allows your remote/login user to execute commands as another user via the CA Privileged Access Man-
ager

Note: Custom become plugins are available only starting with Ansible 2.8. For more detail on this concept, refer
to Understanding Privilege Escalation https://docs.ansible.com/ansible/latest/user_guide/become.html and the list of

10.4. Credential Types 62

http://community.centrify.com/t5/Centrify-Server-Suite/FAQ-What-is-DirectAuthorize-dzdo-dzwin/td-p/21193
http://documents.software.dell.com/privilege-manager-for-unix/6.0/administrators-guide/privilege-manager-programs/pmrun

Ansible Tower User Guide, Release Ansible Tower 3.6.3

become plugins https://docs.ansible.com/ansible/latest/plugins/become.html#plugin-list.

• Privilege Escalation Username field is only seen if an option for privilege escalation is selected. Enter the
username to use with escalation privileges on the remote system.

• Privilege Escalation Password: field is only seen if an option for privilege escalation is selected. Enter the
actual password to be used to authenticate the user via the selected privilege escalation type on the remote
system. This password will be stored encrypted in the Tower database, if entered. Alternatively, you may
configure Tower to ask the user for the password at launch time by selecting Prompt on launch. In these cases,
a dialog opens when the job is launched, promoting the user to enter the password and password confirmation.

Note: Sudo Password must be used in combination with SSH passwords or SSH Private Keys, since Tower must first
establish an authenticated SSH connection with the host prior to invoking sudo to change to the sudo user.

Warning: Credentials which are used in Scheduled Jobs must not be configured as “Prompt on launch”.

10.4.8 Microsoft Azure Resource Manager

Selecting this credential type enables synchronization of cloud inventory with Microsoft Azure Resource Manager.

Microsoft Azure Resource Manager credentials have several attributes that may be configured:

• Subscription ID: The Subscription UUID for the Microsoft Azure account (required).

• Username: The username to use to connect to the Microsoft Azure account.

• Password: The password to use to connect to the Microsoft Azure account.

• Client ID: The Client ID for the Microsoft Azure account.

• Client Secret: The Client Secret for the Microsoft Azure account.

• Tenant ID: The Tenant ID for the Microsoft Azure account.

• Azure Cloud Environment: The variable associated with Azure cloud or Azure stack environments.

These fields are equivalent to the variables in the API. To pass service principal credentials, define the following
variables:

10.4. Credential Types 63

Ansible Tower User Guide, Release Ansible Tower 3.6.3

AZURE_CLIENT_ID
AZURE_SECRET
AZURE_SUBSCRIPTION_ID
AZURE_TENANT
AZURE_CLOUD_ENVIRONMENT

To pass an Active Directory username/password pair, define the following variables:

AZURE_AD_USER
AZURE_PASSWORD
AZURE_SUBSCRIPTION_ID

You can also pass credentials as parameters to a task within a playbook. The order of precedence is parameters, then
environment variables, and finally a file found in your home directory.

To pass credentials as parameters to a task, use the following parameters for service principal credentials:

client_id
secret
subscription_id
tenant
azure_cloud_environment

Or, pass the following parameters for Active Directory username/password:

ad_user
password
subscription_id

10.4.9 Network

Select the Network credential type only if you are using a local connection with provider to use Ansible networking
modules to connect to and manage networking devices. When connecting to network devices, the credential type must
match the connection type:

• For local connections using provider, credential type should be Network

• For all other network connections (httpapi, netconf, and network_cli), credential type should be
Machine

For an overview of connection types available for network devices, refer to Multiple Communication Protocols.

Tower uses the following environment variables for Network credentials and are fields prompted in the user interface:

ANSIBLE_NET_USERNAME
ANSIBLE_NET_PASSWORD

10.4. Credential Types 64

https://docs.ansible.com/ansible/devel/network/getting_started/network_differences.html#multiple-communication-protocols.

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Network credentials have several attributes that may be configured:

• Username: The username to use in conjunction with the network device (required).

• Password: The password to use in conjunction with the network device.

• SSH Private Key: Copy or drag-and-drop the actual SSH Private Key to be used to authenticate the user to the
network via SSH.

• Private Key Passphrase: The actual passphrase for the private key to be used to authenticate the user to the
network via SSH.

• Authorize: Select this from the Options field to control whether or not to enter privileged mode.

• If Authorize is checked, enter a password in the Authorize Password field to access privileged mode.

For more information, refer to the Inside Playbook blog, Porting Ansible Network Playbooks with New Connection
Plugins.

10.4.10 OpenShift or Kubernetes API Bearer Token

Selecting this credential type allows you to create instance groups to point to a Kubernetes or OpenShift container.
For more information about this concept, refer to Execution Environments.

10.4. Credential Types 65

https://www.ansible.com/blog/porting-ansible-network-playbooks-with-new-connection-plugins
https://www.ansible.com/blog/porting-ansible-network-playbooks-with-new-connection-plugins
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/external_execution_envs.html#ag-ext-exe-env

Ansible Tower User Guide, Release Ansible Tower 3.6.3

This example service account can be used to obtain these credentials:

$ NAMESPACE=my-namespace
$ kubectl -n $NAMESPACE create -f https://docs.ansible.com/ansible-tower/latest/html/
↪→userguide/_downloads/service-account.yml
$ SECRET_NAME=$(kubectl -n $NAMESPACE get sa awx -o json | jq -r '.secrets[0].name')
$ kubectl -n $NAMESPACE get secret $SECRET_NAME -o json | jq -r '.data["token"] |
↪→@base64d' # The token
$ kubectl -n $NAMESPACE get secret $SECRET_NAME -o json | jq -r '.data["ca.crt"] |
↪→@base64d' # The CA data

Container credentials have the following inputs:

• OpenShift or Kubernetes API Endpoint (required): the endpoint to be used to connect to an OpenShift or
Kubernetes container

• API Authentication Bearer Token (required): The token to use to authenticate the connection

• Verify SSL: Optionally you can check this option to allow Tower to verify the server’s SSL certificate is valid
and trusted. Environments that use internal or private CA’s should leave this option unchecked to disable verifi-
cation.

• Certificate Authority Data: include the BEGIN CERTIFICATE and END CERTIFICATE lines when past-
ing the certificate, if provided

10.4. Credential Types 66

Ansible Tower User Guide, Release Ansible Tower 3.6.3

10.4.11 OpenStack

Selecting this credential type enables synchronization of cloud inventory with OpenStack.

OpenStack credentials have the following inputs that are required:

• Username: The username to use to connect to OpenStack.

• Password (API Key): The password or API key to use to connect to OpenStack.

• Host (Authentication URL): The host to be used for authentication.

• Project (Tenant Name): The Tenant name or Tenant ID used for OpenStack. This value is usually the same as
the username.

• Domain name: Optionally provide the FQDN to be used to connect to OpenStack.

If you are interested in using OpenStack Cloud Credentials, refer to Utilizing Cloud Credentials in this guide for more
information, including a sample playbook.

10.4.12 Red Hat CloudForms

Selecting this credential type enables synchronization of cloud inventory with Red Hat CloudForms.

Tower writes a CloudForms configuration file based on fields prompted in the user interface. The absolute path to the
file is set in the following environment variable:

CLOUDFORMS_INI_PATH

CloudForms credentials have the following inputs that are required:

• CloudForms URL: The CloudForms URL or IP address to connect to.

10.4. Credential Types 67

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Username: The username to use to connect to CloudForms.

• Password: The password to use to connect to CloudForms.

Additional Resources:

Refer to Red Hat’s blog post series on Ansible Tower Integration in Red Hat CloudForms 4.1 at http://cloudformsblog.
redhat.com/2016/07/22/ansible-tower-in-cloudforms/.

10.4.13 Red Hat Satellite 6

Selecting this credential type enables synchronization of cloud inventory with Red Hat Satellite 6.

Tower writes a Satellite configuration file based on fields prompted in the user interface. The absolute path to the file
is set in the following environment variable:

FOREMAN_INI_PATH

Satellite credentials have the following inputs that are required:

• Satellite 6 URL: The Satellite 6 URL or IP address to connect to.

• Username: The username to use to connect to Satellite 6.

• Password: The password to use to connect to Satellite 6.

10.4.14 Red Hat Virtualization

This credential allows Tower to access Ansible’s oVirt4.py dynamic inventory plugin, which is managed by Red
Hat Virtualization (RHV).

Tower uses the following environment variables for Red Hat Virtualization credentials and are fields in the user inter-
face:

OVIRT_URL
OVIRT_USERNAME
OVIRT_PASSWORD

10.4. Credential Types 68

http://cloudformsblog.redhat.com/2016/07/22/ansible-tower-in-cloudforms/
http://cloudformsblog.redhat.com/2016/07/22/ansible-tower-in-cloudforms/

Ansible Tower User Guide, Release Ansible Tower 3.6.3

RHV credentials have the following inputs that are required:

• Host (Authentication URL): The host URL or IP address to connect to. In order to sync with the inventory, the
credential URL needs to include the ovirt-engine/api path.

• Username: The username to use to connect to oVirt4. This needs to include the domain profile to succeed, for
example username@ovirt.host.com.

• Password: The password to use to connect to it.

• CA File: Optionally provide an absolute path to the oVirt certificate file (it may end in .pem, .cer and .crt
extensions, but preferably .pem for consistency)

10.4.15 Source Control

SCM (source control) credentials are used with Projects to clone and update local source code repositories from a
remote revision control system such as Git, Subversion, or Mercurial.

Source Control credentials have several attributes that may be configured:

• Username: The username to use in conjunction with the source control system.

• Password: The password to use in conjunction with the source control system.

10.4. Credential Types 69

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• SCM Private Key: Copy or drag-and-drop the actual SSH Private Key to be used to authenticate the user to the
source control system via SSH.

• Private Key Passphrase: If the SSH Private Key used is protected by a passphrase, you may configure a Key
Passphrase for the private key.

Note: Source Control credentials cannot be configured as “Prompt on launch”.

10.4.16 Vault

Selecting this credential type enables synchronization of inventory with Ansible Vault.

Vault credentials require the Vault Password and an optional Vault Identifier if applying multi-Vault credentialing.
For more information on Ansible Tower Multi-Vault support, refer to the Multi-Vault Credentials section of the Ansible
Tower Administration Guide.

You may configure Tower to ask the user for the password at launch time by selecting Prompt on launch. In these
cases, a dialog opens when the job is launched, promoting the user to enter the password and password confirmation.

Warning: Credentials which are used in Scheduled Jobs must not be configured as “Prompt on launch”.

For more information about Ansible Vault, refer to: http://docs.ansible.com/ansible/playbooks_vault.html

10.4.17 VMware vCenter

Selecting this credential type enables synchronization of inventory with VMware vCenter.

Tower uses the following environment variables for VMware vCenter credentials and are fields prompted in the user
interface:

VMWARE_HOST
VMWARE_USER
VMWARE_PASSWORD
VMWARE_VALIDATE_CERTS

10.4. Credential Types 70

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/multi-creds-assignment.html#ag-multi-vault
http://docs.ansible.com/ansible/playbooks_vault.html

Ansible Tower User Guide, Release Ansible Tower 3.6.3

VMware credentials have the following inputs that are required:

• vCenter Host: The vCenter hostname or IP address to connect to.

• Username: The username to use to connect to vCenter.

• Password: The password to use to connect to vCenter.

Note: If the VMware guest tools are not running on the instance, VMware inventory sync may not return an IP
address for that instance.

10.4. Credential Types 71

CHAPTER

ELEVEN

CUSTOM CREDENTIAL TYPES

As a Tower administrator with superuser access, you can define a custom credential type in a standard format using
a YAML/JSON-like definition, allowing the assignment of new credential types to jobs and inventory updates. This
allows you to define a custom credential type that works in ways similar to existing credential types. For example,
you could create a custom credential type that injects an API token for a third-party web service into an environment
variable, which your playbook or custom inventory script could consume.

Custom credentials support the following ways of injecting their authentication information:

• Environment variables

• Ansible extra variables

• File-based templating (i.e., generating .ini or .conf files that contain credential values)

You can attach one SSH and multiple cloud credentials to a Job Template. Each cloud credential must be of a different
type. In other words, only one AWS credential, one GCE credential, etc., are allowed. In Ansible Tower 3.2 and later,
vault credentials and machine credentials are separate entities.

Note: When creating a new credential type, you are responsible for avoiding collisions in the extra_vars,
env, and file namespaces. Also, avoid environment variable or extra variable names that start with ANSIBLE_
because they are reserved. You must have Superuser permissions to be able to create and edit a credential type
(CredentialType) and to be able to view the CredentialType.injection field.

11.1 Backwards-Compatible API Considerations

Support for version 2 of the API (api/v2/) means a one-to-many relationship for Job Templates to credentials
(including multi-cloud support). Version 1 of the API (api/v1/) has been discontinued as of Ansible Tower version
3.6, and therefore no backward-compatibility exists.

In older versions of Ansible Tower, credentials could be filtered on their “kind” using the (now unsupported) v1 API:

$ curl "https://tower.example.org/api/v1/credentials/?kind=aws"

Starting in Ansible Tower version 3.6, credentials can be filtered in a similar manner using the v2 API:

$ curl "https://tower.example.org/api/v2/credentials/?credential_type__namespace=aws"

In the V2 CredentialType model, the relationships are defined as follows:

72

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Machine SSH
Vault Vault
Network Sets environment variables (e.g., ANSIBLE_NET_AUTHORIZE)
SCM Source Control
Cloud EC2, AWS

Lots of others
Insights Insights

Custom type creation and modification are limited to cloud and network kinds.

11.2 Getting Started with Credential Types

Access the Credentials from clicking the Credential Types () icon from the left navigation bar. If no custom
credential types have been created, the Credential Types view will not have any to display and will prompt you to add
one:

If credential types have been created, this page displays a list of all existing and available Credential Types. It can be
sorted and searched by Name and Kind.

To view more information about a credential type, click on its name or the Edit () button from the Actions
column.

Each credential type displays its own unique configurations in the Input Configuration field and the Injector Con-
figuration field, if applicable. Both YAML and JSON formats are supported in the configuration fields.

11.2. Getting Started with Credential Types 73

Ansible Tower User Guide, Release Ansible Tower 3.6.3

11.3 Create a New Credential Type

To create a new credential type:

1. Click the button located in the upper right corner of the Credential Types screen.

2. Enter the appropriate details in the Name and Description field.

Note: When creating a new credential type, do not use reserved variable names that start with ANSIBLE_ for the
INPUT and INJECTOR names and IDs, as they are invalid for custom credential types.

3. In the Input Configuration field, specify an input schema which defines a set of ordered fields for that type.
The format can be in YAML or JSON, as shown:

YAML

fields:
- type: string

id: username
label: Username

- type: string
id: password
label: Password
secret: true

required:
- username
- password

View more YAML examples at http://www.yaml.org/start.html.

JSON

{
"fields": [
{
"type": "string",
"id": "username",

(continues on next page)

11.3. Create a New Credential Type 74

http://www.yaml.org/start.html

Ansible Tower User Guide, Release Ansible Tower 3.6.3

(continued from previous page)

"label": "Username"
},
{
"secret": true,
"type": "string",
"id": "password",
"label": "Password"
}

],
"required": ["username", "password"]
}

View more JSON examples at www.json.org.

The configuration in JSON format below show each field and how they are used:

{
"fields": [{

"id": "api_token", # required - a unique name used to
reference the field value

"label": "API Token", # required - a unique label for the
field

"help_text": "User-facing short text describing the field.",

"type": ("string" | "boolean") # defaults to 'string'

"choices": ["A", "B", "C"] # (only applicable to `type=string`)

"format": "ssh_private_key" # optional, can be used to enforce data
format validity for SSH private key
data (only applicable to

↪→`type=string`)

"secret": true, # if true, the field value will be
↪→encrypted

"multiline": false # if true, the field should be rendered
as multi-line for input entry
(only applicable to `type=string`)

},{
field 2...

},{
field 3...

}],

"required": ["api_token"] # optional; one or more fields can be
↪→marked as required
},

When type=string, fields can optionally specify multiple choice options:

{
"fields": [{

"id": "api_token", # required - a unique name used to
↪→reference the field value

(continues on next page)

11.3. Create a New Credential Type 75

www.json.org

Ansible Tower User Guide, Release Ansible Tower 3.6.3

(continued from previous page)

"label": "API Token", # required - a unique label for the field
"type": "string",
"choices": ["A", "B", "C"]

}]
},

4. In the Injector Configuration field, enter environment variables or extra variables that specify the values a
credential type can inject. The format can be in YAML or JSON (see examples in the previous step). The
configuration in JSON format below show each field and how they are used:

{
"file": {

"template": "[mycloud]\ntoken={{ api_token }}"
},
"env": {

"THIRD_PARTY_CLOUD_API_TOKEN": "{{ api_token }}"
},
"extra_vars": {

"some_extra_var": "{{ username }}:{{ password }}"
}

}

Credential Types can also generate temporary files to support .ini files or certificate/key data:

{
"file": {

"template": "[mycloud]\ntoken={{ api_token }}"
},
"env": {

"MY_CLOUD_INI_FILE": "{{ tower.filename }}"
}

}

In this example, Tower will write a temporary file that contains:

[mycloud]\ntoken=SOME_TOKEN_VALUE

The absolute file path to the generated file will be stored in an environment variable named MY_CLOUD_INI_FILE.

An example of referencing multiple files in a custom credential template is as follows:

Inputs

{
"fields": [{
"id": "cert",
"label": "Certificate",
"type": "string"

},{
"id": "key",
"label": "Key",
"type": "string"

}]
}

Injectors

11.3. Create a New Credential Type 76

Ansible Tower User Guide, Release Ansible Tower 3.6.3

{
"file": {

"template.cert_file": "[mycert]\n{{ cert }}",
"template.key_file": "[mykey]\n{{ key }}"

},
"env": {

"MY_CERT_INI_FILE": "{{ tower.filename.cert_file }}",
"MY_KEY_INI_FILE": "{{ tower.filename.key_file }}"

}
}

5. Click Save when done.

6. Scroll down to the bottom of the screen and your newly created credential type appears on the list of credential
types:

Click to modify or to remove the credential type options under the Actions column.

Note: If deleting a credential type that is being used by a credential, you must delete the credential type from all the
credentials that use it before you can delete it. Below is an example of such a message:

7. Verify that the newly created credential type can be selected from the Credential Type selection window when
creating a new credential:

11.3. Create a New Credential Type 77

Ansible Tower User Guide, Release Ansible Tower 3.6.3

For details on how to create a new credential, see Credentials.

11.3. Create a New Credential Type 78

CHAPTER

TWELVE

SECRET MANAGEMENT SYSTEM

Users and admins upload machine and cloud credentials to Tower so that it can access machines and external services
on their behalf. By default, sensitive credential values (such as SSH passwords, SSH private keys, API tokens for
cloud services) in Tower are stored in the database after being encrypted. With external credentials backed by cre-
dential plugins, you can map credential fields (like a password or an SSH Private key) to values stored in a secret
management system instead of providing them to Tower directly. Starting with version 3.5, Ansible Tower provides a
secret management system that include integrations for:

• CyberArk Application Identity Manager (AIM)

• CyberArk Conjur

• HashiCorp Vault Key-Value Store (KV)

• HashiCorp Vault SSH Secrets Engine

• Microsoft Azure Key Management System (KMS)

These external secret values will be fetched prior to running a playbook that needs them. For more information on
specifying these credentials in the Tower User Interface, see Credentials.

12.1 Configure and link secret lookups

When configuring Tower to pull a secret from a 3rd-party system, it is in essence linking credential fields to external
systems. To link a credential field to a value stored in an external system, select the external credential corresponding
to that system and provide metadata to look up the desired value. The metadata input fields are part of the external
credential type definition of the source credential.

Tower provides a credential plugin interface for developers, integrators, admins, and power-users with the ability to
add new external credential types to Tower so it can be extended to support other secret management systems. For
more detail, see the development docs for credential plugins.

Use the Ansible Tower User Interface to configure and use each of the supported 3-party secret management systems.

1. First, create an external credential for authenticating with the secret management system. At minimum, provide
a name for the external credential and select one of the following for the Credential Type:

• CyberArk AIM Credential Provider Lookup

• CyberArk Conjur Secret Lookup

• HashiCorp Vault Secret Lookup

• HashiCorp Vault Signed SSH

79

https://github.com/ansible/awx/blob/devel/docs/credentials/credential_plugins.md

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Microsoft Azure Key Vault

2. Navigate to the credential form of the target credential and link one or more input fields to the external credential
along with metadata for locating the secret in the external system. In this example, the Demo Credential is the
target credential.

3. For any of the fields below the Type Details area that you want to link to the external credential, click the
button of the input field. You are prompted to set the input source to use to retrieve your secret information.

4. Select the credential you want to link to, and click Next. This takes you to the Metadata tab of the input source.
This example shows the Metadata prompt for HashiVault Secret Lookup.

The metadata required depends on the input source selected:

12.1. Configure and link secret lookups 80

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Input Source Metadata Description
CyberArk AIM Object Query (Re-

quired)
Lookup query for the object.

Object Query For-
mat

Select Exact for a specific secret name, or Regexp` for a secret
that has a dynamically generated name.

Reason If required per the object’s policy, supply a reason for checking out
the secret, as CyberArk logs those.

CyberArk Conjur Secret Identifier The identifier for the secret.
Secret Version Specify a version of the secret, if necessary, otherwise, leave it

empty to use the latest version.
HashiVault Secret
Lookup

Name of Secret
Backend

Specify the name of the KV backend to use. Leave it blank to use
the first path segment of the Path to Secret field instead.

Path to Secret (re-
quired)

Specify the path to where the secret information is stored (e.g.,
/path/username).

Key Name (re-
quired)

Specify the name of the key to look up the secret information.

Secret Version (V2
Only)

Specify a version if necessary, otherwise, leave it empty to use the
latest version.

HashiCorp Signed
SSH

Unsigned Public
Key (required)

Specify the public key of the cert you want to get signed. It needs
to be present in the authorized keys file of the target host(s).

Path to Secret (re-
quired)

Specify the path to where the secret information is stored (e.g.,
/path/username).

Role Name (re-
quired)

A role is a collection of SSH settings and parameters that are stored
in Hashi vault. Typically, you can specify a couple of them with
different privileges, timeouts, etc. So you could have a role that is
allowed to get a cert signed for root, and other less privileged ones,
for example.

Valid Principals Specify a user (or users) other than the default, that you are request-
ing vault to authorize the cert for the stored key. Hashi vault has a
default user for whom it signs (e.g., ec2-user).

Azure KMS Secret Name (re-
quired)

The actual name of the secret as it is referenced in Azure’s Key vault
app.

Secret Version Specify a version of the secret, if necessary, otherwise, leave it
empty to use the latest version.

5. Click Test to verify connection to the secret management system. If the lookup is unsuccessful, an error message
like this one displays:

6. When done, click OK. This closes the prompt window and returns you to the Details screen of your target
credential. Repeat these steps, starting with step 3 above to complete the remaining input fields for the target
credential. By linking the information in this manner, Tower retrieves sensitive information, such as username,
password, keys, certificates, and tokens from the 3rd-party management systems and populates that data into the
remaining fields of the target credential form.

7. If necessary, supply any information manually for those fields that do not use linking as a way of retrieving

12.1. Configure and link secret lookups 81

Ansible Tower User Guide, Release Ansible Tower 3.6.3

sensitive information. Refer to the appropriate Credential Types for more detail about each of the fields.

8. Click Save when done.

12.1.1 CyberArk AIM Credential Provider Lookup

You need the CyberArk Central Credential Provider web service running to store secrets in order for this integration to
work. When CyberArk AIM Credential Provider Lookup is selected for Credential Type, provide the following
metadata to properly configure your lookup:

• CyberArk AIM URL (required): provide the URL used for communicating with CyberArk AIM’s secret man-
agement system

• Application ID (required): specify the identifier given by CyberArk AIM services

• Client Key: paste the client key if provided by CyberArk

• Client Certificate: include the BEGIN CERTIFICATE and END CERTIFICATE lines when pasting the
certificate, if provided by CyberArk

• Verify SSL Certificates: this option is only available when the URL uses HTTPS. Check this option to allow
Tower to verify the server’s SSL certificate is valid and trusted. Environments that use internal or private CA’s
should leave this option unchecked to disable verification.

Below shows an example of a configured CyberArk AIM credential.

12.1. Configure and link secret lookups 82

Ansible Tower User Guide, Release Ansible Tower 3.6.3

12.1.2 CyberArk Conjur Secret Lookup

When CyberArk Conjur Secret Lookup is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Conjur URL (required): provide the URL used for communicating with CyberArk Conjur’s secret management
system

• API Key (required): provide the key given by your Conjur admin

• Account (required): the organization’s account name

• Username (required): the specific authenticated user for this service

• Public Key Certificate: include the BEGIN CERTIFICATE and END CERTIFICATE lines when pasting
the public key, if provided by CyberArk

Below shows an example of a configured CyberArk Conjur credential.

12.1.3 HashiCorp Vault Secret Lookup

When HashiCorp Vault Secret Lookup is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Server URL (required): provide the URL used for communicating with HashiCorp Vault’s secret management
system

• Token (required): specify the access token used to authenticate HashiCorp’s server

• API Version (required): select v1 for static lookups and v2 for versioned lookups

Below shows an example of a configured HashiCorp KV credential.

12.1. Configure and link secret lookups 83

Ansible Tower User Guide, Release Ansible Tower 3.6.3

12.1.4 HashiCorp Vault Signed SSH

When HashiCorp Vault Signed SSH is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Server URL (required): provide the URL used for communicating with HashiCorp Signed SSH’s secret man-
agement system

• Token (required): specify the access token used to authenticate HashiCorp’s server

Below shows an example of a configured HashiCorp SSH Secrets Engine credential.

12.1.5 Microsoft Azure Key Vault

When Microsoft Azure Key Vault is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Vault URL (DNS Name) (required): provide the URL used for communicating with MS Azure’s key manage-
ment system

• Client ID (required): provide the identifier as obtained by the Azure Active Directory

• Client Secret (required): provide the secret as obtained by the Azure Active Directory

• Tenant ID (required): provide the unique identifier that is associated with an Azure Active Directory instance
within an Azure subscription

Below shows an example of a configured Microsoft Azure KMS credential.

12.1. Configure and link secret lookups 84

Ansible Tower User Guide, Release Ansible Tower 3.6.3

12.1. Configure and link secret lookups 85

CHAPTER

THIRTEEN

APPLICATIONS

Creating and configuring token-based authentication for external applications is available starting in Ansible Tower
3.3. This makes it easier for external applications such as ServiceNow and Jenkins to integrate with Ansible Tower.
OAuth 2 allows you to use tokens to share certain data with an application without disclosing login information, and
furthermore, these tokens can be scoped as “read-only”. In Tower, you create an application that is representative of
the external application you are integrating with, then use it to create tokens for that application to use on behalf of the
users of the external application.

Having these Tower-issued tokens associated to an application resource gives you the ability to manage all tokens
issued for a particular application more easily. By separating token issuance under Applications, you can revoke all
tokens based on the Application without having to revoke all tokens in the system.

When integrating an external web app with Ansible Tower that web app may need to create OAuth2 Tokens on behalf
of users in that other web app. Creating an application in Tower with the Authorization Code grant type is the preferred
way to do this because:

• external applications can obtain a token from Tower for users, using their credentials

• compartmentalized tokens issued for a particular application, allows those tokens to be easily managed (revoke
all tokens associated with that application, for example)

13.1 Getting Started with Applications

Access the Applications page by clicking the Applications () icon from the left navigation bar. The Applications
page displays a search-able list of all available Applications currently managed by Tower and can be sorted by Name.

86

Ansible Tower User Guide, Release Ansible Tower 3.6.3

If no other applications exist, only a gray box with a message to add applications displays.

13.2 Create a new application

Token-based authentication for users can be configured in the Applications window.

1. In the Ansible Tower User Interface, click the Applications () icon from the left navigation bar.

The Applications window opens.

2. Click the button located in the upper right corner of the Applications window.

The New Application window opens.

13.2. Create a new application 87

Ansible Tower User Guide, Release Ansible Tower 3.6.3

3. Enter the following details in Create New Application window:

• Name (required): provide a name for the application you want to create

• Description: optionally provide a short description for your application

• Organization (required): provide an organization for which this application is associated

• Authorization Grant Type (required): Select from one of the grant types to use in order for the user to acquire
tokens for this application. Refer to grant types in the Applications section of the Ansible Tower Administration
Guide.

• Redirect URIS: Provide a list of allowed URIs, separated by spaces. This is required if you specified the grant
type to be Authorization code.

• Client Type (required): Select the level of security of the client device

4. When done, click Save or Cancel to abandon your changes

13.2.1 Applications - Tokens

Selecting the Tokens view displays a list of the users that have tokens to access the application.

Tokens can only access resources that its associated user can access, and can be limited further by specifying the scope
of the token.

Add Tokens

Tokens are added through the Users screen and can be associated with an application at that time. Specifying an
application can be performed directly in the User’s token settings. You can create a token for your user in the Tokens
configuration tab, meaning only you can create and see your tokens in your own user screen. To add a token:

1. Access the Users list view by clicking the Users () icon from the left navigation bar then click on your
user to configure your OAuth 2 tokens.

13.2. Create a new application 88

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/oauth2_token_auth.html#ag-oauth2-token-auth-grant-types

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: You can only create OAuth 2 Tokens for your user via the API or UI, which means you can only access your
own user profile in order to configure or view your tokens. If you are an admin and need to create or remove tokens for
other users, see the revoke and create commands in the Token and session management section of the Ansible Tower
Administration Guide.

2. Click the Tokens tab from your user’s profile.

When no tokens are present, the Tokens screen prompts you to add them:

3. Click the button, which opens the Create Token window.

4. Enter the following details in Create Token window:

• Application: enter the name of the application with which you want to associate your token. Alternatively, you

can search for it by clicking the button. This opens a separate window that allows you to choose from the
available options. Use the Search bar to filter by name if the list is extensive. Leave this field blank if you want
to create a Personal Access Token (PAT) that is not linked to any application.

• Description: optionally provide a short description for your token.

• Scope (required): specify the level of access you want this token to have.

5. When done, click Save or Cancel to abandon your changes.

After the token is saved, the newly created token for the user displays with the token information and when it expires.

Note: This is the only time the token value and associated refresh token value will ever be shown.

13.2. Create a new application 89

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/tower-manage.html#ag-token-utility

Ansible Tower User Guide, Release Ansible Tower 3.6.3

In the user’s profile, the application for which it is assigned to and its expiration displays in the token list view.

To verify the application in the example above now shows the user with the appropriate token, go to the Tokens tab of
the Applications window:

13.2. Create a new application 90

CHAPTER

FOURTEEN

PROJECTS

A Project is a logical collection of Ansible playbooks, represented in Tower.

You can manage playbooks and playbook directories by either placing them manually under the Project Base Path on
your Tower server, or by placing your playbooks into a source code management (SCM) system supported by Tower,
including Git, Subversion, Mercurial, and Red Hat Insights. To create a Red Hat Insights project, refer to Setting up
an Insights Project.

Note: By default, the Project Base Path is /var/lib/awx/projects, but this may have been modified by the
Tower administrator. It is configured in /etc/tower/conf.d/custom.py. Use caution when editing this file,
as incorrect settings can disable your installation.

This menu displays the list of the projects that are currently available. The default view is collapsed (Compact) with
project name and its status, but you can expand to see more information. You can sort this list by various criteria, and
perform a search to filter the projects of interest.

For each project listed, you can get the latest SCM revision (), copy the project attributes (), or delete ()
the project, using the respective icons next to each project.

91

http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/glossary.html#term-Project

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Status indicates the state of the project and may be one of the following (note that you can also filter your view by
specific status types):

• Pending - The source control update has been created, but not queued or started yet. Any job (not just source
control updates) will stay in pending until it’s actually ready to be run by the system. Reasons for it not being
ready because it has dependencies that are currently running so it has to wait until they are done, or there is not
enough capacity to run in the locations it is configured to.

• Waiting - The source control update is in the queue waiting to be executed.

• Running - The source control update is currently in progress.

• Successful - The last source control update for this project succeeded.

• Failed - The last source control update for this project failed.

• Error - The last source control update job failed to run at all. (To be deprecated.)

• Canceled - The last source control update for the project was canceled.

• Never updated - The project is configured for source control, but has never been updated.

• OK - The project is not configured for source control, and is correctly in place. (To be deprecated.)

• Missing - Projects are absent from the project base path of /var/lib/awx/projects (applicable for man-
ual or source control managed projects).

Note: Projects of credential type Manual cannot update or schedule source control-based actions without being
reconfigured as an SCM type credential.

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

92

Ansible Tower User Guide, Release Ansible Tower 3.6.3

14.1 Add a new project

To create a new project:

1. Click the button, which launches the Create Project window.

2. Enter the appropriate details into the following required fields:

• Name

• Description (optional)

• Organization - A project must have at least one organization. Pick one organization now to create the project,
and then after the project is created you can add additional organizations.

• Ansible Environment (optional) - Select from the drop-down menu list a custom virtual environment on which
to run this project. This field is only present if custom environments were previously created. See Using
virtualenv with Ansible Tower in the Ansible Tower Upgrade and Migration Guide.

• SCM Type - Select from the drop-down menu list an SCM type associated with this project. The options in the
subsequent section become available depend on the type you choose. Refer to Manage playbooks manually and
Manage playbooks using Source Control in the subsequent sections for more detail.

Note: If adding a manual project, each project path inside of the project root folder can only be assigned to one
project. If you receive the following message, ensure that you have not already assigned the project path to an existing
project:

All of the project paths have been assigned to existing projects, or
there are no directories found in the base path. You will need to add
a project path before creating a new project.

3. Click Save when done.

14.1.1 Manage playbooks manually

• Create one or more directories to store playbooks under the Project Base Path (for example,
/var/lib/awx/projects/)

• Create or copy playbook files into the playbook directory.

• Ensure that the playbook directory and files are owned by the same UNIX user and group that the Tower service
runs as.

• Ensure that the permissions are appropriate for the playbook directories and files.

14.1. Add a new project 93

http://docs.ansible.com/ansible-tower/3.6.3/html/upgrade-migration-guide/virtualenv.html#upgrade-venv
http://docs.ansible.com/ansible-tower/3.6.3/html/upgrade-migration-guide/virtualenv.html#upgrade-venv

Ansible Tower User Guide, Release Ansible Tower 3.6.3

If you have trouble adding a project path, check the permissions and SELinux context settings for the project directory
and files.

Warning: If you have not added any Ansible playbook directories to the base project path, you will receive the
following message from Tower:

Correct this issue by creating the appropriate playbook directories and checking out playbooks from your SCM or
otherwise copying playbooks into the appropriate playbook directories.

14.1.2 Manage playbooks using Source Control

Note: By default, Ansible Tower has a system-wide setting that allows roles to be dynamically downloaded from a

requirements.yml file for SCM projects. You may turn off this setting in the Jobs tab of the Settings ()
menu by switching the Enable Role Download toggle button to OFF.

14.1. Add a new project 94

Ansible Tower User Guide, Release Ansible Tower 3.6.3

1. Select the appropriate option from the SCM Type drop-down menu list.

2. Enter the appropriate details into the following fields:

14.1. Add a new project 95

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• SCM URL - See an example in the help text.

• SCM Branch/Tag/Commit - Optionally enter the SCM branch, tags, commit hashes, arbitrary refs,
or revision number (if applicable) from the source control (Git, Subversion, or Mercurial) to check-
out. Some commit hashes and refs may not be available unless you also provide a custom refspec in
the next field.

• SCM Refspec - This field is an option specific to git source control and only advanced users familiar
and comfortable with git should specify which references to download from the remote repository.
For more detail, see job branch overriding.

• SCM Credential - If authentication is required, select the appropriate SCM credential

• SCM Update Options:

• Clean - Removes any local modifications prior to performing an update.

• Delete on Update - Deletes the local repository in its entirety prior to performing an
update. Depending on the size of the repository this may significantly increase the amount
of time required to complete an update.

• Update Revision on Launch - Updates the revision of the project to the current revision
in the remote source control. To avoid job overflows if jobs are spawned faster than the
project can sync, selecting this allows you to configure a Cache Timeout to cache prior
project syncs for a certain number of seconds.

• Allow Branch Override - Allows a job template that uses this project to launch with a
specified SCM branch or revision other than that of the project’s. For more detail, see job
branch overriding.

3. Click Save to save your project.

Tip: Using a GitHub link offers an easy way to use a playbook. To help get you started, use the
helloworld.yml file available at: https://github.com/ansible/tower-example.git

This link offers a very similar playbook to the one created manually in the instructions found in the
Ansible Tower Quick Start Guide. Using it will not alter or harm your system in anyway.

14.1. Add a new project 96

https://github.com/ansible/tower-example.git
http://docs.ansible.com/ansible-tower/3.6.3/html/quickstart/index.html#qs-start

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Updating projects from source control

1. Update an existing SCM-based project by selecting the project and clicking the button.

Note: Please note that immediately after adding a project setup to use source control, a “Sync” starts that
fetches the project details from the configured source control.

2. Click on the dot under Status (far left, beside the name of the Project) to get further details about the update
process.

14.1. Add a new project 97

Ansible Tower User Guide, Release Ansible Tower 3.6.3

14.2 Work with Permissions

The set of Permissions assigned to this project (role-based access controls) that provide the ability to read, modify, and
administer projects, inventories, job templates, and other Tower elements are Privileges.

You can access the project permissions via the Permissions tab next to the Details tab. This screen displays a list of
users that currently have permissions to this project. The list may be sorted and searched by User, Role, or Team
Role.

14.2.1 Add Permissions

The Permissions tab allows you to review, grant, edit, and remove associated permissions for users as well as team
members. To assign permissions to a particular user for this resource:

1. Click the Permissions tab.

2. Click the button to open the Add Users/Teams window.

14.2. Work with Permissions 98

Ansible Tower User Guide, Release Ansible Tower 3.6.3

3. Specify the users or teams that will have access then assign them specific roles:

a. Click to select one or multiple check boxes beside the name(s) of the user(s) or team(s) to select
them.

Note: You can select multiple users and teams at the same time by navigating between the Users and
Teams tabs without saving.

After selections are made, the window expands to allow you to select a role from the drop-down menu list
for each user or team you chose.

The example above shows options associated with inventories. Different resources have different options
available:

• Admin allows read, run, and edit privileges (applies to all resources)

• Use allows use of a resource in a job template (applies all resources except job templates)

• Update allows updating of project via the SCM Update (applies to projects and inventories)

• Ad Hoc allows use of Ad Hoc commands (applies to inventories)

• Execute allows launching of a job template (applies to job templates)

• Read allows view-only access (applies to all resources)

Tip: Use the Key button in the roles selection pane to display a description of each of the roles. For more
information, refer to the Roles section of this guide.

b. Select the role to apply to the selected user or team.

14.2. Work with Permissions 99

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note:

You can assign roles to multiple users and teams by navigating between the Users and Teams
tabs without saving.

4. Review your role assignments for each user and team.

14.2. Work with Permissions 100

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5. Click Save when done, and the Add Users/Teams window closes to display the updated roles assigned for each
user and team.

To remove Permissions for a particular user, click the Disassociate (x) button next to its resource.

This launches a confirmation dialog, asking you to confirm the disassociation.

14.2. Work with Permissions 101

Ansible Tower User Guide, Release Ansible Tower 3.6.3

14.3 Work with Notifications

Clicking the Notifications tab allows you to review any notification integrations you have setup.

Use the toggles to enable or disable the notifications to use with your particular project. For more detail, see Enable
and Disable Notifications.

If no notifications have been set up, click the NOTIFICATIONS link from inside the gray box to create a new
notification.

Refer to Notification Types for additional details on configuring various notification types.

14.3. Work with Notifications 102

Ansible Tower User Guide, Release Ansible Tower 3.6.3

14.4 Work with Job Templates

Clicking on Job Templates allows you to add and review any job templates or workflow templates associated with
this project. Click Expanded to view details about each template, including the statuses of the jobs that ran using
that template, and other useful information. You can sort this list by various criteria, and perform a search to filter the
templates of interest.

From this view, you can also launch (), copy (), or delete () the template configuration. Note, the example
above shows the expanded view.

14.5 Work with Schedules

Clicking on Schedules allows you to review any schedules set up for this project.

14.4. Work with Job Templates 103

Ansible Tower User Guide, Release Ansible Tower 3.6.3

14.5.1 Schedule a Project

To schedule a project run, click the Schedules tab.

• If schedules are already set up; review, edit, or enable/disable your schedule preferences.

• If schedules have not been set up, refer to Schedules for more information.

14.6 Ansible Galaxy Support

At the end of a Project update, Tower searches for a file called requirements.yml in the roles directory, located
at <project-top-level-directory>/roles/requirements.yml. If this file is found, the following
command automatically runs:

ansible-galaxy install -r roles/requirements.yml -p <job private directory>/
↪→requirements_roles -vvv

This file allows you to reference Galaxy roles or roles within other repositories which can be checked out in conjunction
with your own project. The addition of this Ansible Galaxy support eliminates the need to create git submodules for
achieving this result. Given that SCM projects (along with roles/collections) are pulled into and executed from a
private job environment, a <private job directory> specific to the project within /tmp is created by default. However,
you can specify another Job Execution Path based on your environment in the Jobs Settings tab of the Configure
Tower window:

For more information and examples on the syntax of the requirements.yml file, refer to the role requirements
section in the Ansible documentation.

If there are any directories that should specifically be exposed, you can specify those in the Configure Tower screen in
the Paths to Expose to Isolated Jobs or by updating the following entry in the settings file:

AWX_PROOT_SHOW_PATHS = ['/list/of/', '/paths']

Note: The primary file you may want to add to AWX_PROOT_SHOW_PATHS is /var/lib/awx/.
ssh, if your playbooks need to use keys or settings defined there.

If you made changes in the settings file, be sure to restart services with the ansible-tower-service restart
command after your changes have been saved.

In the Tower User Interface, you can configure these settings in the Jobs settings window. Click the () icon in
each of the fields for further detail.

14.6. Ansible Galaxy Support 104

https://docs.ansible.com/ansible/latest/galaxy/user_guide.html#installing-multiple-roles-from-a-file
https://docs.ansible.com/ansible/latest/galaxy/user_guide.html#installing-multiple-roles-from-a-file

Ansible Tower User Guide, Release Ansible Tower 3.6.3

14.7 Collections Support

Tower supports project-specific Ansible collections in job runs. If you specify a collections requirements file in the
SCM at collections/requirements.yml, Tower will install collections in that file in the implicit project sync
before a job run. To specify a collections requirement:

ansible-galaxy collection install -r requirements.yml -p <job tmp location>

Note: Starting with Ansible Tower 3.6, the project folder will be copied for each job run. This allows playbooks
to make local changes to the source tree for convenience, such as creating temporary files, without the possibility of
interference with other jobs.

14.7. Collections Support 105

Ansible Tower User Guide, Release Ansible Tower 3.6.3

For more information, refer to Using Collections.

14.7. Collections Support 106

https://docs.ansible.com/ansible/latest/user_guide/collections_using.html

CHAPTER

FIFTEEN

INVENTORIES

An Inventory is a collection of hosts against which jobs may be launched, the same as an Ansible inventory file.
Inventories are divided into groups and these groups contain the actual hosts. Groups may be sourced manually, by
entering host names into Tower, or from one of Ansible Tower’s supported cloud providers.

Note: If you have a custom dynamic inventory script, or a cloud provider that is not yet supported natively in Tower,
you can also import that into Tower. Refer to Inventory File Importing in the Ansible Tower Administration Guide.

This tab displays a list of the inventories that are currently available. The inventory list may be sorted and searched by
Name, Type, or Organization.

The list of Inventory details includes:

• Inventory Sync (): Green indicates successful syncs in the inventory, and red indicates failed syncs. Click-
ing this icon displays the sync status for the last five inventory source syncs and source information, if the
inventory has sources that are able to sync.

107

http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/glossary.html#term-Inventory
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/scm-inv-source.html#ag-inv-import

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Status Dot: This shows the status of recent jobs for this inventory.

• Name: The inventory name. Clicking the Inventory name navigates to the properties screen for the selected

inventory, which shows the inventory’s groups and hosts. (This view is also accessible from the icon.)

• Type: Identifies whether it is a standard inventory or a Smart Inventory.

• Organization: The organization to which the inventory belongs.

• Actions: The following actions are available for the selected inventory:

– Edit (): Edit the properties for the selected inventory

– Copy (): Makes a copy of an existing inventory as a template for creating a new one

– Delete (): Delete the selected inventory. This operation cannot be reversed!

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

108

Ansible Tower User Guide, Release Ansible Tower 3.6.3

15.1 Smart Inventories

A Smart Inventory is a collection of hosts defined by a stored search that can be viewed like a standard inventory
and made to be easily used with job runs. Organization administrators have admin permission to inventories in their
organization and can create Smart Inventories. A Smart Inventory is identified by KIND=smart. You can define a
Smart Inventory using the same method being used with Tower Search. InventorySource is directly associated
with an Inventory.

The Inventory model has the following new fields that are blank by default but are set accordingly for Smart
Inventories:

• kind is set to smart for Smart Inventories

• host_filter is set AND kind is set to smart for Smart Inventories.

The host model has a related endpoint, smart_inventories that identifies a set of all the Smart Inventory a host
is associated with. The membership table is updated every time a job runs against a smart inventory.

Note: To update the memberships more frequently, you can change the file-based setting
AWX_REBUILD_SMART_MEMBERSHIP to True (default is False). This will update memberships in the fol-
lowing events:

• a new host is added

• an existing host is modified (updated or deleted)

• a new Smart Inventory is added

• an existing Smart Inventory is modified (updated or deleted)

You can view actual inventories without being editable:

• Names of Host and Group created as a result of an inventory source sync

• Group records cannot be edited or moved

You cannot create hosts from a Smart Inventory host endpoint (/inventories/N/hosts/) as with a normal
inventory. The administrator of a Smart Inventory has permission to edit fields such as the name, description, variables,
and the ability to delete, but does not have the permission to modify the host_filter, because that will affect
which hosts (that have a primary membership inside another inventory) are included in the smart inventory. Note,
host_filter only apply to hosts inside of inventories inside of the Smart Inventory’s organization.

15.1. Smart Inventories 109

Ansible Tower User Guide, Release Ansible Tower 3.6.3

In order to modify the host_filter, you need to be the organization administrator of the inventory’s organization.
Organization admins already have implicit “admin” access to all inventories inside the organization, therefore, this
does not convey any permissions they did not already possess.

Administrators of the Smart Inventory can grant other users (who are not also admins of your organization) permissions
like “use” “adhoc” to the smart inventory, and these will allow the actions indicate by the role, just like other standard
inventories. However, this will not give them any special permissions to hosts (which live in a different inventory).
It will not allow them direct read permission to hosts, or permit them to see additional hosts under /#/hosts/,
although they can still view the hosts under the smart inventory host list.

In some situations, you can modify the following:

• A new Host manually created on Inventory w/ inventory sources

• In Groups that were created as a result of inventory source syncs

• Variables on Host and Group are changeable

Hosts associated with the Smart Inventory are manifested at view time. If the results of a Smart Inventory contains
more than one host with identical hostnames, only one of the matching hosts will be included as part of the Smart
Inventory, ordered by Host ID.

15.2 Inventory Plugins

Starting in 3.5, Ansible Tower running Ansible 2.8 automatically switches to using inventory plugins (as opposed to
scripts), depending on the source type. The plugins that are enabled in Ansible 2.8 are:

• Google Compute Engine

• Microsoft Azure Resource Manager

• OpenStack

• Ansible Tower

The following are not running plugins and are still using scripts:

• Amazon Web Services EC2

• VMware vCenter

• Red Hat Satellite 6

• Red Hat CloudForms

• Red Hat Virtualization

If you already have an inventory source set up, then Tower automatically switches to use the inventory plugins depend-
ing on the source and Ansible version, but continue to maintain the same content previously in those scripts. If you
need to control the version of Ansible being used, you can use custom virtual environments for the inventory source.
Refer to Using virtualenv with Ansible Tower.

15.2. Inventory Plugins 110

http://docs.ansible.com/ansible-tower/3.6.3/html/upgrade-migration-guide/virtualenv.html#upgrade-venv

Ansible Tower User Guide, Release Ansible Tower 3.6.3

15.3 Add a new inventory

Adding a new inventory involves several components. Click below to jump to a specific component:

• Add permissions

• Add groups

• Add hosts

• Add source

• View completed jobs

To create a new inventory or Smart Inventory:

1. Click the button, and select the type of inventory to create.

The type of inventory is identified by the labels and the row of tabs across the top of the create form.

2. Enter the appropriate details into the following fields:

• Name: Enter a name appropriate for this inventory.

• Description: Enter an arbitrary description as appropriate (optional).

• Organization: Required. Choose among the available organizations.

• Smart Host Filter: (Only applicable to Smart Inventories) Click the button to open a separate Dynamic
Hosts window to filter hosts for this inventory. These options are based on the organization you chose.

Filters are similar to tags in that tags are used to filter certain hosts that contain those names. Therefore, to
populate the Smart Host Filter field, you are specifying a tag that contains the hosts you want, not actually
selecting the hosts themselves. Enter the tag in the Search field and press [Enter]. Filters are case-sensitive.
Refer to the Smart Host Filter section for more information.

15.3. Add a new inventory 111

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Insights Credential: (Only applicable to standard inventories) Enter the appropriate Insights credential if the
inventory is used with Insights.

• Instance Groups: Click the button to open a separate window. Choose the instance groups for this
inventory to run on. If the list is extensive, use the search to narrow the options.

• Variables: Variable definitions and values to be applied to all hosts in this inventory. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

3. Click Save when done.

After Tower saves the new inventory, you can proceed with configuring permissions, groups, hosts, sources, and view
completed jobs, if applicable to the type of inventory. For more instructions, refer to the subsequent sections.

15.3.1 Add permissions

The Permissions tab allows you to review, grant, edit, and remove associated permissions for users as well as team
members. To assign permissions to a particular user for this resource:

1. Click the Permissions tab.

2. Click the button to open the Add Users/Teams window.

15.3. Add a new inventory 112

Ansible Tower User Guide, Release Ansible Tower 3.6.3

3. Specify the users or teams that will have access then assign them specific roles:

a. Click to select one or multiple check boxes beside the name(s) of the user(s) or team(s) to select
them.

Note: You can select multiple users and teams at the same time by navigating between the Users and
Teams tabs without saving.

After selections are made, the window expands to allow you to select a role from the drop-down menu list
for each user or team you chose.

15.3. Add a new inventory 113

Ansible Tower User Guide, Release Ansible Tower 3.6.3

The example above shows options associated with inventories. Different resources have different options
available:

• Admin allows read, run, and edit privileges (applies to all resources)

• Use allows use of a resource in a job template (applies all resources except job templates)

• Update allows updating of project via the SCM Update (applies to projects and inventories)

• Ad Hoc allows use of Ad Hoc commands (applies to inventories)

• Execute allows launching of a job template (applies to job templates)

• Read allows view-only access (applies to all resources)

Tip: Use the Key button in the roles selection pane to display a description of each of the roles. For more
information, refer to the Roles section of this guide.

b. Select the role to apply to the selected user or team.

Note:

You can assign roles to multiple users and teams by navigating between the Users and Teams
tabs without saving.

15.3. Add a new inventory 114

Ansible Tower User Guide, Release Ansible Tower 3.6.3

4. Review your role assignments for each user and team.

15.3. Add a new inventory 115

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5. Click Save when done, and the Add Users/Teams window closes to display the updated roles assigned for each
user and team.

To remove Permissions for a particular user, click the Disassociate (x) button next to its resource.

This launches a confirmation dialog, asking you to confirm the disassociation.

15.3. Add a new inventory 116

Ansible Tower User Guide, Release Ansible Tower 3.6.3

15.3.2 Add groups

Inventories are divided into groups, which may contain hosts and other groups, and hosts. Groups are only applicable to
standard inventories and is not a configurable directly through a Smart Inventory. You can associate an existing group
through host(s) that are used with standard inventories. There are several actions available for standard inventories:

• Create a new Group

• Create a new Host

• Run a command on the selected Inventory

• Edit Inventory properties

• View activity streams for Groups and Hosts

• Obtain help building your Inventory

Note: Starting in Ansible Tower 3.2, inventory sources are no longer associated with groups. Prior versions, spawned
groups and hosts would be children of our inventory source group. Now, spawned groups are top-level. These groups
may still have child groups, and all of these spawned groups may have hosts.

To create a new group for an inventory:

1. Click the button to open the Create Group window.

2. Enter the appropriate details into the required and optional fields:

• Name: Required

• Description: Enter an arbitrary description as appropriate (optional)

15.3. Add a new inventory 117

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

3. When done, click Save.

Add groups within groups

To add groups within groups:

1. Click the Groups tab.

2. Click the button, and select whether to add a group that already exists in your configuration or create a
new group.

3. If creating a new group, enter the appropriate details into the required and optional fields:

• Name: Required

• Description: Enter an arbitrary description as appropriate (optional)

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

4. When done, click Save.

The Create Group window closes and the newly created group displays as an entry in the list of groups associated
with the group that it was created for.

If you chose to add an existing group, available groups will appear in a separate selection window.

15.3. Add a new inventory 118

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Once a group is selected, it displays as an entry in the list of groups associated with the group.

5. To configure additional groups and hosts under the subgroup, click on the name of the subgroup from the list of
groups and repeat the same steps described in this section.

View or edit inventory groups

Starting in Ansible Tower 3.5, you can view all your inventory groups at once, or you can filter it to only display the
root group(s). An inventory group is considered a root group if it is not a subset of another group.

15.3. Add a new inventory 119

Ansible Tower User Guide, Release Ansible Tower 3.6.3

You may be able to delete a subgroup without concern for dependencies, but if you want to delete a root group,
Tower will look for dependencies such as any child groups or hosts. If the root group you want to delete has both, a
confirmation dialog displays for you to choose whether to delete the root group and all of its subgroups and hosts; or
promote the subgroup(s) so they become the top-level inventory group(s), along with their host(s).

If the root group has a subgroup that does not have any hosts, the confirmation dialog simply asks if you want to delete
everything; or promote your group.

15.3.3 Add hosts

You can configure hosts for the inventory as well as for groups and groups within groups. To configure hosts:

1. Click the Hosts tab.

2. Click the button, and select whether to add a host that already exists in your configuration or create a
new host.

3. If creating a new host, select the button to specify whether or not to include this host while running jobs.

4. Enter the appropriate details into the required and optional fields:

• Host Name: Required

• Description: Enter an arbitrary description as appropriate (optional)

15.3. Add a new inventory 120

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

5. When done, click Save.

The Create Host window closes and the newly created host displays as an entry in the list of hosts associated with the
group that it was created for.

Note: You may also run ad hoc commands from this screen. Refer to Running Ad Hoc Commands for more detail.

If you chose to add an existing host, available hosts will appear in a separate selection window.

15.3. Add a new inventory 121

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Once a host is selected, it displays as an entry in the list of hosts associated with the group.

6. To configure facts and additional groups for the host, click on the name of the host from the list of hosts.

This opens the Details tab of the selected host.

7. Click the Facts tab to input facts you want to gather. Refer to the Fact Caching section for more information
about facts.

8. Click the Groups tab to configure groups for the host.

a. Click the button to associate the host with an existing group.

Available groups appear in a separate selection window.

15.3. Add a new inventory 122

Ansible Tower User Guide, Release Ansible Tower 3.6.3

b. Click to select the group(s) to associate with the host and click Save.

Once a group is associated, it displays as an entry in the list of groups associated with the host.

9. If a host was used to run a job, you can view details about those jobs in the Completed Jobs tab of the host and
click Expanded to view details about each job.

15.3.4 Add source

Inventory sources are no longer associated with groups. Prior to Ansible Tower 3.2, spawned groups and hosts would
be children of our inventory source group. Now, spawned groups are top-level. These groups may still have child
groups, and all of these spawned groups may have hosts.

Adding a source to an inventory only applies to standard inventories. Smart inventories inherit their source from the
standard inventories they are associated with. To configure the source for the inventory:

1. In the inventory you want to add a source, click the Sources tab.

2. Click the button.

This opens the Create Source window.

3. Enter the appropriate details into the required and optional fields:

• Name: Required

• Description: Enter an arbitrary description as appropriate (optional)

15.3. Add a new inventory 123

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Source: Choose a source for your inventory. Refer to the Inventory Sources section for more infor-
mation about each source and details for entering the appropriate information. Starting with Ansible
Tower version 3.2, support for Rackspace Cloud Servers was discontinued.

• Ansible Environment: This field is only present if custom virtual environments (venvs) are setup.
Choose the venv with which you want to run your inventory imports. Refer to Using virtualenv with
Ansible Tower for details on setting up a custom venvs.

4. After completing the required information for your chosen inventory source, you can configure the level of
output on any inventory source’s update jobs by selecting the appropriate option from the Verbosity drop-down
menu.

5. All cloud inventory sources have the following update options:

• Overwrite: If checked, any hosts and groups that were previously present on the external source
but are now removed, will be removed from the Tower inventory. Hosts and groups that were not
managed by the inventory source will be promoted to the next manually created group, or if there is
no manually created group to promote them into, they will be left in the “all” default group for the
inventory.

When not checked, local child hosts and groups not found on the external source will remain
untouched by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts will be removed and
replaced by those found on the external source. When not checked, a merge will be performed,
combining local variables with those found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the se-
lected source before executing job tasks. To avoid job overflows if jobs are spawned faster than the
inventory can sync, selecting this allows you to configure a Cache Timeout to cache prior inventory
syncs for a certain number of seconds.

The “Update on Launch” setting refers to a dependency system for projects and inventory, and
it will not specifically exclude two jobs from running at the same time. If a cache timeout
is specified, then the dependencies for the second job is created and it uses the project and
inventory update that the first job spawned. Both jobs then wait for that project and/or inventory
update to finish before proceeding. If they are different job templates, they can then both start
and run at the same time, if the system has the capacity to do so. If you intend to use Tower’s
provisioning callback feature with a dynamic inventory source, “Update on Launch” should be
set for the inventory group.

6. Review your entries and selections and click Save when done. This allows you to configure additional details,
such as notifications and schedules.

Note: The Notifications tab is only present after you save the newly-created source.

15.3. Add a new inventory 124

http://docs.ansible.com/ansible-tower/3.6.3/html/upgrade-migration-guide/virtualenv.html#upgrade-venv
http://docs.ansible.com/ansible-tower/3.6.3/html/upgrade-migration-guide/virtualenv.html#upgrade-venv

Ansible Tower User Guide, Release Ansible Tower 3.6.3

7. To configure notifications for the source, click the Notifications tab.

a. If notifications are already set up, use the toggles to enable or disable the notifications to use with your particular
source. For more detail, see Enable and Disable Notifications.

b. if notifications have not been set up, refer to Notifications for more information.

8. To configure schedules associated with this inventory source, click the Schedules tab.

a. If schedules are already set up; review, edit, or enable/disable your schedule preferences.

b. if schedules have not been set up, refer to Schedules for more information.

9. Review your entries and selections and click Save when done.

Once a source is defined, it displays as an entry in the list of sources associated with the inventory. From the Sources
tab you can perform a sync on a single source, or sync all of them at once. You can also perform additional actions
such as scheduling a sync process, and edit or delete the source.

Inventory Sources

Choose a source which matches the inventory type against which a host can be entered:

• Sourced from a Project

• Amazon Web Services EC2

• Google Compute Engine

• Microsoft Azure Resource Manager

• VMware vCenter

• Red Hat Satellite 6

• Red Hat CloudForms

15.3. Add a new inventory 125

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• OpenStack

• Red Hat Virtualization

• Ansible Tower

• Custom Script

Sourced from a Project

An inventory that is sourced from a project means that is uses the SCM type from the project it is tied to. For example,
if the project’s source is from GitHub, or a Red Hat Insights project, then the inventory will use the same source.

1. To configure a project-sourced inventory, select Sourced from a Project from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Optionally specify the credential to use for this source.

• Project: Required. Specify the project this inventory is using as its source. Click the button to
choose from a list of projects. If the list is extensive, use the search to narrow the options.

• Inventory File: Required. Select an inventory file associated with the sourced project. If not already
populated, you can type it into the text field within the drop down menu to filter the extraneous file
types. In addition to a flat file inventory, you can point to a directory or an inventory script.

3. In addition to the update options available for cloud inventory sources, you can specify whether or not to update
on project changes. Check the Update on Project Update option to refresh the inventory from the selected
source after every project update where the SCM revision changes before executing job tasks. For more detail,
refer to Update on Project Update in the Ansible Tower Administration Guide.

4. In order to pass to the custom inventory script, you can optionally set environment variables in the Environment
Variables field.

15.3. Add a new inventory 126

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/scm-inv-source.html#ag-update-on-project-change

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: If you are executing a custom inventory script from SCM, please make sure you set the execution bit
(i.e. chmod +x) on the script in your upstream source control. If you do not, Tower will throw a [Errno 13]
Permission denied error upon execution.

Amazon Web Services EC2

1. To configure an AWS EC2-sourced inventory, select Amazon EC2 from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Optionally choose from an existing credential (for more information, refer to Creden-
tials).

If Tower is running on an EC2 instance with an assigned IAM Role, the credential may be omitted,
and the security credentials from the instance metadata will be used instead. For more information
on using IAM Roles, refer to the IAM_Roles_for_Amazon_EC2_documentation_at_Amazon.

• Regions: Click on the regions field to see a list of regions for your cloud provider. You can select
multiple regions, or choose “All” to include all regions. Tower will only be updated with Hosts
associated with the selected regions.

• Instance Filters: Rather than importing your entire Amazon EC2 inventory, filter the instances
returned by the inventory script based on a variety of metadata. Hosts are imported if they match
any of the filters entered here.

Examples:

• To limit to hosts having the tag TowerManaged: Enter tag-key=TowerManaged

• To limit to hosts using either the key-name staging or production: Enter
key-name=staging, key-name=production

• To limit to hosts where the Name tag begins with test: Enter tag:Name=test*

For more information on the filters that can be used here, refer to the Describe Instances docu-
mentation at Amazon.

• Only Group By: By default, Tower creates groups based on the following Amazon EC2 parameters:

15.3. Add a new inventory 127

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html

Ansible Tower User Guide, Release Ansible Tower 3.6.3

– Availability Zones

– Image ID

– Instance ID

– Instance Type

– Key Name

– Region

– Security Group

– Tags (by name)

– VPC ID

– Tag None

If you do not want all these groups created, select from the dropdown the list of groups that you
would like created by default. You can also select Instance ID to create groups based on the
Instance ID of your instances.

3. Use the Source Variables field to override variables found in ec2.ini and used by the inventory update
script. Enter variables using either JSON or YAML syntax. Use the radio button to toggle between the two. For
a detailed description of these variables view ec2.ini in the Ansible Collections GitHub repo.

Google Compute Engine

1. To configure a Google-sourced inventory, select Google Compute Engine from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Required. Choose from an existing Credential. For more information, refer to Credentials.

• Regions: Click on the regions field to see a list of regions for your cloud provider. You can select multiple
regions, or choose “All” to include all regions. Tower will only be updated with Hosts associated with the
selected regions.

15.3. Add a new inventory 128

https://github.com/ansible-collections/community.aws/blob/main/scripts/inventory/ec2.ini

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Microsoft Azure Resource Manager

1. To configure a Azure Resource Manager-sourced inventory, select Microsoft Azure Resource Manager from
the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Required. Choose from an existing Credential. For more information, refer to Credentials.

• Regions: Click on the regions field to see a list of regions for your cloud provider. You can select multiple
regions, or choose “All” to include all regions. Tower will only be updated with Hosts associated with the
selected regions.

15.3. Add a new inventory 129

Ansible Tower User Guide, Release Ansible Tower 3.6.3

VMware vCenter

1. To configure a VMWare-sourced inventory, select VMware vCenter from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Required. Choose from an existing credential (for more information, refer to Creden-
tials).

• Instance Filters: Rather than importing your entire VMWare inventory, filter the instances returned
by the inventory script based on a variety of metadata. Hosts are imported if they match any of the
filters entered here.

For more information on the filters that can be used here, refer to the Quick Filters Available for vSphere
Objects documentation at VMware.

• Only Group By: By default, Tower creates groups based on user-specified VMWare parameters.
For example, enter Instance ID to create groups based on the Instance ID of your instances.

3. Use the Source Variables field to override variables found in vmware_inventory.ini and used by the
inventory update script. Enter variables using either JSON or YAML syntax. Use the radio button to toggle
between the two. For a detailed description of these variables, view the vmware_inventory.ini file in the Ansible
GitHub repo.

Note: The inventory script for VMware was updated in Ansible Tower 3.1.2 to allow configuration of the
host_filters or groupby_patterns parameter. Specify those values in the Source Variables text field of the
Create Group screen or Edit Group screen. For example:

15.3. Add a new inventory 130

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.vcenterhost.doc/GUID-2B6A1637-384D-4597-B453-B575F0ECD8A7.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.vcenterhost.doc/GUID-2B6A1637-384D-4597-B453-B575F0ECD8A7.html
https://github.com/ansible-collections/vmware/blob/main/scripts/inventory/vmware_inventory.ini

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Red Hat Satellite 6

1. To configure a Red Hat Satellite-sourced inventory, select Red Hat Satellite from the Source field.

2. The Create Source window expands with additional fields.

• Credential: Required. Choose from an existing credential (for more information, refer to Credentials).

• Use the Source Variables field to override variables found in foreman.ini and used by the inventory update
script.

Note: The variable want_facts from foreman.ini is hard-coded to True and cannot be overridden at this time.
If you want to set the group_patterns, group_prefix, or want_hostcollections variables, prefix them
with satellite6, e.g.: satellite6_group_prefix: myprefix

Enter variables using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed
description of these variables view foreman.ini in the Ansible Collections GitHub repo.

Red Hat CloudForms

1. To configure a Red Hat CloudForms-sourced inventory, select Red Hat CloudForms from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Required. Choose from an existing credential (for more information, refer to Credentials).

• Use the Source Variables field to override variables found in cloudforms.ini and used by the inventory
update script. Enter variables using either JSON or YAML syntax. Use the radio button to toggle between the
two. For a detailed description of these variables view cloudforms.ini in the Ansible Collections GitHub repo.

15.3. Add a new inventory 131

https://github.com/ansible-collections/community.general/blob/main/scripts/inventory/foreman.ini
https://github.com/ansible-collections/community.general/blob/main/scripts/inventory/cloudforms.ini

Ansible Tower User Guide, Release Ansible Tower 3.6.3

OpenStack

1. To configure an OpenStack-sourced inventory, select OpenStack from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Required. Choose from an existing credential (for more information, refer to Credentials).

• Use the Source Variables field to override variables found in openstack.yml and used by the inventory
update script. Enter variables using either JSON or YAML syntax. Use the radio button to toggle between the
two. For a detailed description of these variables view openstack.yml in the Ansible GitHub repo.

Red Hat Virtualization

1. To configure a Red Hat Virtualization-sourced inventory, select Red Hat Virtualization from the Source field.

2. The Create Source window expands with additional fields. The Credential is required. Choose from an existing
credential (for more information, refer to Credentials).

15.3. Add a new inventory 132

https://github.com/openstack/ansible-collections-openstack/blob/master/scripts/inventory/openstack.yml

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Ansible Tower

1. To configure a Ansible Tower-sourced inventory, select Ansible Tower from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Required. Choose from an existing credential (for more information, refer to Creden-
tials).

• Instance Filters: Rather than importing your entire Tower inventory, filter the instances by an inven-
tory ID/name; then the inventory script would return that inventory from the other Tower instance.

Custom Script

Tower allows you to use a custom dynamic inventory script, if your administrator has added one.

1. To configure a Custom Script-sourced inventory, select Custom Script from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: You can optionally provide a credential for custom sources. The kind of credential is limited to
cloud and network. Refer to Custom Credential Types for more information.

• Custom Inventory Script: Required. Choose from an existing Inventory Script (for more information, refer to
Custom Inventory Scripts).

• Environment Variables: Set variables in the environment to be used by the inventory update script. The
variables would be specific to the script that you have written. Enter variables using either JSON or YAML
syntax. Use the radio button to toggle between the two.

15.3. Add a new inventory 133

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/custom_inventory_script.html#ag-custom-inventory-script

Ansible Tower User Guide, Release Ansible Tower 3.6.3

For more information on syncing or using custom inventory scripts, refer to Custom Inventory Scripts in the Ansible
Tower Administration Guide.

15.3.5 View completed jobs

If an inventory was used to run a job, you can view details about those jobs in the Completed Jobs tab of the inventory
and click Expanded to view details about each job.

Smart Host Filter

You can use a search filter to populate hosts for an inventory. This feature was introduced in Ansible Tower 3.2
utilizing the capability of the fact searching feature.

Facts generated by an Ansible playbook during a Job Template run are stored by Tower into the
database whenever use_fact_cache=True is set per-Job Template. New facts are merged with ex-
isting facts and are per-host. These stored facts can be used to filter hosts via the /api/v2/
hosts endpoint, using the GET query parameter host_filter For example: /api/v2/hosts?
host_filter=ansible_facts__ansible_processor_vcpus=8

The host_filter parameter allows for:

• grouping via ()

• use of the boolean and operator:

– __ to reference related fields in relational fields

15.3. Add a new inventory 134

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/custom_inventory_script.html#ag-custom-inventory-script

Ansible Tower User Guide, Release Ansible Tower 3.6.3

– __ is used on ansible_facts to separate keys in a JSON key path

– [] is used to denote a json array in the path specification

– "" can be used in the value when spaces are wanted in the value

• “classic” Django queries may be embedded in the host_filter

Examples:

/api/v2/hosts/?host_filter=name=localhost
/api/v2/hosts/?host_filter=ansible_facts__ansible_date_time__weekday_number="3"
/api/v2/hosts/?host_filter=ansible_facts__ansible_processor[]="GenuineIntel"
/api/v2/hosts/?host_filter=ansible_facts__ansible_lo__ipv6[]__scope="host"
/api/v2/hosts/?host_filter=ansible_facts__ansible_processor_vcpus=8
/api/v2/hosts/?host_filter=ansible_facts__ansible_env__PYTHONUNBUFFERED="true"
/api/v2/hosts/?host_filter=(name=localhost or name=database) and (groups__name=east
↪→or groups__name="west coast") and ansible_facts__an

You can search host_filter by host name, group name, and Ansible facts.

The format for a group search is:

groups.name:groupA

The format for a fact search is:

ansible_facts.ansible_fips:false

You can also perform Smart Search searches, which consist a host name and host description.

host_filter=name=my_host

If a search term in host_filter is of string type, to make the value a number (e.g. 2.66), or a JSON keyword (e.g.
null, true or false) valid, add double quotations around the value to prevent Tower from mistakenly parsing it
as a non-string:

host_filter=ansible_facts__packages__dnsmasq[]__version="2.66"

15.4 Running Ad Hoc Commands

To run an ad hoc command:

1. Select an inventory source from the list of hosts or groups. The inventory source can be a single group or host,
a selection of multiple hosts, or a selection of multiple groups.

15.4. Running Ad Hoc Commands 135

Ansible Tower User Guide, Release Ansible Tower 3.6.3

2. Click the button.

The Execute Command window opens.

3. Enter the details for the following fields:

• Module: Select one of the modules that Tower supports running commands against.

command apt_repository mount win_service
shell apt_rpm ping win_updates
yum service selinux win_group
apt group setup win_user
apt_key user win_ping

• Arguments: Provide arguments to be used with the module you selected.

• Limit: Enter the limit used to target hosts in the inventory. To target all hosts in the inventory enter all or *,
or leave the field blank. This is automatically populated with whatever was selected in the previous view prior
to clicking the launch button.

15.4. Running Ad Hoc Commands 136

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Machine Credential: Select the credential to use when accessing the remote hosts to run the command. Choose
the credential containing the username and SSH key or password that Ansbile needs to log into the remote hosts.

• Verbosity: Select a verbosity level for the standard output.

• Forks: If needed, select the number of parallel or simultaneous processes to use while executing the command.

• Show Changes: Select to enable the display of Ansible changes in the standard output. The default is OFF.

• Enable Privilege Escalation: If enabled, the playbook is run with administrator privileges. This is the equiva-
lent of passing the --become option to the ansible command.

• Extra Variables: Provide extra command line variables to be applied when running this inventory. Enter
variables using either JSON or YAML syntax. Use the radio button to toggle between the two.

4. Click the button to run this ad hoc command.

The results display in the Details pane and Standard Out window.

15.4. Running Ad Hoc Commands 137

Ansible Tower User Guide, Release Ansible Tower 3.6.3

15.4. Running Ad Hoc Commands 138

CHAPTER

SIXTEEN

JOB TEMPLATES

A job template is a definition and set of parameters for running an Ansible job. Job templates are useful to execute
the same job many times. Job templates also encourage the reuse of Ansible playbook content and collaboration
between teams. While the REST API allows for the execution of jobs directly, Tower requires that you first create a
job template.

The () menu opens a list of the job templates that are currently available. The default view is collapsed
(Compact), showing the template name, template type, and the statuses of the jobs that ran using that template, but
you can click Expanded to view more information. This list is sorted alphabetically by name, but you can sort by
other criteria, or search by various fields and attributes of a template.

From this screen, you can launch (), copy (), and remove () a job template. Before deleting a job
template, be sure it is not used in a workflow job template.

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

139

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: Job templates can be used to build a workflow template. For templates that show the Workflow Visualizer

() icon next to them are workflow templates. Clicking it allows you to graphically build a workflow. Many
parameters in a job template allow you to enable Prompt on Launch that can be modified at the workflow level, and
do not affect the values assigned at the job template level. For instructions, see the Workflow Visualizer section.

16.1 Create a Job Template

To create a new job template:

1. Click the button then select Job Template from the menu list.

16.1. Create a Job Template 140

Ansible Tower User Guide, Release Ansible Tower 3.6.3

2. Enter the appropriate details into the following fields:

• Name: Enter a name for the job.

• Description: Enter an arbitrary description as appropriate (optional).

• Job Type: Choose a job type:

• Run: Execute the playbook when launched, running Ansible tasks on the selected hosts.

• Check: Perform a “dry run” of the playbook and report changes that would be made without actually
making them. Tasks that do not support check mode will be skipped and will not report potential
changes.

• Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon
launch to choose a job type of run or check.

Note: More information on the Check job type, refer to Using check mode in the Ansible User Guide.

• Inventory: Choose the inventory to be used with this job template from the inventories available to the currently
logged in Tower user.

• Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon launch to choose
an inventory to run this job template against.

• Project: Choose the project to be used with this job template from the projects available to the currently logged
in Tower user.

16.1. Create a Job Template 141

https://docs.ansible.com/ansible/latest/user_guide/playbooks_checkmode.html#using-check-mode

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• SCM Branch: This field is only present if you chose a project that allows branch override. Specify the over-
riding branch to use in your job run. If left blank, the specified SCM branch (or commit hash or tag) from the
project is used. For more detail, see job branch overriding.

– Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon launch to
choose an SCM branch.

• Playbook: Choose the playbook to be launched with this job template from the available playbooks. This field
automatically populates with the names of the playbooks found in the project base path for the selected project.
Alternatively, you can enter the name of the playbook if it is not listed, such as the name of a file (like foo.yml)
you want to use to run with that playbook. If you enter a filename that is not valid, the template will display an
error, or cause the job to fail.

• Credentials: Click the button to open a separate window. Choose the credential from the available options
to be used with this job template. Use the drop-down menu list to filter by credential type if the list is extensive.

• Prompt on Launch: If selected, upon launching a job template that has a default machine credential,
you will not be able to remove the default machine credential in the Prompt dialog without replacing
it with another machine credential before it can launch. Alternatively, you can add more credentials
as you see fit. Below is an example of such a message:

• Forks: The number of parallel or simultaneous processes to use while executing the playbook. A value of
zero uses the Ansible default setting, which is 5 parallel processes unless overridden in /etc/ansible/
ansible.cfg.

• Limit: A host pattern to further constrain the list of hosts managed or affected by the playbook. Multiple
patterns can be separated by colons (“:”). As with core Ansible, “a:b” means “in group a or b”, “a:b:&c” means

16.1. Create a Job Template 142

Ansible Tower User Guide, Release Ansible Tower 3.6.3

“in a or b but must be in c”, and “a:!b” means “in a, and definitely not in b”.

• Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon launch to choose
a limit.

Note: For more information and examples refer to Patterns in the Ansible documentation.

• Verbosity: Control the level of output Ansible produces as the playbook executes. Choose the verbosity from
Normal to various Verbose or Debug settings. This only appears in the “details” report view. Verbose logging
includes the output of all commands. Debug logging is exceedingly verbose and includes information on SSH
operations that can be useful in certain support instances. Most users do not need to see debug mode output.

Warning: Verbosity 5 causes Tower to block heavily when jobs are running, which could delay reporting
that the job has finished (even though it has) and can cause the browser tab to lock up.

• Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon launch to choose
a verbosity.

• Job Tags: Provide a comma-separated list of playbook tags to specify what parts of the playbooks should be
executed.

• Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon launch to choose
a job tag.

• Skip Tags: Provide a comma-separated list of playbook tags to skip certain tasks or parts of the playbooks to be
executed.

• Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon launch to choose
tag(s) to skip.

Note: For more information on tags and examples, refer to Tags in the Ansible documentation.

• Labels: Supply optional labels that describe this job template, such as “dev” or “test”. Labels can be used to
group and filter job templates and completed jobs in the Tower display.

• Labels are created when they are added to the Job Template. Labels are associated to a single Organization
using the Project that is provided in the Job Template. Members of the Organization can create labels on a Job
Template if they have edit permissions (such as admin role).

• Once the Job Template is saved, the labels appear in the Job Templates overview in the Expanded view.

• Click on the “x” beside a label to remove it. When a label is removed, and is no longer associated with a Job or
Job Template, the label is permanently deleted from the list of Organization labels.

• Jobs inherit labels from the Job Template at the time of launch. If a label is deleted from a Job Template, it is
also deleted from the Job.

16.1. Create a Job Template 143

https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_tags.html

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Instance Groups: Click the button to open a separate window. Choose the instance groups on which you
want to run this job template. If the list is extensive, use the search to narrow the options.

• Job Slicing: Specify the number of slices you want this job template to run. Each slice will run the same tasks
against a portion of the inventory. For more information about job slices, see Job Slicing.

• Timeout: Allows you to specify the length of time (in seconds) Tower may run the task before it is canceled.
Defaults to 0 for no job timeout.

• Show Changes: Allows you to see the changes made by Ansible tasks.

• Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon launch to choose
whether or not to show changes.

• Options: Supply optional labels that describe this job template, such as “dev” or “test”. Labels can be used to
group and filter job templates and completed jobs in the Tower display.

• Enable Privilege Escalation: If enabled, run this playbook as an administrator. This is the equivalent of passing
the --become option to the ansible-playbook command.

• Enable Provisioning Callbacks: Enable a host to call back to Tower via the Tower API and invoke the launch
of a job from this job template. Refer to Provisioning Callbacks for additional information.

• Enable Webhook: Turns on the ability to interface with a predefined SCM system web service that is used to
launch a job template. Currently supported SCM systems are GitHub and GitLab.

If you enable webhooks, other fields display, prompting for additional information:

• Webhook Service: Select which service to listen for webhooks from

• Webhook Credential: Optionally, provide a GitHub or GitLab personal access token
(PAT) as a credential to use to send status updates back to the webhook service. Before
you can select it, the credential must exist. See Credential Types to create one.

Upon Save, additional fields display and remain present while viewing or editing.

• Webhook URL: Automatically populated with the URL for the webhook service to POST
requests to.

16.1. Create a Job Template 144

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Webhook Key: Generated shared secret to be used by the webhook service to sign pay-
loads sent to Tower. This must be configured in the settings on the webhook service in
order for Tower to accept webhooks from this service.

For additional information on setting up webhooks, see Working with Webhooks.

• Enable Concurrent Jobs: Allow jobs in the queue to run simultaneously if not dependent on one
another. Check this box if you want to run job slices simultaneously. Refer to Ansible Tower
Capacity Determination and Job Impact for additional information.

• Enable Fact Cache: When enabled, Tower will activate an Ansible fact cache plugin for all hosts
in an inventory related to the job running.

• Extra Variables:

• Pass extra command line variables to the playbook. This is the “-e” or “–extra-vars” command line
parameter for ansible-playbook that is documented in the Ansible documentation, Defining variables
at runtime.

• Provide key/value pairs using either YAML or JSON. These variables have a maximum value of
precedence and overrides other variables specified elsewhere. An example value might be:

git_branch: production
release_version: 1.5

For more information about extra variables, refer to Extra Variables.

• Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon
launch to choose command line variables.

Note: If you want to be able to specify extra_vars on a schedule, you must select Prompt on Launch for
EXTRA VARIABLES on the job template, or a enable a survey on the job template, then those answered survey
questions become extra_vars.

3. When you have completed configuring the details of the job template, click Save.

Saving the template does not exit the job template page but remains on the Job Template Details view for further
editing, if necessary. After saving the template, you can click Launch to launch the job, or proceed with adding more
attributes about the template, such as permissions, notifications, view completed jobs, and add a survey (if the job type
is not a scan). You must first save the template prior to launching, otherwise, the Launch button remains grayed-out.

16.1. Create a Job Template 145

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#defining-variables-at-runtime
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#defining-variables-at-runtime

Ansible Tower User Guide, Release Ansible Tower 3.6.3

You can verify the template is saved when the newly created template appears on the list of templates at the bottom of
the screen.

16.2 Add Permissions

The Permissions tab allows you to review, grant, edit, and remove associated permissions for users as well as team
members. To assign permissions to a particular user for this resource:

1. Click the Permissions tab.

16.2. Add Permissions 146

Ansible Tower User Guide, Release Ansible Tower 3.6.3

2. Click the button to open the Add Users/Teams window.

3. Specify the users or teams that will have access then assign them specific roles:

a. Click to select one or multiple check boxes beside the name(s) of the user(s) or team(s) to select
them.

Note: You can select multiple users and teams at the same time by navigating between the Users and
Teams tabs without saving.

After selections are made, the window expands to allow you to select a role from the drop-down menu list
for each user or team you chose.

16.2. Add Permissions 147

Ansible Tower User Guide, Release Ansible Tower 3.6.3

The example above shows options associated with inventories. Different resources have different options
available:

• Admin allows read, run, and edit privileges (applies to all resources)

• Use allows use of a resource in a job template (applies all resources except job templates)

• Update allows updating of project via the SCM Update (applies to projects and inventories)

• Ad Hoc allows use of Ad Hoc commands (applies to inventories)

• Execute allows launching of a job template (applies to job templates)

• Read allows view-only access (applies to all resources)

Tip: Use the Key button in the roles selection pane to display a description of each of the roles. For more
information, refer to the Roles section of this guide.

b. Select the role to apply to the selected user or team.

Note:

You can assign roles to multiple users and teams by navigating between the Users and Teams
tabs without saving.

16.2. Add Permissions 148

Ansible Tower User Guide, Release Ansible Tower 3.6.3

4. Review your role assignments for each user and team.

16.2. Add Permissions 149

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5. Click Save when done, and the Add Users/Teams window closes to display the updated roles assigned for each
user and team.

To remove Permissions for a particular user, click the Disassociate (x) button next to its resource.

This launches a confirmation dialog, asking you to confirm the disassociation.

16.2. Add Permissions 150

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.3 Work with Notifications

Clicking the Notifications tab allows you to review any notification integrations you have setup.

Use the toggles to enable or disable the notifications to use with your particular template. For more detail, see Enable
and Disable Notifications.

If no notifications have been set up, click the NOTIFICATIONS link from inside the gray box to create a new
notification.

Refer to Notification Types for additional details on configuring various notification types.

16.3. Work with Notifications 151

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.4 View Completed Jobs

The Completed Jobs tab provides the list of job templates that have ran. Click Expanded to view details of each job,
including its status, ID, and name; type of job, time started and completed, who started the job; and which template,
inventory, project, and credential were used. You can filter the list of completed jobs using any of these criteria.

Sliced jobs that display on this list are labeled accordingly, with the number of sliced jobs that have run:

16.5 Scheduling

Access the schedules for a particular job template from the Schedules tab.

16.4. View Completed Jobs 152

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.5.1 Schedule a Job Template

To schedule a job template run, click the Schedules tab.

• If schedules are already set up; review, edit, or enable/disable your schedule preferences.

• If schedules have not been set up, refer to Schedules for more information.

If Prompt on Launch was selected for the Credentials field, and you create or edit scheduling information for your
job template, a Prompt button displays at the bottom of the Schedules form. You will not be able to remove the default
machine credential in the Prompt dialog without replacing it with another machine credential before you can save it.
Below is an example of such a message:

Note: To able to set extra_vars on schedules, you must select Prompt on Launch for EXTRA VARI-
ABLES on the job template, or a enable a survey on the job template, then those answered survey questions become
extra_vars.

16.6 Surveys

Job types of Run or Check will provide a way to set up surveys in the Job Template creation or editing screens. Surveys
set extra variables for the playbook similar to ‘Prompt for Extra Variables’ does, but in a user-friendly question and

answer way. Surveys also allow for validation of user input. Click the button to create a survey.

Use cases for surveys are numerous. An example might be if operations wanted to give developers a “push to stage”
button they could run without advanced Ansible knowledge. When launched, this task could prompt for answers to
questions such as, “What tag should we release?”

Many types of questions can be asked, including multiple-choice questions.

16.6. Surveys 153

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.6.1 Create a Survey

To create a survey:

1. Click on the button to bring up the Add Survey window.

Use the ON/OFF toggle button at the top of the screen to quickly activate or deactivate this survey prompt.

2. A survey can consist of any number of questions. For each question, enter the following information:

• Name: The question to ask the user

• Description: (optional) A description of what’s being asked of the user.

• Answer Variable Name: The Ansible variable name to store the user’s response in. This is the variable to be
used by the playbook. Variable names cannot contain spaces.

• Answer Type: Choose from the following question types.

– Text: A single line of text. You can set the minimum and maximum length (in characters) for this answer.

– Textarea: A multi-line text field. You can set the minimum and maximum length (in characters) for this
answer.

– Password: Responses are treated as sensitive information, much like an actual password is treated. You
can set the minimum and maximum length (in characters) for this answer.

– Multiple Choice (single select): A list of options, of which only one can be selected at a time. Enter the
options, one per line, in the Multiple Choice Options box.

– Multiple Choice (multiple select): A list of options, any number of which can be selected at a time. Enter
the options, one per line, in the Multiple Choice Options box.

– Integer: An integer number. You can set the minimum and maximum length (in characters) for this answer.

16.6. Surveys 154

Ansible Tower User Guide, Release Ansible Tower 3.6.3

– Float: A decimal number. You can set the minimum and maximum length (in characters) for this answer.

• Default Answer: The default answer to the question. This value is pre-filled in the interface and is used if the
answer is not provided by the user.

• Required: Whether or not an answer to this question is required from the user.

3. Once you have entered the question information, click the button to add the question.

A stylized version of the survey is presented in the Preview pane. For any question, you can click on the Edit button
to edit the question, the Delete button to delete the question, and click and drag on the grid icon to rearrange the order
of the questions.

4. Return to the left pane to add additional questions.

5. When done, click Save to save the survey.

16.6.2 Optional Survey Questions

The Required setting on a survey question determines whether the answer is optional or not for the user interacting
with it.

Behind the scenes, optional survey variables can be passed to the playbook in extra_vars, even when they aren’t
filled in.

• If a non-text variable (input type) is marked as optional, and is not filled in, no survey extra_var is passed to
the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length > 0, no
survey extra_var is passed to the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length === 0,
that survey extra_var is passed to the playbook, with the value set to an empty string (“”).

16.6. Surveys 155

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.7 Launch a Job Template

A major benefit of Ansible Tower is the push-button deployment of Ansible playbooks. You can easily configure
a template within Tower to store all parameters you would normally pass to the ansible-playbook on the command
line–not just the playbooks, but the inventory, credentials, extra variables, and all options and settings you can specify
on the command line.

Easier deployments drive consistency, by running your playbooks the same way each time, and allow you to delegate
responsibilities–even users who aren’t Ansible experts can run Tower playbooks written by others.

Launch a job template by any of the following ways:

• Access the job template list from the navigational link or while in the Job Template Details view, scroll

to the bottom to access the button from the list of templates.

• While in the Job Template Details view of the job template you want to launch, click Launch.

A job may require additional information to run. The following data may be requested at launch:

• Credentials that were setup

• The option Prompt on Launch is selected for any parameter

• Passwords or passphrases that have been set to Ask

• A survey, if one has been configured for the job templates

• Extra variables, if requested by the job template

Note: If a job has user-provided values, then those are respected upon relaunch. If the user did not specify a value,
then the job uses the default value from the job template. Jobs are not relaunched as-is. They are relaunched with the
user prompts re-applied to the job template.

Below is an example job launch that prompts for Job Tags, and runs the example survey created in Surveys.

16.7. Launch a Job Template 156

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: Providing values on one tab, and going back to a previous tab, and then continuing on to the next tab will result
in having to re-provide values on the rest of the tabs. Make sure you fill in the tabs in the order the prompts appear to
avoid this.

Along with any extra variables set in the job template and survey, Tower automatically adds the following variables to
the job environment:

• tower_job_id: The Job ID for this job run

• tower_job_launch_type: The description to indicate how the job was started:

– manual: Job was started manually by a user.

– relaunch: Job was started via relaunch.

16.7. Launch a Job Template 157

Ansible Tower User Guide, Release Ansible Tower 3.6.3

– callback: Job was started via host callback.

– scheduled: Job was started from a schedule.

– dependency: Job was started as a dependency of another job.

– workflow: Job was started from a workflow job.

– sync: Job was started from a project sync.

– scm: Job was created as an Inventory SCM sync.

• tower_job_template_id: The Job Template ID that this job run uses

• tower_job_template_name: The Job Template name that this job uses

• tower_project_revision: The revision identifier for the source tree that this particular job uses (it is
also the same as the job’s field scm_revision)

• tower_user_email: The user email of the Tower user that started this job. This is not available for callback
or scheduled jobs.

• tower_user_first_name: The user’s first name of the Tower user that started this job. This is not available
for callback or scheduled jobs.

• tower_user_id: The user ID of the Tower user that started this job. This is not available for callback or
scheduled jobs.

• tower_user_last_name: The user’s last name of the Tower user that started this job. This is not available
for callback or scheduled jobs.

• tower_user_name: The user name of the Tower user that started this job. This is not available for callback
or scheduled jobs.

• tower_schedule_id: If applicable, the ID of the schedule that launched this job

• tower_schedule_name: If applicable, the name of the schedule that launched this job

• tower_workflow_job_id: If applicable, the ID of the workflow job that launched this job

• tower_workflow_job_name: If applicable, the name of the workflow job that launched this job. Note this
is also the same as the workflow job template.

• tower_inventory_id: If applicable, the ID of the inventory this job uses

• tower_inventory_name: If applicable, the name of the inventory this job uses

All variables are also given an “awx” prefix, for example, awx_job_id.

Upon launch, Tower automatically redirects the web browser to the Job Status page for this job under the Jobs tab.

Note: You can re-launch the most recent job from the list view to re-run on all hosts or just failed hosts in the specified
inventory. Refer to Jobs in the Ansible Tower User Guide for more detail.

When slice jobs are running, job lists display the workflow and job slices, as well as a link to view their details
individually.

16.7. Launch a Job Template 158

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.8 Copy a Job Template

Ansible Tower 3.0 introduced the ability to copy a Job Template. If you choose to copy Job Template, it does not copy
any associated schedule, notifications, or permissions. Schedules and notifications must be recreated by the user or
admin creating the copy of the Job Template. The user copying the Job Template will be granted the admin permission,
but no permissions are assigned (copied) to the Job Template.

1. Access the job template list from the navigational link or while in the Job Template Details view, scroll
to the bottom to access it from the list of templates.

2. Click the button.

A new template opens with the name of the template from which you copied and a timestamp.

3. Replace the contents of the Name field with a new name, and provide or modify the entries in the other fields to
complete this page.

4. Click Save when done.

16.9 Scan Job Templates

Scan jobs are no longer supported starting with Ansible Tower 3.2. This system tracking feature was used as a way to
capture and store facts as historical data. Facts are now stored in Tower via fact caching. For more information, see
Fact Caching.

If you have Job Template Scan Jobs in your system prior to Ansible Tower 3.2, they have been converted to type
run (like normal job templates) and retained their associated resources (i.e. inventory, credential). Job Template
Scan Jobs that do not have a related project are assigned a special playbook by default, or you can specify a project
with your own scan playbook. A project was created for each organization that points to https://github.com/ansible/

16.8. Copy a Job Template 159

https://github.com/ansible/tower-fact-modules
https://github.com/ansible/tower-fact-modules

Ansible Tower User Guide, Release Ansible Tower 3.6.3

tower-fact-modules and the Job Template was set to the playbook, https://github.com/ansible/tower-fact-modules/
blob/master/scan_facts.yml.

16.9.1 Fact Scan Playbooks

The scan job playbook, scan_facts.yml, contains invocations of three fact scan modules - packages, ser-
vices, and files, along with Ansible’s standard fact gathering. The scan_facts.yml playbook file looks like the
following:

- hosts: all
vars:
scan_use_checksum: false
scan_use_recursive: false

tasks:
- scan_packages:
- scan_services:
- scan_files:

paths: '{{ scan_file_paths }}'
get_checksum: '{{ scan_use_checksum }}'
recursive: '{{ scan_use_recursive }}'

when: scan_file_paths is defined

The scan_files fact module is the only module that accepts parameters, passed via extra_vars on the scan job
template.

scan_file_paths: '/tmp/'
scan_use_checksum: true
scan_use_recursive: true

• The scan_file_paths parameter may have multiple settings (such as /tmp/ or /var/log).

• The scan_use_checksum and scan_use_recursive parameters may also be set to false or omitted.
An omission is the same as a false setting.

Scan job templates should enable become and use credentials for which become is a possibility. You can enable
become by checking the Enable Privilege Escalation from the Options menu:

Note: If you maintained scan job templates in Ansible Tower 3.1.x and then upgrade to Ansible Tower 3.2, a new
“Tower Fact Scan - Default” project is automatically created for you. This project contains the old scan playbook
previously used in earlier versions of Ansible Tower.

16.9. Scan Job Templates 160

https://github.com/ansible/tower-fact-modules
https://github.com/ansible/tower-fact-modules
https://github.com/ansible/tower-fact-modules/blob/master/scan_facts.yml
https://github.com/ansible/tower-fact-modules/blob/master/scan_facts.yml

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.9.2 Supported OSes for scan_facts.yml

If you use the scan_facts.yml playbook with use fact cache, ensure that your OS is supported:

• Red Hat Enterprise Linux 5, 6, & 7

• CentOS 5, 6, & 7

• Ubuntu 16.04 (Support for Unbuntu is deprecated and will be removed in a future release)

• OEL 6 & 7

• SLES 11 & 12

• Debian 6, 7, 8

• Fedora 22, 23, 24

• Amazon Linux 2016.03

• Windows Server 2008 and later

Note that some of these operating systems may require initial configuration in order to be able to run python and/or
have access to the python packages (such as python-apt) that the scan modules depend on.

16.9.3 Pre-scan Setup

The following are examples of playbooks that configure certain distributions so that scan jobs can be run against them.

Bootstrap Ubuntu (16.04)

- name: Get Ubuntu 16, and on ready
hosts: all
sudo: yes
gather_facts: no

tasks:

- name: install python-simplejson
raw: sudo apt-get -y update
raw: sudo apt-get -y install python-simplejson
raw: sudo apt-get install python-apt

Bootstrap Fedora (23, 24)

- name: Get Fedora ready
hosts: all
sudo: yes
gather_facts: no

tasks:

- name: install python-simplejson
raw: sudo dnf -y update
raw: sudo dnf -y install python-simplejson
raw: sudo dnf -y install rpm-python

16.9. Scan Job Templates 161

Ansible Tower User Guide, Release Ansible Tower 3.6.3

CentOS 5 or Red Hat Enterprise Linux 5 may also need the simplejson package installed.

16.9.4 Custom Fact Scans

A playbook for a custom fact scan is similar to the example of the Fact Scan Playbook above. As an example, a
playbook that only uses a custom scan_foo Ansible fact module would look like this:

scan_custom.yml:

- hosts: all
gather_facts: false
tasks:
- scan_foo:

scan_foo.py:

def main():
module = AnsibleModule(

argument_spec = dict())

foo = [
{

"hello": "world"
},
{

"foo": "bar"
}

]
results = dict(ansible_facts=dict(foo=foo))
module.exit_json(**results)

main()

To use a custom fact module, ensure that it lives in the /library/ subdirectory of the Ansible project used in the
scan job template. This fact scan module is very simple, returning a hard-coded set of facts:

[
{

"hello": "world"
},
{

"foo": "bar"
}

]

Refer to the Ansible module development section of the Ansible documentation for more information.

16.9. Scan Job Templates 162

https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.10 Fact Caching

Tower can store and retrieve facts on a per-host basis through an Ansible Fact Cache plugin. This behavior is config-
urable on a per-job template basis. Fact caching is turned off by default but can be enabled to serve fact requests for
all hosts in an inventory related to the job running. This allows you to use job templates with --limit while still
having access to the entire inventory of host facts. A global timeout setting that the plugin enforces per-host, can be
specified (in seconds) through the Configure Tower interface under the Jobs tab:

Upon launching a job that uses fact cache (use_fact_cache=True), Tower will store all ansible_facts
associated with each host in the inventory associated with the job. The Ansible Fact Cache plugin that ships with
Ansible Tower will only be enabled on jobs with fact cache enabled (use_fact_cache=True).

When a job that has fact cache enabled (use_fact_cache=True) finishes running, Tower will restore all records
for the hosts in the inventory. Any records with update times newer than the currently stored facts per-host will be
updated in the database.

New and changed facts will be logged via Tower’s logging facility. Specifically, to the system_tracking names-
pace or logger. The logging payload will include the fields:

• host_name

• inventory_id

• ansible_facts

where ansible_facts is a dictionary of all Ansible facts for host_name in Tower inventory, inventory_id.

Note: If a hostname includes a forward slash (/), fact cache will not work for that host. If you have an inventory with

16.10. Fact Caching 163

Ansible Tower User Guide, Release Ansible Tower 3.6.3

100 hosts and one host has a / in the name, 99 of those hosts will still collect facts.

16.10.1 Benefits of Fact Caching

Fact caching saves a significant amount of time over running fact gathering. If you have a playbook in a job that
runs against a thousand hosts and forks, you could easily spend 10 minutes gathering facts across all of those hosts.
But if you run a job on a regular basis, the first run of it caches these facts and the next run will just pull them from
the database. This cuts the runtime of jobs against large inventories, including Smart Inventories, by an enormous
magnitude.

Note: Do not modify the tower.cfg file to apply fact caching. Custom fact caching could conflict with Tower’s
fact caching feature. It is recommended to use the fact caching module that comes with Ansible Tower. Fact caching
is not supported for isolated nodes.

You can choose to use cached facts in your job by enabling it in the Options field of the Job Templates window.

To clear facts, you need to run the Ansible clear_facts meta task. Below is an example playbook that uses the
Ansible clear_facts meta task.

- hosts: all
gather_facts: false
tasks:
- name: Clear gathered facts from all currently targeted hosts
meta: clear_facts

The API endpoint for fact caching can be found at: http://<Tower server name>/api/v2/hosts/x/
ansible_facts.

16.11 Utilizing Cloud Credentials

Cloud Credentials can be used when syncing a respective cloud inventory. Cloud Credentials may also be associ-
ated with a Job Template and included in the runtime environment for use by a playbook. Cloud Credentials were
introduced in Ansible Tower version 2.4.0 and these are currently supported:

• OpenStack

• Amazon Web Services

16.11. Utilizing Cloud Credentials 164

http://docs.ansible.com/ansible/latest/modules/meta_module.html#examples

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Rackspace

• Google

• Azure

• VMware

16.11.1 OpenStack

The sample playbook below invokes the nova_compute Ansible OpenStack cloud module and requires creden-
tials to do anything meaningful, and specifically requires the following information: auth_url, username,
password, and project_name. These fields are made available to the playbook via the environmental vari-
able OS_CLIENT_CONFIG_FILE, which points to a YAML file written by Tower based on the contents of the cloud
credential. This sample playbook loads the YAML file into the Ansible variable space.

OS_CLIENT_CONFIG_FILE example:

clouds:
devstack:
auth:

auth_url: http://devstack.yoursite.com:5000/v2.0/
username: admin
password: your_password_here
project_name: demo

Playbook example:

- hosts: all
gather_facts: false
vars:
config_file: "{{ lookup('env', 'OS_CLIENT_CONFIG_FILE') }}"
nova_tenant_name: demo
nova_image_name: "cirros-0.3.2-x86_64-uec"
nova_instance_name: autobot
nova_instance_state: 'present'
nova_flavor_name: m1.nano

nova_group:
group_name: antarctica
instance_name: deceptacon
instance_count: 3

tasks:
- debug: msg="{{ config_file }}"
- stat: path="{{ config_file }}"

register: st
- include_vars: "{{ config_file }}"

when: st.stat.exists and st.stat.isreg

- name: "Print out clouds variable"
debug: msg="{{ clouds|default('No clouds found') }}"

- name: "Setting nova instance state to: {{ nova_instance_state }}"
local_action:

module: nova_compute
login_username: "{{ clouds.devstack.auth.username }}"
login_password: "{{ clouds.devstack.auth.password }}"

16.11. Utilizing Cloud Credentials 165

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.11.2 Amazon Web Services

Amazon Web Services cloud credentials are exposed as the following environment variables during playbook execu-
tion (in the job template, choose the cloud credential needed for your setup):

• AWS_ACCESS_KEY_ID

• AWS_SECRET_ACCESS_KEY

All of the AWS modules will implicitly use these credentials when run via Tower without having to set the
aws_access_key_id or aws_secret_access_key module options.

16.11.3 Rackspace

Rackspace cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• RAX_USERNAME

• RAX_API_KEY

All of the Rackspace modules will implicitly use these credentials when run via Tower without having to set the
username or api_key module options.

16.11.4 Google

Google cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• GCE_EMAIL

• GCE_PROJECT

• GCE_CREDENTIALS_FILE_PATH

All of the Google modules will implicitly use these credentials when run via Tower without having to set the
service_account_email, project_id, or pem_file module options.

16.11.5 Azure

Azure cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• AZURE_SUBSCRIPTION_ID

• AZURE_CERT_PATH

All of the Azure modules implicitly use these credentials when run via Tower without having to set the
subscription_id or management_cert_path module options.

16.11. Utilizing Cloud Credentials 166

Ansible Tower User Guide, Release Ansible Tower 3.6.3

16.11.6 VMware

VMware cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• VMWARE_USER

• VMWARE_PASSWORD

• VMWARE_HOST

The sample playbook below demonstrates usage of these credentials:

- vsphere_guest:
vcenter_hostname: "{{ lookup('env', 'VMWARE_HOST') }}"
username: "{{ lookup('env', 'VMWARE_USER') }}"
password: "{{ lookup('env', 'VMWARE_PASSWORD') }}"
guest: newvm001
from_template: yes
template_src: centosTemplate
cluster: MainCluster
resource_pool: "/Resources"
vm_extra_config:

folder: MyFolder

16.12 Provisioning Callbacks

Provisioning callbacks are a feature of Tower that allow a host to initiate a playbook run against itself, rather than
waiting for a user to launch a job to manage the host from the tower console. Please note that provisioning callbacks
are only used to run playbooks on the calling host. Provisioning callbacks are meant for cloud bursting, ie: new
instances with a need for client to server communication for configuration (such as transmitting an authorization key),
not to run a job against another host. This provides for automatically configuring a system after it has been provisioned
by another system (such as AWS auto-scaling, or a OS provisioning system like kickstart or preseed) or for launching
a job programmatically without invoking the Tower API directly. The Job Template launched only runs against the
host requesting the provisioning.

Frequently this would be accessed via a firstboot type script, or from cron.

To enable callbacks, check the Allow Provisioning Callbacks checkbox in the Job Template. This displays the Provi-
sioning Callback URL for this job template.

Note: If you intend to use Tower’s provisioning callback feature with a dynamic inventory, Update on Launch should
be set for the inventory group used in the Job Template.

Callbacks also require a Host Config Key, to ensure that foreign hosts with the URL cannot request configuration.

Click the button to create a unique host key for this callback, or enter your own key. The host key may be
reused across multiple hosts to apply this job template against multiple hosts. Should you wish to control what hosts
are able to request configuration, the key may be changed at any time.

To callback manually via REST, look at the callback URL in the UI, which is of the form:

16.12. Provisioning Callbacks 167

Ansible Tower User Guide, Release Ansible Tower 3.6.3

http://<TOWER_SERVER_NAME>/api/v2/job_templates/1/callback/

The ‘1’ in this sample URL is the job template ID in Tower.

The request from the host must be a POST. Here is an example using curl (all on a single line):

curl -k -f -i -H 'Content-Type:application/json' -XPOST -d '{"host_config_key":
↪→"cfbaae23-81c0-47f8-9a40-44493b82f06a"}' \

https://<TOWER_SERVER_NAME>/api/v2/job_templates/1/callback/

The requesting host must be defined in your inventory for the callback to succeed. If Tower fails to locate the host
either by name or IP address in one of your defined inventories, the request is denied. When running a Job Template
in this way, the host initiating the playbook run against itself must be in the inventory. If the host is missing from the
inventory, the Job Template will fail with a “No Hosts Matched” type error message.

Note: If your host is not in inventory and Update on Launch is set for the inventory group, Tower attempts to
update cloud based inventory source before running the callback.

Successful requests result in an entry on the Jobs tab, where the results and history can be viewed.

While the callback can be accessed via REST, the suggested method of using the callback is to use one of the example
scripts that ships with Tower - /usr/share/awx/request_tower_configuration.sh (Linux/UNIX) or /
usr/share/awx/request_tower_configuration.ps1 (Windows). Usage is described in the source code
of the file by passing the -h flag, as shown below:

./request_tower_configuration.sh -h
Usage: ./request_tower_configuration.sh <options>

Request server configuration from Ansible Tower.

OPTIONS:
-h Show this message
-s Tower server (e.g. https://tower.example.com) (required)
-k Allow insecure SSL connections and transfers
-c Host config key (required)
-t Job template ID (required)
-e Extra variables
-s Number of seconds between retries (default: 60)

This script is intelligent in that it knows how to retry commands and is therefore a more robust way to use callbacks
than a simple curl request. As written, the script retries once per minute for up to ten minutes.

Note: Please note that this is an example script. You should edit this script if you need more dynamic behavior when
detecting failure scenarios, as any non-200 error code may not be a transient error requiring retry.

Most likely you will use callbacks with dynamic inventory in Tower, such as pulling cloud inventory from one of
the supported cloud providers. In these cases, along with setting Update On Launch, be sure to configure an in-
ventory cache timeout for the inventory source, to avoid hammering of your Cloud’s API endpoints. Since the
request_tower_configuration.sh script polls once per minute for up to ten minutes, a suggested cache
invalidation time for inventory (configured on the inventory source itself) would be one or two minutes.

While we recommend against running the request_tower_configuration.sh script from a cron job, a sug-
gested cron interval would be perhaps every 30 minutes. Repeated configuration can be easily handled by schedul-
ing in Tower, so the primary use of callbacks by most users is to enable a base image that is bootstrapped into
the latest configuration upon coming online. To do so, running at first boot is a better practice. First boot scripts

16.12. Provisioning Callbacks 168

Ansible Tower User Guide, Release Ansible Tower 3.6.3

are just simple init scripts that typically self-delete, so you would set up an init script that called a copy of the
request_tower_configuration.sh script and make that into an autoscaling image.

16.12.1 Passing Extra Variables to Provisioning Callbacks

Just as you can pass extra_vars in a regular Job Template, you can also pass them to provisioning callbacks. To
pass extra_vars, the data sent must be part of the body of the POST request as application/json (as the content
type). Use the following JSON format as an example when adding your own extra_vars to be passed:

'{"extra_vars": {"variable1":"value1","variable2":"value2",...}}'

(Added in Ansible Tower version 2.2.0.)

You can also pass extra variables to the Job Template call using curl, such as is shown in the following example:

root@localhost:~$ curl -f -H 'Content-Type: application/json' -XPOST \
-d '{"host_config_key": "5a8ec154832b780b9bdef1061764ae5a", "extra_

↪→vars": "{\"foo\": \"bar\"}"}' \
http://<TOWER_SERVER_NAME>/api/v2/job_templates/1/callback

For more information, refer to Launching Jobs with Curl.

16.13 Extra Variables

Note: Additional strict extra_vars validation was added in Ansible Tower 3.0.0. extra_vars passed to the job
launch API are only honored if one of the following is true:

• They correspond to variables in an enabled survey

• ask_variables_on_launch is set to True

When you pass survey variables, they are passed as extra variables (extra_vars) within Tower. This can be tricky,
as passing extra variables to a job template (as you would do with a survey) can override other variables being passed
from the inventory and project.

For example, say that you have a defined variable for an inventory for debug = true. It is entirely possible that
this variable, debug = true, can be overridden in a job template survey.

To ensure that the variables you need to pass are not overridden, ensure they are included by redefining them in the
survey. Keep in mind that extra variables can be defined at the inventory, group, and host levels.

Note: Beginning with Ansible Tower version 2.4, the behavior for Job Template extra variables and Survey variables
has changed. Previously, variables set using a Survey overrode any extra variables specified in the Job Template. In
2.4 and later, the Job Template extra variables dictionary is merged with the Survey variables. This may result in a
change of behavior upon upgrading to 2.4.

Here are some simplified examples of extra_vars in YAML and JSON formats:

The configuration in YAML format:

16.13. Extra Variables 169

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/tipsandtricks.html#launch-jobs-curl

Ansible Tower User Guide, Release Ansible Tower 3.6.3

launch_to_orbit: true
satellites:

- sputnik
- explorer
- satcom

The configuration in JSON format:

{
"launch_to_orbit": true,
"satellites": ["sputnik", "explorer", "satcom"]

}

The following table notes the behavior (hierarchy) of variable precedence in Ansible Tower as it compares to variable
precedence in Ansible.

Ansible Tower Variable Precedence Hierarchy (last listed wins)

16.13.1 Relaunching Job Templates

Another change for Ansible Tower version 2.4 introduced a launch_type setting for your jobs. Instead of manually
relaunching a job, a relaunch is denoted by setting launch_type to relaunch. The relaunch behavior deviates
from the launch behavior in that it does not inherit extra_vars.

Job relaunching does not go through the inherit logic. It uses the same extra_vars that were calculated for the job
being relaunched.

For example, say that you launch a Job Template with no extra_varswhich results in the creation of a Job called j1.
Next, say that you edit the Job Template and add in some extra_vars (such as adding "{ "hello": "world"
}").

Relaunching j1 results in the creation of j2, but because there is no inherit logic and j1 had no extra_vars, j2 will
not have any extra_vars.

To continue upon this example, if you launched the Job Template with the extra_vars you added after the creation
of j1, the relaunch job created (j3) will include the extra_vars. And relaunching j3 results in the creation of j4,
which would also include extra_vars.

16.13. Extra Variables 170

CHAPTER

SEVENTEEN

JOB SLICING

A sliced job refers to the concept of a distributed job. Distributed jobs are used for running a job across a very
large number of hosts, allowing you to run multiple ansible-playbooks, each on a subset of an inventory, that can be
scheduled in parallel across a cluster.

By default, Ansible runs jobs from a single control instance. Prior to Ansible Tower 3.4, a single Tower job would
only be run as a single ansible-playbook run, which would not fully take advantage of Tower’s ability to distribute
work to multiple nodes in a cluster.

For jobs that do not require cross-host orchestration, job slicing solves this. Job slicing works by adding a Job Template
field job_slice_count, which specifies the number of jobs into which to slice the Ansible run. When this number
is greater than 1, Tower will generate a workflow from a job template instead of a job. The inventory will be distributed
evenly amongst the slice jobs. The workflow job is then started, and proceeds as though it were a normal workflow.
When launching a job, the API will return either a job resource (if job_slice_count = 1) or a workflow job
resource. The corresponding Tower User Interface will redirect to the appropriate screen to display the status of the
run.

17.1 Job slice considerations

Consider the following when setting up job slices:

• A sliced job creates a workflow job, and then that creates jobs.

• A job slice consists of a job template, an inventory, and a slice count.

• When executed, a sliced job splits each inventory into a number of “slice size” chunks. It then queues jobs of
ansible-playbook runs on each chunk of the appropriate inventory. The inventory fed into ansible-playbook is a
pared-down version of the original inventory that only contains the hosts in that particular slice. The completed
sliced job that displays on the Jobs list are labeled accordingly, with the number of sliced jobs that have run:

• These sliced jobs follow normal scheduling behavior (number of forks, queuing due to capacity, assignation to
instance groups based on inventory mapping).

171

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Sliced job templates with prompts and/or extra variables behave the same as standard job templates, applying all
variables and limits to the entire set of slice jobs in the resulting workflow job. However, when passing a limit
to a Sliced Job, if the limit causes slices to have no hosts assigned, those slices will fail, causing the overall job
to fail.

• A job slice job status of a distributed job is calculated in the same manner as workflow jobs; failure if there are
any unhandled failures in its sub-jobs.

Warning: Any job that intends to orchestrate across hosts (rather than just applying changes to individual hosts)
should not be configured as a slice job. Any job that does, may fail, and Tower will not attempt to discover or
account for playbooks that fail when run as slice jobs.

17.2 Job slice execution behavior

When jobs are sliced, they can run on any Tower node and some may not run at the same time (insufficient capacity
in the system, for example). When slice jobs are running, job details display the workflow and job slice(s) currently
running, as well as a link to view their details individually.

By default, job templates are not normally configured to execute simultaneously (allow_simultaneous must
be checked in the API or Enable Concurrent Jobs in the UI). Slicing overrides this behavior and implies
allow_simultaneous even if that setting is unchecked. See Job Templates for information on how to specify
this, as well as the number of job slices on your job template configuration.

The Job Templates section provides additional detail on performing the following operations in the Tower User Inter-
face:

• Launch workflow jobs with a job template that has a slice number greater than one

• Cancel the whole workflow or individual jobs after launching a slice job template

• Relaunch the whole workflow or individual jobs after slice jobs finish running

• View the details about the workflow and slice jobs after a launching a job template

• Search slice jobs specifically after you create them (see subsequent section, Search job slices)

17.2. Job slice execution behavior 172

Ansible Tower User Guide, Release Ansible Tower 3.6.3

17.3 Search job slices

To make it easier to find slice jobs, use the Search functionality to apply a search filter to:

• job lists to show only slice jobs

• job lists to show only parent workflow jobs of job slices

• job templates lists to only show job templates that produce slice jobs

To show only slice jobs in job lists, as with most cases, you can filter either on the type (jobs here) or unified_jobs:

/api/v2/jobs/?job_slice_count__gt=1

To show only parent workflow jobs of job slices:

/api/v2/workflow_jobs/?job_template__isnull=false

To show only job templates that produce slice jobs:

/api/v2/job_templates/?job_slice_count__gt=1

17.3. Search job slices 173

CHAPTER

EIGHTEEN

WORKFLOWS

Workflows allow you to configure a sequence of disparate job templates (or workflow templates) that may or may not
share inventory, playbooks, or permissions. However, workflows have ‘admin’ and ‘execute’ permissions, similar to
job templates. A workflow accomplishes the task of tracking the full set of jobs that were part of the release process
as a single unit.

Job or workflow templates are linked together using a graph-like structure called nodes. These nodes can be jobs,
project syncs, or inventory syncs. A template can be part of different workflows or used multiple times in the same
workflow. A copy of the graph structure is saved to a workflow job when you launch the workflow.

The example below shows a workflow that contains all three, as well as a workflow job template:

As the workflow runs, jobs are spawned from the node’s linked template. Nodes linking to a job template which
has prompt-driven fields (job_type, job_tags, skip_tags, limit) can contain those fields, and will not be
prompted on launch. Job templates with promptable credential and/or inventory, WITHOUT defaults, will not be
available for inclusion in a workflow.

18.1 Workflow scenarios and considerations

Consider the following scenarios for building workflows:

• A root node is set to ALWAYS by default and it not editable.

174

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• A node can have multiple parents and children may be linked to any of the states of success, failure, or always.
If always, then the state is neither success or failure. States apply at the node level, not at the workflow job
template level. A workflow job will be marked as successful unless it is canceled or encounters an error.

• If you remove a job or workflow template within the workflow, the node(s) previously connected to those deleted,
automatically get connected upstream and retains its edge type as in the example below:

• Prompts for inventory and surveys will apply to workflow nodes in workflow job templates.

• If you launch from the API, running a get command displays a list of warnings and highlights missing compo-
nents. The basic workflow for a workflow job template is illustrated below.

18.1. Workflow scenarios and considerations 175

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• It is possible to launch several workflows simultaneously, and set a schedule for when to launch them. You can
set notifications on workflows, such as when a job completes, similar to that of job templates.

• You can build a recursive workflow, but if Tower detects an error, it will stop at the time the nested workflow
attempts to run.

• Artifacts gathered in jobs in the sub-workflow will not be passed to downstream nodes.

• An inventory can be set at the workflow level, or prompt for inventory on launch.

• When launched, all job templates in the workflow that have ask_inventory_on_launch=true will use
the workflow level inventory.

• Job templates that do not prompt for inventory will ignore the workflow inventory and run against their own
inventory.

• If a workflow prompts for inventory, schedules and other workflow nodes may provide the inventory.

• In a workflow convergence scenario, set_stats data will be merged in an undefined way, so it is recom-
mended that you set unique keys.

18.2 Extra Variables

Also similar to job templates, workflows use surveys to specify variables to be used in the playbooks in the workflow,
called extra_vars. Survey variables are combined with extra_vars defined on the workflow job template, and saved to
the workflow job extra_vars. extra_vars in the workflow job are combined with job template variables when spawning
jobs within the workflow.

Workflows utilize the same behavior (hierarchy) of variable precedence as Job Templates with the exception of three
additional variables. Refer to the Ansible Tower Variable Precedence Hierarchy in the Extra Variables section of the
Job Templates chapter of this guide. The three additional variables include:

18.2. Extra Variables 176

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Workflows included in a workflow will follow the same variable precedence - they will only inherit variables if they
are specifically prompted for, or defined as part of a survey.

In addition to the workflow extra_vars, jobs and workflows ran as part of a workflow can inherit variables in the
artifacts dictionary of a parent job in the workflow (also combining with ancestors further upstream in its branch).
These can be defined by the set_stats Ansible module, version 2.2.2 or later.

If you use the set_stats module in your playbook, you can produce results that can be consumed downstream by
another job, for example, notify users as to the success or failure of an integration run. In this example, there are two
playbooks that can be combined in a workflow to exercise artifact passing:

• invoke_set_stats.yml: first playbook in the workflow:

- hosts: localhost
tasks:

- name: "Artifact integration test results to the web"
local_action: 'shell curl -F "file=@integration_results.txt" https://file.io'
register: result

- name: "Artifact URL of test results to Tower Workflows"
set_stats:

data:
integration_results_url: "{{ (result.stdout|from_json).link }}"

• use_set_stats.yml: second playbook in the workflow

- hosts: localhost
tasks:

- name: "Get test results from the web"
uri:

url: "{{ integration_results_url }}"
return_content: true

register: results

- name: "Output test results"
debug:

msg: "{{ results.content }}"

The set_stats module processes this workflow as follows:

1. The contents of an integration results (example: integration_results.txt below) is first uploaded to the web.

the tests are passing!

2. Through the invoke_set_stats playbook, set_stats is then invoked to artifact the URL of the uploaded
integration_results.txt into the Ansible variable “integration_results_url”.

3. The second playbook in the workflow consumes the Ansible extra variable “integration_results_url”. It calls
out to the web using the uri module to get the contents of the file uploaded by the previous Job Template Job.
Then, it simply prints out the contents of the gotten file.

18.2. Extra Variables 177

https://docs.ansible.com/ansible/latest/modules/set_stats_module.html

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: For artifacts to work, keep the default setting, per_host = False in the set_stats module.

18.3 Workflow States

The workflow job can have the following states (no Failed state):

• Waiting

• Running

• Success (finished)

• Cancel

• Error

• Failed

In the workflow scheme, canceling a job cancels the branch, while canceling the workflow job cancels the entire
workflow.

18.4 Role-Based Access Controls

To edit and delete a workflow job template, you must have the admin role. To create a workflow job template, you
must be an organization admin or a system admin. However, you can run a workflow job template that contains job
templates you don’t have permissions for. Similar to projects, organization admins can create a blank workflow and
then grant an ‘admin_role’ to a low-level user, after which they can go about delegating more access and building the
graph. You must have execute access to a job template to add it to a workflow job template.

Other tasks such as the ability to make a duplicate copy and re-launch a workflow can also be performed, depending on
what kinds of permissions are granted to a particular user. Generally, you should have permissions to all the resources
used in a workflow (like job templates) before relaunching or making a copy.

For more information on performing the tasks described in this section, refer to the Ansible Tower Administration
Guide.

18.3. Workflow States 178

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/index.html#ag-start
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/index.html#ag-start

CHAPTER

NINETEEN

WORKFLOW JOB TEMPLATES

A workflow job template links together a sequence of disparate resources that accomplishes the task of tracking the
full set of jobs that were part of the release process as a single unit. These resources may include:

• job templates

• workflow templates

• project syncs

• inventory source syncs

The () menu opens a list of the workflow and job templates that are currently available. The default view
is collapsed (Compact), showing the template name, template type, and the statuses of the jobs that ran using that
template, but you can click Expanded to view more information. This list is sorted alphabetically by name, but you
can sort by other criteria, or search by various fields and attributes of a template. From this screen, you can launch

(), copy (), and remove () a job template. Before deleting a job template, be sure it is not used in a
workflow job template.

Only workflow templates have the Workflow Visualizer icon () as a shortcut for accessing the workflow editor.

179

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: Workflow templates can be used as building blocks for another workflow template. Many parameters in a
workflow template allow you to enable Prompt on Launch that can be modified at the workflow job template level,
and do not affect the values assigned at the individual workflow template level. For instructions, see the Workflow
Visualizer section.

19.1 Create a Workflow Template

To create a new workflow job template:

1. Click the button then select Workflow Template from the menu list.

2. Enter the appropriate details into the following fields:

• Name: Enter a name for the workflow template.

• Description: Enter an arbitrary description as appropriate (optional).

• Organization: Optionally enter or search for an organization to associate the workflow.

• Inventory: Optionally enter or search for an inventory to be used with this workflow template from the inven-
tories available to the currently logged in Tower user.

• Prompt on Launch: If selected, you can provide an inventory when this workflow template is launched, or
when this workflow template is used within another workflow template.

• Limit: Optionally specify a limit for subset of servers that your workflow is going to run. This value is a host
pattern to further constrain the list of hosts managed or affected by the playbook. Multiple patterns can be
separated by colons (“:”). As with core Ansible, “a:b” means “in group a or b”, “a:b:&c” means “in a or b but
must be in c”, and “a:!b” means “in a, and definitely not in b”.

• Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon launch to choose
a limit.

19.1. Create a Workflow Template 180

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• SCM Branch: Optionally specify the branch to override all job template nodes that prompt for a branch.

– Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon launch to
choose an SCM branch.

• Labels: Supply optional labels that describe this workflow template, such as “dev” or “test”. Labels can be used
to group and filter workflow templates and completed jobs in the Tower display.

– Labels are created when they are added to the Workflow Template. Labels are associated to a single
Organization using the Project that is provided in the Workflow Template. Members of the Organization
can create labels on a Workflow Template if they have edit permissions (such as an admin role).

– Once the Workflow Template is saved, the labels appear in the Templates overview.

– Click on the “x” beside a label to remove it. When a label is removed, and is no longer associated with a
Workflow or Workflow Template, the label is permanently deleted from the list of Organization labels.

– Jobs inherit labels from the Workflow Template at the time of launch. If a label is deleted from a Workflow
Template, it is also deleted from the Job.

• Options:

• Check Enable Concurrent Jobs to allow simultaneous runs of this workflow. Refer to Ansible Tower Capacity
Determination and Job Impact for additional information.

• Check Enable Webhooks to turn on the ability to interface with a predefined SCM system web service that is
used to launch a job template. Currently supported SCM systems are GitHub and GitLab.

If you enable webhooks, other fields display, prompting for additional information:

• Webhook Service: Select which service to listen for webhooks from

• Webhook Credential: Optionally, provide a GitHub or GitLab personal access token
(PAT) as a credential to use to send status updates back to the webhook service. Before
you can select it, the credential must exist. See Credential Types to create one.

Upon Save, additional fields populate and the Workflow Visualizer automatically opens.

• Webhook URL: Automatically populated with the URL for the webhook service to POST
requests to.

• Webhook Key: Generated shared secret to be used by the webhook service to sign pay-
loads sent to Tower. This must be configured in the settings on the webhook service in
order for Tower to accept webhooks from this service.

For additional information on setting up webhooks, see Working with Webhooks.

• Extra Variables:

19.1. Create a Workflow Template 181

Ansible Tower User Guide, Release Ansible Tower 3.6.3

– Pass extra command line variables to the playbook. This is the “-e” or “–extra-vars” command
line parameter for ansible-playbook that is documented in the Ansible documentation at Passing
Variables on the Command Line.

– Provide key/value pairs using either YAML or JSON. These variables have a maximum value of
precedence and overrides other variables specified elsewhere. An example value might be:

git_branch: production
release_version: 1.5

For more information about extra variables, refer to Extra Variables.

– Prompt on Launch: If selected, even if a default value is supplied, you will be prompted upon
launch to choose command line variables.

Note: If you want to be able to specify extra_vars on a schedule, you must select Prompt on Launch
for EXTRA VARIABLES on the workflow template, or a enable a survey on the workflow template, then
those answered survey questions become extra_vars.

3. When you have completed configuring the workflow template, click Save.

Saving the template exits the Workflow Template page and the Workflow Visualizer opens to allow you to build a
workflow. See the Workflow Visualizer section for further instructions. Otherwise, you may close the Workflow Visu-
alizer to return to the Details tab of the newly saved template in order to review, edit, add permissions, notifications,
schedules, and surveys, or view completed jobs and build a workflow template at a later time. Alternatively, you can
click Launch to launch the workflow, but you must first save the template prior to launching, otherwise, the Launch
button remains grayed-out. Also, note the Notifications tab is present only after the template has been saved.

You can verify the template is saved when the newly created workflow template appears on the list of templates at the
bottom of the screen.

19.1. Create a Workflow Template 182

http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line
http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: If an inventory was specified on the workflow template, the inventory displays in the Templates list view.

19.2 Work with Permissions

Clicking on Permissions allows you to review, grant, edit, and remove associated permissions for users as well as
team members.

Click the button to create new permissions for this workflow template.

In this example, two users and one team have been selected and each have been granted permissions for this Workflow
Template.

Note that you do not have to choose between teams or users, and that you can assign permissions to both at the same
time.

19.2. Work with Permissions 183

Ansible Tower User Guide, Release Ansible Tower 3.6.3

19.3 Work with Notifications

Clicking on Notifications allows you to review any notification integrations you have setup. The Notifications tab is
present only after the template has been saved.

Use the toggles to enable or disable the notifications to use with your particular template. For more detail, see Enable
and Disable Notifications.

If no notifications have been set up, click the NOTIFICATIONS link from inside the gray box to create a new
notification.

Refer to Notification Types for additional details on configuring various notification types.

19.3. Work with Notifications 184

Ansible Tower User Guide, Release Ansible Tower 3.6.3

19.4 View Completed Jobs

The Completed Jobs tab provides the list of workflow templates that have ran. Click Expanded to view the various
details of each job.

Note: If a workflow-level inventory was specified at run-time, the inventory name displays in the workflow job in the
jobs list:

From this view, you can click the job ID - name of the workflow job and see its graphical representation. The example
below shows the job details of the 141 - WF using JT workflow job.

If a workflow template is used in another workflow, the jobs details indicate a parent workflow.

19.4. View Completed Jobs 185

Ansible Tower User Guide, Release Ansible Tower 3.6.3

In the above example, click the parent workflow template, Overall, to view its Job Details page and the graphical
details of the nodes and statuses of each as they were launched.

The nodes are marked with labels that help you identify them at a glance. See the legend in the Workflow Visualizer
section for more information.

19.4. View Completed Jobs 186

Ansible Tower User Guide, Release Ansible Tower 3.6.3

19.5 Work with Schedules

Clicking on Schedules allows you to review any schedules set up for this template.

19.5.1 Schedule a Workflow Template

To schedule a job template run, click the Schedules tab.

• If schedules are already set up; review, edit, or enable/disable your schedule preferences.

• If schedules have not been set up, refer to Schedules for more information.

If a workflow template used in a nested workflow has a survey, or the Prompt on Launch selected for the inventory
option, the PROMPT button displays next to the SAVE and CANCEL buttons on the schedule form. Clicking the
PROMPT button shows an optional INVENTORY step where you can provide or remove an inventory or skip this
step without any changes.

19.6 Surveys

Workflows containing job types of Run or Check provide a way to set up surveys in the Workflow Job Template
creation or editing screens. Surveys set extra variables for the playbook similar to ‘Prompt for Extra Variables’
does, but in a user-friendly question and answer way. Surveys also allow for validation of user input. Click the

button to create a survey.

Use cases for surveys are numerous. An example might be if operations wanted to give developers a “push to stage”
button they could run without advanced Ansible knowledge. When launched, this task could prompt for answers to
questions such as, “What tag should we release?”

Many types of questions can be asked, including multiple-choice questions.

19.5. Work with Schedules 187

Ansible Tower User Guide, Release Ansible Tower 3.6.3

19.6.1 Create a Survey

To create a survey:

1. Click on the button to bring up the Add Survey window.

Use the ON/OFF toggle button at the top of the screen to quickly activate or deactivate this survey prompt.

2. A survey can consist of any number of questions. For each question, enter the following information:

• Name: The question to ask the user.

• Description: (optional) A description of what’s being asked of the user.

• Answer Variable Name: The Ansible variable name to store the user’s response in. This is the variable to be
used by the playbook. Variable names cannot contain spaces.

• Answer Type: Choose from the following question types.

– Text: A single line of text. You can set the minimum and maximum length (in characters) for this answer.

– Textarea: A multi-line text field. You can set the minimum and maximum length (in characters) for this
answer.

– Password: Responses are treated as sensitive information, much like an actual password is treated. You
can set the minimum and maximum length (in characters) for this answer.

– Multiple Choice (single select): A list of options, of which only one can be selected at a time. Enter the
options, one per line, in the Multiple Choice Options box.

– Multiple Choice (multiple select): A list of options, any number of which can be selected at a time. Enter
the options, one per line, in the Multiple Choice Options box.

– Integer: An integer number. You can set the minimum and maximum length (in characters) for this answer.

– Float: A decimal number. You can set the minimum and maximum length (in characters) for this answer.

• Default Answer: Depending on which type chosen, you can supply the default answer to the question. This
value is pre-filled in the interface and is used if the answer is not provided by the user.

19.6. Surveys 188

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Required: Whether or not an answer to this question is required from the user.

3. Once you have entered the question information, click the button to add the question.

A stylized version of the survey is presented in the Preview pane. For any question, you can click on the Edit button
to edit the question, the Delete button to delete the question, and click and drag on the grid icon to rearrange the order
of the questions.

4. Return to the left pane to add additional questions.

5. When done, click Save to save the survey.

19.6.2 Optional Survey Questions

The Required setting on a survey question determines whether the answer is optional or not for the user interacting
with it.

Behind the scenes, optional survey variables can be passed to the playbook in extra_vars, even when they aren’t
filled in.

• If a non-text variable (input type) is marked as optional, and is not filled in, no survey extra_var is passed to
the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length > 0, no
survey extra_var is passed to the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length === 0,
that survey extra_var is passed to the playbook, with the value set to an empty string (“”).

19.6. Surveys 189

Ansible Tower User Guide, Release Ansible Tower 3.6.3

19.7 Workflow Visualizer

Ansible Tower 3.1 introduced the Workflow Visualizer (formerly Workflow Editor), which provides a graphical way
of linking together job templates, workflow templates, project syncs, and inventory syncs to build a workflow tem-
plate. Before building a workflow template, refer to the Workflows section for considerations associated with various
scenarios on parent, child, and sibling nodes.

19.7.1 Build a Workflow

You can set up any combination of two or more of the following node types to build a workflow: Template (Job
Template or Workflow Job Template), Project Sync, Inventory Sync, or Approval. Each node is represented by a
rectangle while the relationships and their associated edge types are represented by a line (or link) that connects them.

1. In the details/edit view of a workflow template, click the button or

from the Templates list view, click the () icon to launch the Workflow Visualizer.

2. Click the button to display a list of nodes to add to your workflow.

3. On the right pane, select the type of node you want to add from the drop-down menu:

19.7. Workflow Visualizer 190

Ansible Tower User Guide, Release Ansible Tower 3.6.3

If selecting an Approval node, see Approval nodes for further detail.

Selecting a node provides the available valid options associated with it. Access detail about the node by clicking the
tooltip next to it.

Note: If you select a job template that does not have a default inventory when populating a workflow graph, the
inventory of the parent workflow will be used. Though a credential is not required in a job template, you will not be
able to choose a job template for your workflow if it has a credential that requires a password, unless the credential is
replaced by a prompted credential.

4. Once a node is selected, the workflow begins to build, and you must specify the type of action to be taken for
the selected node. This action is also referred to as edge type.

5. If the node is a root node, the edge type defaults to Always and is non-editable.

19.7. Workflow Visualizer 191

Ansible Tower User Guide, Release Ansible Tower 3.6.3

For subsequent nodes, you can select one of the following scenarios (edge type) to apply to each:

• Always: Continue to execute regardless of success or failure.

• On Success: Upon successful completion, execute the next template.

• On Failure: Upon failure, execute a different template.

Hovering over a node allows you to add another node, edit an existing link , or delete the selected
node.

6. If a job template used in the workflow has Prompt on Launch selected for any of its parameters, a Prompt
button appears, allowing you to change those values at the node level. Use the wizard to change the value(s) and
click Confirm.

19.7. Workflow Visualizer 192

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Likewise, if a workflow template used in the workflow has Prompt on Launch selected for the inventory option, use
the wizard to supply the inventory at the prompt. If the parent workflow has its own inventory, it will override any
inventory that is supplied here.

19.7. Workflow Visualizer 193

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Note: For job templates with promptable fields that are required, but don’t have a default, you must provide those
values when creating a node before the Select button becomes enabled. The two cases that disable the Select button
until a value is provided via the Prompt button: 1) when you select the Prompt on Launch checkbox in a job
template, but do not provide a default, or 2) when you create a survey question that is required but don’t provide a
default answer. However, this is NOT the case with credentials. Credentials that require a password on launch are not
permitted when creating a workflow node, since everything needed to launch the node must be provided when the
node is created. So, if a job template prompts for credentials, Tower prevents you from being able to select a credential
that requires a password.

You must also click Select when the prompt wizard closes in order to apply the changes at that node. Otherwise, any
changes you make will revert back to the values set in the actual job template.

A template that is associated with each workflow node will run based on the selected run scenario as it proceeds. Click

the compass () icon to display the legend for each run scenario and their job types.

19.7. Workflow Visualizer 194

Ansible Tower User Guide, Release Ansible Tower 3.6.3

7. When done adding/editing a node, click Select to save any modifications and render it on the graphical view.
For possible ways to build your workflow, see Node building scenarios.

8. When done with building your workflow template, click Save to save your entire workflow template and return
to the new Workflow Template details page.

Important: Clicking Close on this pane will not save your work, but instead, closes the entire Workflow Visualizer
and you will have to start over.

19.7. Workflow Visualizer 195

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Approval nodes

Choosing an Approval node requires user intervention in order to advance the workflow. This functions as a means to
pause the workflow in between playbooks so that a user can give approval to continue on to the next playbook in the
workflow, giving the user a specified amount of time to intervene, but also allows the user to continue as quickly as
possible without having to wait on some other trigger.

The default for the timeout is none, but you can specify the length of time before the request expires and automatically
gets denied. After selecting and supplying the information for the approval node, it displays on the graphical view

with a pause () icon next to it.

19.7. Workflow Visualizer 196

Ansible Tower User Guide, Release Ansible Tower 3.6.3

The approver is anyone who can execute the workflow job template containing the approval nodes, has org admin or
above privileges (for the org associated with that workflow job template), or any user who has the Approve permission
explicitly assigned to them within that specific workflow job template.

19.7. Workflow Visualizer 197

Ansible Tower User Guide, Release Ansible Tower 3.6.3

If pending approval nodes are not approved within the specified time limit (if an expiration was assigned) or they
are denied, then they are marked as “timed out” or “failed”, respectively, and move on to the next “on fail node”. If
approved, the “on success” path is taken. If you try to POST in the API to a node that has already been approved,
denied or timed out, an error message notifies you that this action is redundant, and no further steps will be taken.

Below shows the various levels of permissions allowed on approval workflows:

19.7. Workflow Visualizer 198

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Node building scenarios

You can add a sibling node by clicking the on the parent node:

You can insert another node in between nodes by hovering over the line that connects the two until the appears.

Clicking on the automatically inserts the node between the two nodes.

To add a root node to depict a split scenario, click the button again:

19.7. Workflow Visualizer 199

Ansible Tower User Guide, Release Ansible Tower 3.6.3

At any node where you want to create a split scenario, hover over the node from which the split scenario begins and

click the . This essentially adds multiple nodes from the same parent node, creating sibling nodes:

Note: When adding a new node, the PROMPT button applies to workflow templates as well. Workflow templates
will prompt for inventory and surveys.

If you want to undo the last inserted node, click on another node without making a selection from the right pane. Or,
click Cancel from the right pane.

Below is an example of a workflow that contains all three types of jobs that is initiated by a job template that if it fails
to run, proceed to the project sync job, and regardless of whether that fails or succeeds, proceed to the inventory sync
job.

Remember to refer to the Key at the top of the window to identify the meaning of the symbols and colors associated
with the graphical depiction.

Note: In a workflow with a set of sibling nodes having varying edge types, and you remove a node that has a follow-on
node attached to it, the attached node automatically joins the set of sibling nodes and retains its edge type:

19.7. Workflow Visualizer 200

Ansible Tower User Guide, Release Ansible Tower 3.6.3

The following ways you can modify your nodes:

• If you want to edit a node, click on the node you want to edit. The right pane displays the current selections.
Make your changes and click Select to apply them to the graphical view.

• To edit the edge type for an existing link (success/failure/always), click on the link. The right pane displays the
current selection. Make your changes and click Select to apply them to the graphical view.

• To add a new link from one node to another, click the link icon that appears on each node. Doing this
highlights the nodes that are possible to link to. These feasible options are indicated by the dotted lines. Invalid

19.7. Workflow Visualizer 201

Ansible Tower User Guide, Release Ansible Tower 3.6.3

options are indicated by grayed out boxes (nodes) that would otherwise produce an invalid link. The example
below shows the Demo Project as a possible option for the e2e-ec20de52-project to link to, as indicated by the
arrows:

• To remove a link, click the link and click the Unlink button.

This button only appears in the right hand panel if the target or child node has more than one parent. All nodes must
be linked to at least one other node at all times so you must create a new link before removing an old one.

Click the settings icon () to zoom, pan, or reposition the view. Alternatively, you can drag the workflow diagram
to reposition it on the screen or use the scroll on your mouse to zoom.

19.7. Workflow Visualizer 202

Ansible Tower User Guide, Release Ansible Tower 3.6.3

19.8 Launch a Workflow Template

Launch a workflow template by any of the following ways:

• Access the workflow template list from the navigational link or while in the Workflow Template Details

view, scroll to the bottom to access the button from the list of templates.

• While in the Job Template Details view of the job template you want to launch, click Launch.

Along with any extra variables set in the job template and survey, Tower automatically adds the same variables as
those added for a job template upon launch. Additionally, Tower automatically redirects the web browser to the Jobs
Details page for this job, displaying the progress and the results.

Events related to approvals on workflows display in the Activity Stream () with detailed information about the
approval requests.

19.8. Launch a Workflow Template 203

Ansible Tower User Guide, Release Ansible Tower 3.6.3

19.9 Copy a Workflow Template

Ansible Tower allows you the ability to copy a workflow template. If you choose to copy a workflow template, it does
not copy any associated schedule, notifications, or permissions. Schedules and notifications must be recreated by the
user or admin creating the copy of the workflow template. The user copying the workflow template will be granted the
admin permission, but no permissions are assigned (copied) to the workflow template.

1. Access the workflow template that you want to copy from the Templates navigational link () or while
in the Workflow Job Template Details view, scroll to the bottom to access it from a list of templates.

2. Click the button.

A new template opens with the name of the template from which you copied and a timestamp.

19.9. Copy a Workflow Template 204

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Select the copied template and replace the contents of the Name field with a new name, and provide or modify the
entries in the other fields to complete this template.

3. Click Save when done.

Note: If a resource has a related resource that you don’t have the right level of permission to, you cannot copy the
resource, such as in the case where a project uses a credential that a current user only has Read access. However,
for a workflow template, if any of its nodes uses an unauthorized job template, inventory, or credential, the workflow
template can still be copied. But in the copied workflow template, the corresponding fields in the workflow template
node will be absent.

19.10 Extra Variables

Note: Additional strict extra_vars validation was added in Ansible Tower 3.0.0. extra_vars passed to the job
launch API are only honored if one of the following is true:

• They correspond to variables in an enabled survey

• ask_variables_on_launch is set to True

When you pass survey variables, they are passed as extra variables (extra_vars) within Tower. This can be tricky,
as passing extra variables to a workflow template (as you would do with a survey) can override other variables being
passed from the inventory and project.

For example, say that you have a defined variable for an inventory for debug = true. It is entirely possible that
this variable, debug = true, can be overridden in a workflow template survey.

To ensure that the variables you need to pass are not overridden, ensure they are included by redefining them in the
survey. Keep in mind that extra variables can be defined at the inventory, group, and host levels.

The following table notes the behavior (hierarchy) of variable precedence in Ansible Tower as it compares to variable
precedence in Ansible.

Ansible Tower Variable Precedence Hierarchy (last listed wins)

19.10. Extra Variables 205

Ansible Tower User Guide, Release Ansible Tower 3.6.3

19.10. Extra Variables 206

CHAPTER

TWENTY

INSTANCE GROUPS

An Instance Group provides the ability to group instances in a clustered environment. Additionally, policies dictate
how instance groups behave and how jobs are executed. The following view displays the capacity levels based on
policy algorithms:

For more information about the policy or rules associated with instance groups, see the Instance Groups section of the
Ansible Tower Administration Guide.

You can set up isolated nodes in an instance group so that you can run your playbooks local to the nodes. For more
detail, refer to Isolated Instance Groups.

If you want to connect your instance group to a container, refer to Container Groups for further detail.

For an in-depth discussion on these concepts, refer to the Ansible Tower Feature Spotlight: Instance Groups and
Isolated Nodes blog.

20.1 Create an instance group

To create a new instance group:

1. Click the icon from the left navigation menu to open the Instance Groups configuration window.

2. Click the button and select Create Instance Group.

207

http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/glossary.html#term-Instance-Group
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/external_execution_envs.html#ag-instance-groups
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/external_execution_envs.html#ag-clustering-isolated-igs
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/external_execution_envs.html#ag-container-groups
https://www.ansible.com/blog/ansible-tower-feature-spotlight-instance-groups-and-isolated-nodes

Ansible Tower User Guide, Release Ansible Tower 3.6.3

3. Enter the appropriate details into the following fields:

• Name. Names must be unique and must not be named tower.

• Policy Instance Minimum. Enter the minimum number of instances to automatically assign to this group when
new instances come online.

• Policy Instance Percentage. Use the slider to select a minimum percentage of instances to automatically assign
to this group when new instances come online.

Note: Policy Instance fields are not required to create a new instance group. If you do not specify values, then the
Policy Instance Minimum and Policy Instance Percentage default to 0.

4. Click Save.

Once the instance group is successfully created, the Details tab of the newly created instance group remains, which

allows you to review and edit your instance group information. This is the same menu that is opened if the Edit ()
button is clicked from the Instance Group link. You can also edit Instances and review Jobs associated with this
instance group.

20.1. Create an instance group 208

Ansible Tower User Guide, Release Ansible Tower 3.6.3

20.1.1 Associate instances to an instance group

To associate instances to an instance group:

1. Click the Instances tab of the Instance Group window and click the button.

2. Click the checkbox next to one or more available instances from the list to select the instance(s) you want to add
to the instance group.

3. In the following example, the instances added to the instance group displays along with information about their
capacity.

20.1. Create an instance group 209

Ansible Tower User Guide, Release Ansible Tower 3.6.3

This view also allows you to edit some key attributes associated with the instances in your instance group:

20.1.2 View jobs associated with an instance group

To view the jobs associated with the instance group, click the Jobs tab of the Instance Group window and then click
Expanded to expand the view to show details about each job.

20.1. Create an instance group 210

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Each job displays the job status, ID, and name; type of job, time started and completed, who started the job; and which
template, inventory, project, and credential were used.

The instances are run in accordance with instance group policies. Refer to Instance Group Policies in the Ansible
Tower Administration Guide.

20.1. Create an instance group 211

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/external_execution_envs.html#ag-instance-group-policies

CHAPTER

TWENTYONE

JOBS

A job is an instance of Tower launching an Ansible playbook against an inventory of hosts.

The Jobs link displays a list of jobs and their statuses–shown as completed successfully or failed, or as an active
(running) job. The default view is collapsed (Compact) with the job ID, job name, and job type, but you can expand
to see more information. You can sort this list by various criteria, and perform a search to filter the jobs of interest.

Actions you can take from this screen include viewing the details and standard output of a particular job, relaunching

() jobs, or removing () jobs.

212

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Starting with Ansible Tower 3.3, from the list view, you can re-launch the most recent job. You can re-run on all hosts
in the specified inventory, even though some of them already had a successful run. This allows you to re-run the job
without running the Playbook on them again. You can also re-run the job on all failed hosts. This will help lower the
load on the Ansible Tower nodes as it does not need to process the successful hosts again.

The relaunch operation only applies to relaunches of playbook runs and does not apply to project/inventory updates,
system jobs, workflow jobs, etc.

• Selecting All relaunches all the hosts.

• Selecting Failed relaunches all failed and unreachable hosts.

When it relaunches, you remain on the same page.

Use the Tower Search feature to look up jobs by various criteria. For details about using the Tower Search, refer to the
Search chapter.

Clicking on any type of job takes you to the Job Details View for that job, which consists of two sections:

• The Details pane provides information and status about the job

• The Standard Out pane displays the job processes and output

213

Ansible Tower User Guide, Release Ansible Tower 3.6.3

21.1 Job Details - Inventory Sync

21.1.1 Details

The Details pane shows the basic status of the job and its start time. The icons at the top right corner of the Details

pane allow you to relaunch () or delete () the job.

The Details pane also provides details on the job execution:

• Name: The name of the associated inventory group.

• Status: Can be any of the following:

– Pending - The inventory sync has been created, but not queued or started yet. Any job, not just inventory
source syncs, will stay in pending until it’s actually ready to be run by the system. Reasons for inventory
source syncs not being ready include dependencies that are currently running (all dependencies must be
completed before the next step can execute), or there is not enough capacity to run in the locations it is
configured to.

– Waiting - The inventory sync is in the queue waiting to be executed.

– Running - The inventory sync is currently in progress.

– Successful - The inventory sync job succeeded.

– Failed - The inventory sync job failed.

• Explanation: Describes reason(s) for failure.

• License Error: Only shown for Inventory Sync jobs. If this is True, the hosts added by the inventory sync
caused Tower to exceed the licensed number of managed hosts.

• Started: The timestamp of when the job was initiated by Tower.

• Finished: The timestamp of when the job was completed.

• Elapsed: The total time the job took.

• Launch Type: Manual, Scheduled, or Dependency

21.1. Job Details - Inventory Sync 214

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Credential: The credential used in this inventory sync.

• Source: The type of cloud inventory.

• Overwrite: If True, any hosts and groups that were previously present on the external source but are now
removed, are removed from the Tower inventory. Hosts and groups that were not managed by the inventory
source are promoted to the next manually created group or if there is no manually created group to promote
them into, they are left in the “all” default group for the inventory. If False, local child hosts and groups not
found on the external source remain untouched by the inventory update process.

• Overwrite Vars: If True, all variables for child groups and hosts are removed and replaced by those found on
the external source. If False, a merge was performed, combining local variables with those found on the external
source.

By clicking on these items, where appropriate, you can view the corresponding job templates, projects, and other
Tower objects.

21.1.2 Standard Out

The Standard Out pane shows the full results of running the Inventory Sync playbook. This shows the same infor-
mation you would see if you ran it through the Ansible command line, and can be useful for debugging. The icons at

the top right corner of the Standard Out pane allow you to toggle the output as a main view () or to download the

output ().

Starting in Ansible Tower 3.3, the ANSIBLE_DISPLAY_ARGS_TO_STDOUT is set to False by default
for all playbook runs. This matches Ansible’s default behavior. This causes Tower to no longer display
task arguments in task headers in the Job Detail interface to avoid leaking certain sensitive module param-
eters to stdout. If you wish to restore the prior behavior (despite the security implications), you can set
ANSIBLE_DISPLAY_ARGS_TO_STDOUT to True via the AWX_TASK_ENV configuration setting. For more de-
tails, refer to the ANSIBLE_DISPLAY_ARGS_TO_STDOUT.

21.1. Job Details - Inventory Sync 215

http://docs.ansible.com/ansible/latest/reference_appendices/config.html#envvar-ANSIBLE_DISPLAY_ARGS_TO_STDOUT

Ansible Tower User Guide, Release Ansible Tower 3.6.3

21.2 Job Details - SCM

21.2.1 Details

The Details pane shows the basic status of the job and its start time. The icons at the top right corner of the Details

pane allow you to relaunch () or delete () the job.

The Details pane provides details on the job execution:

• Name: The name of the associated inventory group.

• Status: Can be any of the following:

– Pending - The SCM job has been created, but not queued or started yet. Any job, not just SCM jobs, will
stay in pending until it’s actually ready to be run by the system. Reasons for SCM jobs not being ready
include dependencies that are currently running (all dependencies must be completed before the next step
can execute), or there is not enough capacity to run in the locations it is configured to.

– Waiting - The SCM job is in the queue waiting to be executed.

– Running - The SCM job is currently in progress.

– Successful - The last SCM job succeeded.

– Failed - The last SCM job failed.

• Started: The timestamp of when the job was initiated by Tower.

• Finished: The timestamp of when the job was completed.

• Elapsed: The total time the job took.

• Launch Type: Manual or Scheduled.

• Project: The name of the project.

By clicking on these items, where appropriate, you can view the corresponding job templates, projects, and other
Tower objects.

21.2. Job Details - SCM 216

Ansible Tower User Guide, Release Ansible Tower 3.6.3

21.2.2 Standard Out

The Standard Out pane shows the full results of running the SCM Update. This shows the same information you
would see if you ran it through the Ansible command line, and can be useful for debugging. The icons at the top right

corner of the Standard Out pane allow you to toggle the output as a main view () or to download the output ().

21.3 Job Details - Playbook Run

The Job Details View for a Playbook Run job is also accessible after launching a job from the Job Templates page.

21.3.1 Details

The Details pane shows the basic status of the job and its start time. The icons at the top right corner of the Details

pane allow you to relaunch () or delete () the job.

The Details pane provides details on the job execution:

• Status: Can be any of the following:

– Pending - The playbook run has been created, but not queued or started yet. Any job, not just playbook
runs, will stay in pending until it’s actually ready to be run by the system. Reasons for playbook runs not
being ready include dependencies that are currently running (all dependencies must be completed before
the next step can execute), or there is not enough capacity to run in the locations it is configured to.

– Waiting - The playbook run is in the queue waiting to be executed.

– Running - The playbook run is currently in progress.

– Successful - The last playbook run succeeded.

– Failed - The last playbook run failed.

• Template: The name of the job template from which this job was launched.

• Started: The timestamp of when the job was initiated by Tower.

21.3. Job Details - Playbook Run 217

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Finished: The timestamp of when the job was completed.

• Elapsed: The total time the job took.

• Launch By: The name of the user, job, or scheduled scan job which launched this job.

• Inventory: The inventory selected to run this job against.

• Machine Credential: The name of the credential used in this job.

• Verbosity: The level of verbosity set when creating the job template.

• Extra Variables: Any extra variables passed when creating the job template are displayed here.

By clicking on these items, where appropriate, you can view the corresponding job templates, projects, and other
Tower objects.

21.3.2 Standard Out Pane

The Standard Out pane shows the full results of running the Ansible playbook. This shows the same information you
would see if you ran it through the Ansible command line, and can be useful for debugging. You can view the event
summary, host status, and the host events. The icons at the top right corner of the Standard Out pane allow you to

toggle the output as a main view () or to download the output ().

Events Summary

The events summary captures a tally of events that were run as part of this playbook:

• the number of plays

• the number of tasks

• the number of hosts

• the elapsed time to run the job template

21.3. Job Details - Playbook Run 218

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Host Status Bar

The host status bar runs across the top of the Standard Out pane. Hover over a section of the host status bar and the
number of hosts associated with that particular status displays.

Search

Use the Tower Search to look up specific events, hostnames, and their statuses. To filter only certain hosts with a
particular status, specify one of the following valid statuses:

• Changed: the playbook task actually executed. Since Ansible tasks should be written to be idempotent, tasks
may exit successfully without executing anything on the host. In these cases, the task would return Ok, but not
Changed.

• Failed: the task failed. Further playbook execution was stopped for this host.

• OK: the playbook task returned “Ok”.

• Unreachable: the host was unreachable from the network or had another fatal error associated with it.

• Skipped: the playbook task was skipped because no change was necessary for the host to reach the target state.

• Rescued: introduced in Ansible 2.8, this shows the tasks that failed and then executes a rescue section.

• Ignored: introduced in Ansible 2.8, this shows the tasks that failed and have ignore_errors: yes con-
figured.

These statuses also display at bottom of each Standard Out pane, in a group of “stats” called the Host Summary fields.

The example below shows a search with only failed hosts.

21.3. Job Details - Playbook Run 219

Ansible Tower User Guide, Release Ansible Tower 3.6.3

For more details about using the Tower Search, refer to the Search chapter.

Standard output view

The standard output view displays all the events that occur on a particular job. By default, all rows are expanded so

that all the details are displayed. Use the collapse-all button () to switch to a view that only contains the headers

for plays and tasks. Click the () button to view all lines of the standard output.

Alternatively, you can display all the details of a specific play or task by clicking on the arrow icons next to them.
Click an arrow from sideways to downward to expand the lines associated with that play or task. Click the arrow back
to the sideways position to collapse and hide the lines.

Things to note when viewing details in the expand/collapse mode:

• Each displayed line that is not collapsed has a corresponding line number and start time.

• An expand/collapse icon is at the start of any play or task after the play or task has completed.

• If querying for a particular play or task, it will appear collapsed at the end of its completed process.

• In some cases, an error message will appear, stating that the output may be too large to display. This occurs
when there are more than 4000 events. Use the search and filter for specific events to bypass the error.

• Hover over an event line in the Standard Out view, a tooltip displays above that line, giving the total hosts
affected by this task and an option to view further details about the breakdown of their statuses.

21.3. Job Details - Playbook Run 220

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Click on a line of an event from the Standard Out pane and a Host Events dialog displays in a separate window. This
window shows the host that was affected by that particular event.

Host Events

The Host Events dialog shows information about the host affected by the selected event and its associated play and
task:

• the Host

• the Status

• a unique ID

• a Created time stamp

• the name of the Play

• the name of the Task

• if applicable, the Ansible Module for the task, and any arguments for that module

• the Standard Out of the task

21.3. Job Details - Playbook Run 221

Ansible Tower User Guide, Release Ansible Tower 3.6.3

To view the results in JSON format, click on the JSON tab.

21.4 Ansible Tower Capacity Determination and Job Impact

This section describes how to determine capacity for instance groups and its impact to your jobs. For container groups,
see Container capacity limits in the Ansible Tower Administration Guide.

The Ansible Tower capacity system determines how many jobs can run on an instance given the amount of resources
available to the instance and the size of the jobs that are running (referred to as Impact). The algorithm used to
determine this is based entirely on two things:

• How much memory is available to the system (mem_capacity)

• How much CPU is available to the system (cpu_capacity)

Capacity also impacts Instance Groups. Since Groups are made up of instances, likewise, instances can be assigned to
multiple groups. This means that impact to one instance can potentially affect the overall capacity of other Groups.

Instance Groups (not instances themselves) can be assigned to be used by jobs at various levels (see Clustering). When
the Task Manager is preparing its graph to determine which group a job will run on, it will commit the capacity of an
Instance Group to a job that hasn’t or isn’t ready to start yet.

Finally, in smaller configurations, if only one instance is available for a job to run, the Task Manager will allow that
job to run on the instance even if it pushes the instance over capacity. This guarantees that jobs themselves won’t get
stuck as a result of an under-provisioned system.

Therefore, Capacity and Impact is not a zero-sum system relative to jobs and instances/Instance Groups.

For information on sliced jobs and their impact to capacity, see Job slice execution behavior.

21.4. Ansible Tower Capacity Determination and Job Impact 222

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/external_execution_envs.html#ag-container-capacity
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/clustering.html#ag-clustering

Ansible Tower User Guide, Release Ansible Tower 3.6.3

21.4.1 Resource determination for capacity algorithm

The capacity algorithms are defined in order to determine how many forks a system is capable of running simultane-
ously. This controls how many systems Ansible itself will communicate with simultaneously. Increasing the number
of forks a Tower system is running will, in general, allow jobs to run faster by performing more work in parallel. The
trade-off is that this will increase the load on the system, which could cause work to slow down overall.

Tower can operate in two modes when determining capacity. mem_capacity (the default) will allow you to over-
commit CPU resources while protecting the system from running out of memory. If most of your work is not CPU-
bound, then selecting this mode will maximize the number of forks.

Memory relative capacity

mem_capacity is calculated relative to the amount of memory needed per fork. Taking into account the overhead for
Tower’s internal components, this comes out to be about 100MB per fork. When considering the amount of memory
available to Ansible jobs, the capacity algorithm will reserve 2GB of memory to account for the presence of other
Tower services. The algorithm formula for this is:

(mem - 2048) / mem_per_fork

As an example:

(4096 - 2048) / 100 == ~20

Therefore, a system with 4GB of memory would be capable of running 20 forks. The value mem_per_fork can
be controlled by setting the Tower settings value (or environment variable) SYSTEM_TASK_FORKS_MEM, which
defaults to 100.

CPU relative capacity

Often, Ansible workloads can be fairly CPU-bound. In these cases, sometimes reducing the simultaneous workload
allows more tasks to run faster and reduces the average time-to-completion of those jobs.

Just as the Tower mem_capacity algorithm uses the amount of memory need per fork, the cpu_capacity algo-
rithm looks at the amount of CPU resources is needed per fork. The baseline value for this is 4 forks per core. The
algorithm formula for this is:

cpus * fork_per_cpu

For example, a 4-core system:

4 * 4 == 16

The value fork_per_cpu can be controlled by setting the Tower settings value (or environment variable)
SYSTEM_TASK_FORKS_CPU which defaults to 4.

21.4. Ansible Tower Capacity Determination and Job Impact 223

Ansible Tower User Guide, Release Ansible Tower 3.6.3

21.4.2 Capacity job impacts

When selecting the capacity, it’s important to understand how each job type affects capacity.

It’s helpful to understand what forks mean to Ansible: https://www.ansible.com/blog/ansible-performance-tuning (see
the section on “Know Your Forks”).

The default forks value for Ansible is 5. However, if Tower knows that you’re running against fewer systems than that,
then the actual concurrency value will be lower.

When a job is run, Tower will add 1 to the number of forks selected to compensate for the Ansible parent process. So if
you are running a playbook against 5 systems with a forks value of 5, then the actual forks value from the perspective
of Job Impact will be 6.

Impact of job types in Tower

Jobs and Ad-hoc jobs follow the above model, forks + 1. If you set a fork value on your job template, your job capacity
value will be the minimum of the forks value supplied, and the number of hosts that you have, plus one. The plus one
is to account for the parent Ansible process.

Instance capacity determines which jobs get assigned to any specific instance. Jobs and ad hoc commands use more
capacity if they have a higher forks value.

Other job types have a fixed impact:

• Inventory Updates: 1

• Project Updates: 1

• System Jobs: 5

If you don’t set a forks value on your job template, your job will use Ansible’s default forks value of five. Even though
Ansible defaults to five forks, it will use fewer if your job has fewer than five hosts. In general, setting a forks value
higher than what the system is capable of could cause trouble by running out of memory or over-committing CPU. So,
the job template fork values that you use should fit on the system. If you have playbooks using 1000 forks but none
of your systems individually has that much capacity, then your systems are undersized and at risk of performance or
resource issues.

Selecting the right capacity

Selecting a capacity out of the CPU-bound or the memory-bound capacity limits is, in essence, selecting between the
minimum or maximum number of forks. In the above examples, the CPU capacity would allow a maximum of 16
forks while the memory capacity would allow 20. For some systems, the disparity between these can be large and
often times you may want to have a balance between these two.

The instance field capacity_adjustment allows you to select how much of one or the other you want to consider.
It is represented as a value between 0.0 and 1.0. If set to a value of 1.0, then the largest value will be used. The above
example involves memory capacity, so a value of 20 forks would be selected. If set to a value of 0.0 then the smallest
value will be used. A value of 0.5 would be a 50/50 balance between the two algorithms which would be 18:

16 + (20 - 16) * 0.5 == 18

To view or edit the capacity in the Tower user interface, select the Instances tab of the Instance Group.

21.4. Ansible Tower Capacity Determination and Job Impact 224

https://www.ansible.com/blog/ansible-performance-tuning

Ansible Tower User Guide, Release Ansible Tower 3.6.3

21.5 Job branch overriding

Projects specify the branch, tag, or reference to use from source control in the scm_branch field. These are repre-
sented by the values specified in the Project Details fields as shown.

Projects have the option to “Allow Branch Override”. When checked, project admins can delegate branch selection to
the job templates that use that project (requiring only project use_role).

21.5. Job branch overriding 225

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Admins of job templates can further delegate that ability to users executing the job template (requiring only job
template execute_role) by checking the Prompt on Launch box next to the SCM Branch field of the job template.

21.5.1 Source tree copy behavior

Every job run has its own private data directory. This directory contains a copy of the project source tree for the given
scm_branch the job is running. Jobs are free to make changes to the project folder and make use of those changes
while it is still running. This folder is temporary and is cleaned up at the end of the job run.

If Clean is checked, Tower discards modified files in its local copy of the repository through use of the force
parameter in its respective Ansible modules pertaining to git, Subversion, and Mercurial.

21.5. Job branch overriding 226

https://docs.ansible.com/ansible/latest/modules/git_module.html#parameters
https://docs.ansible.com/ansible/latest/modules/subversion_module.html#parameters
https://docs.ansible.com/ansible/latest/modules/hg_module.html#parameters

Ansible Tower User Guide, Release Ansible Tower 3.6.3

21.5.2 Project revision behavior

Typically, during a project update, the revision of the default branch (specified in the SCM Branch field of the project)
is stored when updated, and jobs using that project will employ this revision. Providing a non-default SCM Branch
(not a commit hash or tag) in a job, the newest revision is pulled from the source control remote immediately before
the job starts. This revision is shown in the Revision field of the job and its respective project update.

21.5. Job branch overriding 227

Ansible Tower User Guide, Release Ansible Tower 3.6.3

21.5. Job branch overriding 228

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Consequently, offline job runs are impossible for non-default branches. To be sure that a job is running a static version
from source control, use tags or commit hashes. Project updates do not save the revision of all branches, only the
project default branch.

The SCM Branch field is not validated, so the project must update to assure it is valid. If this field is provided or
prompted for, the Playbook field of job templates will not be validated, and you will have to launch the job template
in order to verify presence of the expected playbook.

21.5.3 Git Refspec

The SCM Refspec field specifies which extra references the update should download from the remote. Examples are:

1. refs/*:refs/remotes/origin/*: fetches all references, including remotes of the remote

2. refs/pull/*:refs/remotes/origin/pull/* (GitHub-specific): fetches all refs for all pull requests

3. refs/pull/62/head:refs/remotes/origin/pull/62/head: fetches the ref for that one GitHub
pull request

For large projects, you should consider performance impact when using the 1st or 2nd examples here.

The SCM Refspec parameter affects the availability of the project branch, and can allow access to references not
otherwise available. The examples above allow the user to supply a pull request from the SCM Branch, which would
not be possible without the SCM Refspec field.

The Ansible git module fetches refs/heads/* by default. This means that a project’s branches and tags (and
commit hashes therein) can be used as the SCM Branch if SCM Refspec is blank. The value specified in the SCM
Refspec field affects which SCM Branch fields can be used as overrides. Project updates (of any type) will perform
an extra git fetch command to pull that refspec from the remote.

For example: You could set up a project that allows branch override with the 1st or 2nd refspec example –> Use this in
a job template that prompts for the SCM Branch –> A client could launch the job template when a new pull request
is created, providing the branch pull/N/head –> The job template would run against the provided GitGub pull
request reference.

For more information on the Ansible git module, see https://docs.ansible.com/ansible/latest/modules/git_module.html.

21.5. Job branch overriding 229

https://docs.ansible.com/ansible/latest/modules/git_module.html

CHAPTER

TWENTYTWO

WORKING WITH WEBHOOKS

A Webhook provides the ability to execute specified commands between apps over the web. Ansible Tower currently
provides webhook integration with GitHub and GitLab. This section describes the procedure for setting up a webhook
in Tower through their respective services.

• GitHub webhook setup

• GitLab webhook setup

• Payload output

The webhook post-status-back functionality for GitHub and GitLab is designed for work only under certain CI events.
Receiving another kind of event will result in messages like the one below in the Tower log:

awx.main.models.mixins Webhook event did not have a status API endpoint associated,
↪→skipping.

22.1 GitHub webhook setup

To set up webhooks for GitHub, you may optionally want to give Tower the ability to post statuses back when you run
jobs based on a pull-request webhook coming in. If you determine you do not want Tower to post job statuses
back to the webhook service, skip steps 1-2, and go directly to step 3.

1. Optionally generate a personal access token (PAT) for use with Tower.

a. In the profile settings of your GitHub account, click Settings.

b. Below the Personal settings, click Developer Settings.

230

http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/glossary.html#term-Webhook

Ansible Tower User Guide, Release Ansible Tower 3.6.3

c. In the Developer settings, click Personal access tokens.

d. From the Personal access tokens screen, click Generate new token.

22.1. GitHub webhook setup 231

Ansible Tower User Guide, Release Ansible Tower 3.6.3

e. When prompted, enter your GitHub account password to continue.

f. In the Note field, enter a brief description about what this PAT will be used for.

g. In the Scope fields, Tower automation webhook only needs repo scope access, with the exception
of invites. For information about other scopes, click the link right above the table to access the
docs.

h. Click the Generate Token button.

i. Once the token is generated, make sure you copy the PAT, as it will be used by Tower in a later
step. You will not be able to access this token again in GitHub.

2. Use the PAT to optionally create a GitHub credential in Tower:

a. Go to your Tower instance, and create a new credential for the GitHub PAT using the above
generated token.

b. Make note of the name of this credential, as it will be used in the job template that posts back to
GitHub.

c. Go to the job template with which you want to enable webhooks, and select the webhook service
and credential you created in the previous step.

22.1. GitHub webhook setup 232

Ansible Tower User Guide, Release Ansible Tower 3.6.3

d. Click Save. Now your job template is set up to be able to post back to GitHub. An example of
one may look like this:

3. Go to a specific GitHub repo you want to configure webhooks and click Settings.

4. Under Options, click Webhooks.

22.1. GitHub webhook setup 233

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5. On the Webhooks page, click Add webhook.

6. To complete the Add Webhook page, you need to enable webhooks in a job template in Tower (or in a workflow
job template), which will provide you with the following information:

a. Copy the contents of the Webhook URL from the Tower job template, and paste it in the Payload URL
field. GitHub uses this address to send results to.

b. Set the Content type to application/json.

c. Copy the contents of the Webhook Key from the Tower job template above and paste it in the Secret field.

d. Leave Enable SSL verification selected.

e. Next, you can select the types of events you want to trigger a webhook.

f. Leave Active checked and click Add Webhook.

22.1. GitHub webhook setup 234

Ansible Tower User Guide, Release Ansible Tower 3.6.3

7. After your webhook is configured, it displays in the list of webhooks active for your repo, along with the ability
to edit or delete it. Click on a webhook, and it brings you to the Manage webhook screen. Scroll to the very
bottom of the screen to view all the delivery attempts made to your webhook and whether they succeeded or
failed.

22.1. GitHub webhook setup 235

Ansible Tower User Guide, Release Ansible Tower 3.6.3

For more information, refer to the GitHub Webhooks developer documentation.

22.2 GitLab webhook setup

To set up webhooks for GitLab, you may optionally want to give Tower the ability to post statuses back when you run
jobs based on a merge-request webhook coming in. If you determine you do not want Tower to post job statuses
back to the webhook service, skip steps 1-2, and go directly to step 3.

1. Optionally, generate a personal access token (PAT) for use with Tower. This token gives Tower the ability to
post statuses back when we run jobs based on a webhook coming in.

a. In the profile settings of your GitLab account, click Settings.

b. On the sidebar, under User Settings, click Access Tokens.

22.2. GitLab webhook setup 236

https://developer.github.com/webhooks/

Ansible Tower User Guide, Release Ansible Tower 3.6.3

22.2. GitLab webhook setup 237

Ansible Tower User Guide, Release Ansible Tower 3.6.3

c. In the Name field, enter a brief description about what this PAT will be used for.

d. Skip the Expires at field unless you want to set an expiration date for your webhook.

e. In the Scopes fields, select the ones applicable to your integration. For Tower, API is the only
selection necessary.

f. Click the Create personal access token button.

g. Once the token is generated, make sure you copy the PAT, as it will be used by Tower in a later
step. You will not be able to access this token again in GitLab.

2. Use the PAT to optionally create a GitLab credential in Tower:

a. Go to your Tower instance, and create a new credential for the GitLab PAT using the above
generated token.

b. Make note of the name of this credential, as it will be used in the job template that posts back to
GitHub.

c. Go to the job template with which you want to enable webhooks, and select the webhook service
and credential you created in the previous step.

22.2. GitLab webhook setup 238

Ansible Tower User Guide, Release Ansible Tower 3.6.3

d. Click Save. Now your job template is set up to be able to post back to GitLab. An example of
one may look like this:

3. Go to a specific GitLab repo you want to configure webhooks and click Settings > Integrations.

22.2. GitLab webhook setup 239

Ansible Tower User Guide, Release Ansible Tower 3.6.3

4. To complete the Integrations page, you need to enable webhooks in a job template in Tower (or in a workflow
job template), which will provide you with the following information:

a. Copy the contents of the Webhook URL from the Tower job template above, and paste it in the URL field.
GitLab uses this address to send results to.

22.2. GitLab webhook setup 240

Ansible Tower User Guide, Release Ansible Tower 3.6.3

b. Copy the contents of the Webhook Key from the Tower job template above and paste it in the Secret
Token field.

c. In the Trigger section, select the types of events you want to trigger a webhook.

d. Leave Enable SSL verification selected.

e. Click Add webhook.

5. After your webhook is configured, it displays in the list of Project Webhooks for your repo, along with the ability
to test events, edit or delete it. Test a webhook event, and it displays the results at the top of the page whether it
succeeded or failed.

For more information, refer to the GitLab webhooks integrations documentation.

22.2. GitLab webhook setup 241

https://docs.gitlab.com/ee/user/project/integrations/webhooks.html

Ansible Tower User Guide, Release Ansible Tower 3.6.3

22.3 Payload output

The entire payload is exposed as an extra variable from Tower. To view the payload information, go to the Jobs Detail
view of the job template that ran with the webhook enabled. In the Extra Variables field of the Details pane, view the
payload output from the tower_webhook_payload variable, as shown in the example below.

22.3. Payload output 242

Ansible Tower User Guide, Release Ansible Tower 3.6.3

22.3. Payload output 243

CHAPTER

TWENTYTHREE

NOTIFICATIONS

A Notification Template is an instance of a Notification type (Email, Slack, Webhook, etc.) with a name, description,
and a defined configuration.

For example:

• A username, password, server, and recipients are needed for an Email notification template

• The token and a list of channels are needed for a Slack notification template

• The URL and Headers are needed for a Webhook notification template

A Notification is a manifestation of the notification template; for example, when a job fails, a notification is sent using
the configuration defined by the notification template.

At a high level, the typical flow for the notification system works as follows:

• A user creates a notification template to the Tower REST API at the /api/v2/
notification_templates endpoint (either through the API or through the Tower UI).

• A user assigns the notification template to any of the various objects that support it (all variants of job templates
as well as organizations and projects) and at the appropriate trigger level for which they want the notification
(started, success, or error). For example a user may wish to assign a particular notification template to trigger
when Job Template 1 fails. In which case, they will associate the notification template with the job template at
/api/v2/job_templates/n/notification_templates_error API endpoint.

• Starting with Ansible Tower 3.6, you can set notifications on job start, not just job end. Users and teams are also
able to define their own notifications that can be attached to arbitrary jobs.

23.1 Notification Hierarchy

Notification templates assigned at certain levels will inherit templates defined on parent objects as such:

• Job Templates will use notification templates defined on it as well as inheriting notification templates from the
Project used by the Job Template and from the Organization that it is listed under (via the Project).

• Project Updates will use notification templates defined on the project and will inherit notification templates from
the Organization associated with it

• Inventory Updates will use notification templates defined on the Organization that it is listed under

• Ad-hoc commands will use notification templates defined on the Organization that the inventory is associated
with

244

http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/glossary.html#term-Notification-Template
http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/glossary.html#term-Notification

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.2 Workflow

When a job succeeds or fails, the error or success handler will pull a list of relevant notification templates using the
procedure defined above. It will then create a Notification object for each one containing relevant details about the job
and then sends it to the destination (email addresses, slack channel(s), sms numbers, etc). These Notification objects
are available as related resources on job types (jobs, inventory updates, project updates), and also at /api/v2/
notifications. You may also see what notifications have been sent from a notification templates by examining
its related resources.

If a notification fails, it will not impact the job associated to it or cause it to fail. The status of the notification can be
viewed at its detail endpoint (/api/v2/notifications/<n>).

23.3 Create a Notification Template

To create a Notification Template:

1. Click the Notifications () icon from the left navigation bar.

2. Click the button.

3. Enter the name of the notification and a description in their respective fields, and specify the organization
(required) it belongs to.

4. Choose a type of notification from the Type drop-down menu. Refer to the subsequent sections for additional
information.

5. Once all required information is complete, click Save to add the notification.

23.2. Workflow 245

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.4 Notification Types

Notification types supported with Ansible Tower 3.6.3:

• Email

• Grafana

• HipChat

• IRC

• Mattermost

• PagerDuty

• Rocket.Chat

• Slack

• Twilio

• Webhook

Each of these have their own configuration and behavioral semantics and testing them may need to be approached in
different ways. Additionally, you can customize each type of notification down to a specific detail, or a set of criteria
to trigger a notification. See Create custom notifications for more detail on configuring custom notifications. The
following sections will give as much detail as possible on each type of notification.

23.4.1 Email

The email notification type supports a wide variety of SMTP servers and has support for TLS/SSL connections.

You must provide the following details to setup an email notification:

• Host

• Recipient list

• Sender email

• Port

• Timeout (in seconds): allows you to specify up to 120 seconds, the length of time Tower may attempt connecting
to the email server before giving up.

23.4. Notification Types 246

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.4.2 Grafana

Grafana is a fairly straightforward integration. First, create an API Key in the Grafana system (this is the token that is
given to Tower).

You must provide the following details to setup a Grafana notification:

• Grafana URL: The URL of the Grafana API service, generally http://yourcompany.grafana.com.

• Grafana API Key: The user must first create an API Key in the Grafana system (this is the token that is given to
Tower).

The other options of note are:

• ID of the Dashboard: When you created an API Key for the Grafana account, you can set up a dashboard with
its own unique ID.

• ID of the Panel: If you added panels and graphs to your Grafana interface, you can specify its ID here.

• Tags for the Annotation: Enter keywords that help identify the type(s) of events(s) of the notification you are
configuring.

• Disable SSL Verification: SSL verification is on by default, but you can choose to turn off Tower’s attempt to
verify the authenticity of the target’s certificate. Environments that use internal or private CA’s should select this
option to disable verification.

23.4. Notification Types 247

http://docs.grafana.org/tutorials/api_org_token_howto/

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.4.3 HipChat

There are several ways to integrate with HipChat. The Tower implementation uses HipChat “Integrations”. Currently
you can find this at the bottom right of the main HipChat webview. From there, you will select “Build your own
Integration”. After creating that, it will list the auth_token that needs to be supplied to Tower. Some other relevant
details on the fields required by Tower for HipChat notifications:

• Destination Channels: Channels which should receive the notification (“engineering” or “#support”, for exam-
ple).

• Token: The token listed after building your own HipChat integration.

• API URL: The URL of the Hipchat API service. If you create a team hosted by them it will be something
like: https://team.hipchat.com. For a self-hosted integration, use a base URL similar to https:/
/hipchat.yourcompany.com/ and add in appropriate Destination Channels without the # leading them
(“engineering” rather than “#engineering”).

• Notification Label: Along with the integration name itself this will put another label on the notification (which
could be helpful if multiple services are using the same integration to distinguish them from each other).

• Notification Color: This will highlight the message as the given color. If set to something HipChat does not
expect, then the notification will generate an error in the given color.

• Notify Channel (optional): Selecting this will cause the bot to “notify” channel members. Normally it will just
be stuck as a message in the chat channel without triggering anyone’s notifications. This option will notify users
of the channel respecting their existing notification settings (browser notification, email fallback, etc.).

23.4. Notification Types 248

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.4.4 IRC

The Tower IRC notification takes the form of an IRC bot that will connect, deliver its messages to channel(s) or
individual user(s), and then disconnect. The Tower notification bot also supports SSL authentication. The Tower
bot does not currently support Nickserv identification. If a channel or user does not exist or is not on-line then the
Notification will not fail; the failure scenario is reserved specifically for connectivity.

Connectivity information is straightforward:

• IRC Server Password (optional): IRC servers can require a password to connect. If the server does not require
one, leave blank

• IRC Server Port: The IRC server Port

• IRC Server Address: The host name or address of the IRC server

• IRC Nick: The bot’s nickname once it connects to the server

• Destination Channels or Users: A list of users and/or channels to which to send the notification.

• SSL Connection (optional): Should the bot use SSL when connecting

23.4. Notification Types 249

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.4.5 Mattermost

The Mattermost notification type in Ansible Tower provides a simple interface to Mattermost’s messaging and collab-
oration workspace. The parameters that can be specified are:

• Target URL (required): The full URL that will be POSTed to

• Username

• Channel

• Icon URL: specifies the icon to display for this notification

• Disable SSL Verification: Turns off Tower’s attempt to verify the authenticity of the target’s certificate. Envi-
ronments that use internal or private CA’s should select this option to disable verification.

23.4.6 PagerDuty

PagerDuty is a fairly straightforward integration. First, create an API Key in the PagerDuty system (this is the token
that is given to Tower) and then create a “Service” which provides an “Integration Key” that will also be given to
Tower. The other required options are:

• API Token: The user must first create an API Key in the PagerDuty system (this is the token that is given to
Tower).

• PagerDuty Subdomain: When you sign up for the PagerDuty account, you receive a unique subdomain to
communicate with. For instance, if you signed up as “towertest”, the web dashboard will be at towertest.
pagerduty.com and you will give the Tower API towertest as the subdomain (not the full domain).

• API Service/Integration Key

• Client Identifier: This will be sent along with the alert content to the pagerduty service to help identify the
service that is using the api key/service. This is helpful if multiple integrations are using the same API key and
service.

23.4. Notification Types 250

https://support.pagerduty.com/docs/generating-api-keys

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.4.7 Rocket.Chat

The Rocket.Chat notification type in Ansible Tower provides an interface to Rocket.Chat’s collaboration and commu-
nication platform. The parameters that can be specified are:

• Target URL (required): The full URL that will be POSTed to

• Username

• Icon URL: specifies the icon to display for this notification

• Disable SSL Verification: Turns off Tower’s attempt to verify the authenticity of the target’s certificate. Envi-
ronments that use internal or private CA’s should select this option to disable verification.

23.4. Notification Types 251

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.4.8 Slack

Slack, a collaborative team communication and messaging tool, is pretty easy to configure.

You must supply the following to setup Slack notifications:

• Destination channel(s)

• A token (which you can obtain from creating a bot in the integrations settings for the Slack team at https:
//api.slack.com/bot-users)

You must also invite the notification bot to join the channel(s) in question. Note that private messages are not supported.

23.4.9 Twilio

Twilio service is an Voice and SMS automation service. Once you are signed in, you must create a phone number from
which the message will be sent. You can then define a “Messaging Service” under Programmable SMS and associate
the number you created before with it.

Note that you may need to verify this number or some other information before you are allowed to use it to send to any
numbers. The Messaging Service does not need a status callback URL nor does it need the ability to Process inbound
messages.

Under your individual (or sub) account settings, you will have API credentials. Twilio uses two credentials to deter-
mine which account an API request is coming from. The “Account SID”, which acts as a username, and the “Auth
Token” which acts as a password.

To setup Twilio, provide the following details:

• Account Token

• Source Phone Number (this is the number associated with the messaging service above and must be given in the
form of “+15556667777”)

• Destination SMS number (this will be the list of numbers to receive the SMS and should be the 10-digit phone
number)

• Account SID

23.4. Notification Types 252

https://api.slack.com/bot-users
https://api.slack.com/bot-users

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.4.10 Webhook

The webhook notification type in Ansible Tower provides a simple interface to sending POSTs to a predefined web
service. Tower will POST to this address using application/json content type with the data payload containing all
relevant details in json format. Some web service APIs expect HTTP requests to be in a certain format with certain
fields. Starting in v3.6.3, you can configure more of the webhook notification in the following ways:

• configure the HTTP method (using POST or PUT)

• body of the outgoing request

• configure authentication (using basic auth)

The parameters for configuring webhooks are:

• Username

• Basic Auth Password

• Target URL (required): The full URL to which the webhook notification will be PUT or POSTed.

• Disable SSL Verification: SSL verification is on by default, but you can choose to turn off Tower’s attempt to
verify the authenticity of the target’s certificate. Environments that use internal or private CA’s should select this
option to disable verification.

• HTTP Headers (required): Headers in JSON form where the keys and values are strings. For ex-
ample, {"Authentication": "988881adc9fc3655077dc2d4d757d480b5ea0e11",
"MessageType": "Test"}

• HTTP Method (required). Select the method for your webhook:

– POST: Creates a new resource. Also acts as a catch-all for operations that do not fit into the other cate-
gories. It is likely you need to POST unless you know your webhook service expects a PUT.

– PUT: Updates a specific resource (by an identifier) or a collection of resources. PUT can also be used to
create a specific resource if the resource identifier is known beforehand.

23.4. Notification Types 253

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.5 Create custom notifications

Starting with Ansible Tower 3.6, you can customize the text content of each of the Notification Types by enabling the
Customize Messages portion at the bottom of the notifications form.

23.5. Create custom notifications 254

http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/notification_parameters_supported.html#ir-notifications-reference

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.5. Create custom notifications 255

Ansible Tower User Guide, Release Ansible Tower 3.6.3

You can provide a custom message for various job events:

• Start

• Success

• Error

• Workflow approved

• Workflow denied

• Workflow running

• Workflow timed out

The message forms vary depending on the type of notification you are configuring. For example, messages for email
and PagerDuty notifications have the appearance of a typical email form with a subject and body, in which case, Tower
displays the fields as Message and Message Body. Other notification types only expect a Message for each type of
event:

The Message fields are pre-populated with a template containing a top-level variable, job coupled with an attribute,
such as id or name, for example. Templates are enclosed in curly braces and may draw from a fixed set of fields
provided by Tower, as shown in the pre-populated Messages fields.

This pre-populated field suggests commonly displayed messages to a recipient who is notified of an event. You can,
however, customize these messages with different criteria by adding your own attribute(s) for the job as needed.
Custom notification messages are rendered using Jinja - the same templating engine used by Ansible playbooks.

Messages and message bodies have different types of content:

• messages will always just be strings (one-liners only; new lines are not allowed)

• message bodies will be either a dictionary or block of text:

– the message body for Webhooks and PagerDuty uses dictionary definitions. The default message
body for these is {{ job_metadata }}, you can either leave that as is or provide your own
dictionary

– the message body for email uses a block of text or a multi-line string. The default message body
is:

{{ job_friendly_name }} #{{ job.id }} had status {{ job.status }}, view
↪→details at {{ url }} {{ job_metadata }}

You can tweak this text (leaving {{ job_metadata }} in, or drop {{ job_metadata }}
altogether). Since the body is a block of text, it can really be any string you want.

{{ job_metadata }} gets rendered as a dictionary containing fields that describe the job being
executed. In all cases, {{ job_metadata }} will include the following fields:

23.5. Create custom notifications 256

Ansible Tower User Guide, Release Ansible Tower 3.6.3

– id

– name

– url

– created_by

– started

– finished

– status

– traceback

The resulting dictionary will look something like this:

{"id": 18,
"name": "Project - Space Procedures",
"url": "https://towerhost/#/jobs/project/18",
"created_by": "admin",
"started": "2019-10-26T00:20:45.139356+00:00",
"finished": "2019-10-26T00:20:55.769713+00:00",
"status": "successful",
"traceback": ""

}

If {{ job_metadata }} is rendered in a job, it will include the following additional fields:

– inventory

– project

– playbook

– credential

– limit

– extra_vars

– hosts

The resulting dictionary will look something like:

{"id": 12,
"name": "JobTemplate - Launch Rockets",
"url": "https://towerhost/#/jobs/playbook/12",
"created_by": "admin",
"started": "2019-10-26T00:02:07.943774+00:00",
"finished": null,
"status": "running",
"traceback": "",

(continues on next page)

23.5. Create custom notifications 257

Ansible Tower User Guide, Release Ansible Tower 3.6.3

(continued from previous page)

"inventory": "Inventory - Fleet",
"project": "Project - Space Procedures",
"playbook": "launch.yml",
"credential": "Credential - Mission Control",
"limit": "",
"extra_vars": "{}",
"hosts": {}

}

If {{ job_metadata }} is rendered in a workflow job, it will include the following additional
field:

– body (this will enumerate all the nodes in the workflow job and includes a description of the
job associated with each node)

The resulting dictionary will look something like this:

{"id": 14,
"name": "Workflow Job Template - Launch Mars Mission",
"url": "https://towerhost/#/workflows/14",
"created_by": "admin",
"started": "2019-10-26T00:11:04.554468+00:00",
"finished": "2019-10-26T00:11:24.249899+00:00",
"status": "successful",
"traceback": "",
"body": "Workflow job summary:

node #1 spawns job #15, \"Assemble Fleet JT\", which finished
↪→with status successful.

node #2 spawns job #16, \"Mission Start approval node\", which
↪→finished with status successful.\n

node #3 spawns job #17, \"Deploy Fleet\", which finished with
↪→status successful."
}

For more detail, refer to Using variables with Jinja2.

Tower requires valid syntax in order to retrieve the correct data to display the messages. For a list of supported
attributes and the proper syntax construction, refer to the Supported Attributes for Custom Notifications in the Ansible
Tower Installation and Reference Guide.

If you create a notification template that uses invalid syntax or references unusable fields, an error message displays
indicating the nature of the error. If you delete a notification’s custom message, the default message is shown in its
place.

23.5. Create custom notifications 258

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#using-variables-with-jinja2
http://docs.ansible.com/ansible-tower/3.6.3/html/installandreference/notification_parameters_supported.html#ir-notifications-reference

Ansible Tower User Guide, Release Ansible Tower 3.6.3

23.6 Enable and Disable Notifications

You can select which notifications to notify you when a specific job starts, in addition to notifying you on success or
failure at the end of the job run. Some behaviors to keep in mind:

• if a workflow template (WFJT) has notification on start enabled, and a job template (JT) within that workflow
also has notification on start enabled, you will receive notifications for both

• you can enable notifications to run on many JTs within a WFJT

• you can enable notifications to run on a sliced job template (SJT) start and each slice will generate a notification

• when you enable a notification to run on job start, and that notification gets deleted, the JT continues to run, but
will result in an error message

You can enable notifications on job start, job success, and job failure, or any combination thereof, from the Notifica-
tions tab of the following resources:

• Job Template

• Workflow Template

• Projects (shown in the example below)

• Inventory Source

• Organizations

For workflow templates that have approval nodes, in addition to Start, Success, and Failure, you can enable or disable
certain approval-related events:

23.6. Enable and Disable Notifications 259

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Refer to Approval nodes for additional detail on working with these types of nodes.

23.7 Configure the towerhost hostname

In /etc/tower/conf.d/custom.py, you can set TOWER_URL_BASE='https://tower.example.
com' to change the notification hostname, replacing https://tower.example.com with your preferred host-
name. You must restart Tower services after saving your changes with ansible-tower-service restart.

Refreshing your Tower license also changes the notification hostname.

23.7.1 Reset the TOWER_URL_BASE

The primary way that Tower determines how the base URL (TOWER_URL_BASE) is defined is by looking at an
incoming request and setting the server address based on that incoming request.

Tower takes settings values from the database first. If no settings values are found, Tower falls back to using the values
from the settings files. If a user posts a license by navigating to the Tower host’s IP adddress, the posted license is
written to the settings entry in the database.

To change the TOWER_URL_BASE if the wrong address has been picked up, navigate to the license from the Tower

Settings () Menu’s License tab using the DNS entry you wish to appear in notifications, and re-add your
license.

23.8 Notifications API

Ansible Tower 3.6 discontinued the following notification API endpoints that are appended by *_any:

/api/v2/organizations/N/notification_templates_any/
/api/v2/job_templates/N/notification_templates_any/
/api/v2/projects/N/notification_templates_any/
/api/v2/inventory_sources/N/notification_templates_any/
/api/v2/system_job_templates/N/notification_templates_any/

Starting in v3.6.3, you should use the started, success, or error endpoints instead:

Before:

/api/v2/organizations/N/notification_templates_any/

After:

/api/v2/organizations/N/notification_templates_started/
/api/v2/organizations/N/notification_templates_success/
/api/v2/organizations/N/notification_templates_error/

Additionally, the ../../../N/notification_templates_started endpoints have GET and POST ac-
tions for:

• Organizations

• Projects

23.7. Configure the towerhost hostname 260

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Inventory Sources

• Job Templates

• System Job Templates

• Workflow Job Templates

23.8. Notifications API 261

CHAPTER

TWENTYFOUR

SCHEDULES

You can access all your configured schedules by clicking the Schedules icon () from the left navigation bar.
The schedules list may be sorted by any of the attributes from each column using the directional arrows. You can also
search by name, date, or the name of the month in which a schedule runs.

Use the ON/OFF toggle next to the schedule name to enable/disable that schedule. Each schedule has a corresponding

Actions column that has options to allow editing () or deleting () the schedule.

If you are setting up a template, a project, or an inventory source, clicking on the Schedules tab allows you to configure
schedules for these resources. Once schedules are created, they are listed with the following information:

• Name: Clicking the schedule name opens the Edit Schedule dialog

• First Run: The first scheduled run of this task

• Next Run: The next scheduled run of this task

• Final Run: If the task has an end date, this is the last scheduled run of the task

262

Ansible Tower User Guide, Release Ansible Tower 3.6.3

24.1 Add a new schedule

Schedules can only be created from a template, project, or inventory source, and not directly on the main Schedules
screen itself. To create a new schedule:

1. Click the Schedules tab of the resource you are configuring (template, project, or inventory source).

2. Click the button, which opens the Create Schedule window.

3. Enter the appropriate details into the following fields:

• Name (required)

• Start Date (required)

• Start Time (required)

• Local Time Zone - The entered Start Time should be in this timezone

• Repeat Frequency - Appropriate scheduling options display depending on the frequency you select

The SCHEDULE DESCRIPTION displays when you established a schedule, allowing you to review the schedule
settings and a list of the scheduled occurrences in the selected Local Time Zone.

Caution: Jobs are scheduled in UTC. Repeating jobs that run at a specific time of day may move relative to a
local timezone when Daylight Savings Time shifts occur. Essentially, Tower resolves the local time zone based
time to UTC when the schedule is saved. To ensure your schedules are correctly set, you should set your schedules
in UTC time.

4. Once done, click Save.

You can use the ON/OFF toggle button to stop an active schedule or activate a stopped schedule.

24.1. Add a new schedule 263

Ansible Tower User Guide, Release Ansible Tower 3.6.3

24.1. Add a new schedule 264

CHAPTER

TWENTYFIVE

SETTING UP AN INSIGHTS PROJECT

Tower supports integration with Red Hat Insights. Once a host is registered with Insights, it will be continually scanned
for vulnerabilities and known configuration conflicts. Each of the found problems may have an associated fix in the
form of an Ansible playbook. Insights users create a maintenance plan to group the fixes and, ultimately, create a
playbook to mitigate the problems. Tower tracks the maintenance plan playbooks via an Insights project in Tower.
Authentication to Insights via Basic Auth, from Tower, is backed by a special Insights Credential, which must first
be established in Tower. To ultimately run an Insights Maintenance Plan in Tower, you need an Insights project, an
inventory, and a Scan Job template.

25.1 Create Insights Credential

To create a new credential for use with Insights:

1. Click the Credentials () icon from the left navigation bar to access the Credentials page.

2. Click the button located in the upper right corner of the Credentials screen.

3. Enter the name of the credential to be used in the Name field.

4. Optionally enter a description for this credential in the Description field.

5. In the Organization field, optionally enter the name of the organization with which the credential is associated,

or click the button and select it from the pop-up window.

6. In the Credential Type field, enter Insights or click the button and select it from the credential type
pop-up window.

265

Ansible Tower User Guide, Release Ansible Tower 3.6.3

7. Enter a valid Insights credential in the Username and Password fields. The Insights credential is the user’s Red
Hat Customer Portal account username and password.

8. Click Save when done.

25.1. Create Insights Credential 266

https://access.redhat.com
https://access.redhat.com

Ansible Tower User Guide, Release Ansible Tower 3.6.3

25.2 Create an Insights Project

To create a new Insights project:

1. Click the Projects () icon from the left navigation bar to access the Projects page.

2. Click the button located in the upper right corner of the Projects screen.

3. Enter the appropriate details into the required fields, at minimum. Note the following fields requiring specific
Insights-related entries:

• Name: Enter the name for your Insights project.

• Organization: Enter the name of the organization associated with this project, or click the button and
select it from the pop-up window.

• SCM Type: Select Red Hat Insights.

• Upon selecting the SCM type, the Source Details field expands.

4. The Credential field is pre-populated with the Insights credential you previously created. If not, enter the

credential, or click the button and select it from the pop-up window.

5. Click to select the update option(s) for this project from the Options field, and provide any additional values, if

applicable. For information about each option, click the Help button next to the options.

6. Click Save when done.

All SCM/Project syncs occur automatically the first time you save a new project. However, if you want them to be

updated to what is current in Insights, manually update the SCM-based project by clicking the button under the
project’s available Actions.

This process syncs your Tower Insights project with your Insights account solution. Notice that the status dot beside
the name of the project updates once the sync has run.

25.2. Create an Insights Project 267

Ansible Tower User Guide, Release Ansible Tower 3.6.3

25.3 Create Insights Inventory

The Insights playbook contains a hosts: line where the value is the hostname that Insights itself knows about, which
may be different than the hostname that Tower knows about. Therefore, make sure that the hostnames in the Tower
inventory match up with the system in the Red Hat Insights Portal.

To create a new inventory for use with Insights:

1. Click the Inventories () icon from the left navigation bar to access the Inventories page.

2. Click the button and select Inventory from the drop-down menu
list to launch a New Inventory window.

3. Enter the name and organization to be used in their respective fields.

4. In the Insights Credential field, enter the name of the Insights credential you previously created, or click the

button and select it from the pop-up window.

25.3. Create Insights Inventory 268

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5. Click Save and proceed to add a host.

Note: Typically, your inventory already contains Insights hosts. Tower just doesn’t know about them yet. The Insights
credential allows Tower to get information from Insights about an Insights host. Tower identifying a host as an Insights
host can occur without an Insights credential with the help of scan_facts.yml file. For instructions, refer to the
Create a Scan Job Template section.

6. Click the Hosts tab and click the button to open the Create Host
dialog.

7. Enter the name in the Host Name field associated with the Insights host that will be used.

8. Click Save when done.

25.4 Create a Scan Project

In order for Tower to utilize Insights Maintenance Plans, it must have visibility to them. Create and run a scan job
against the inventory using a stock manual scan playbook.

1. Click the Projects () icon from the left navigation bar to access the Projects page.

2. Click the button located in the upper right corner of the Projects screen.

3. Enter the appropriate details into the required fields, at minimum. Note the following fields requiring specific
Insights-related entries:

• Name: Enter the name for your scan project.

25.4. Create a Scan Project 269

Ansible Tower User Guide, Release Ansible Tower 3.6.3

• Organization: The name of the organization is pre-populated with the organization you chose from creating the
inventory.

• SCM Type: Select Git.

• Upon selecting the SCM type, the Source Details field expands.

4. In the SCM URL field, enter https://github.com/ansible/awx-facts-playbooks. This is the
location where the scan job template is stored.

5. Click to select the update option(s) for this project from the Options field, and provide any additional values, if

applicable. For information about each option, click the Help button next to the options.

6. Click Save when done.

All SCM/Project syncs occur automatically the first time you save a new project. However, if you want them to be

updated to what is current in Insights, manually update the SCM-based project by clicking the button under the
project’s available Actions.

Syncing imports into Tower any Maintenance Plans in your Insights account that has a playbook solution. It will use
the default Plan resolution. Notice that the status dot beside the name of the project updates once the sync has run.

25.5 Create a Scan Job Template

Create a scan job template that uses the fact scan playbook:

1. Click the Templates () icon from the left navigation bar to access the Templates page.

25.5. Create a Scan Job Template 270

Ansible Tower User Guide, Release Ansible Tower 3.6.3

2. Click the button and select Job Template from the drop-down menu
list to launch a New Job Template window.

3. Enter the appropriate details into the required fields, at minimum. Note the following fields requiring specific
Insights-related entries:

• Name: Enter the name of your scan job.

• Job Type: Choose Run from the drop-down menu list.

• Inventory: Enter the name of the Insights inventory, or click the button and select it from the pop-up
window.

• Project: Enter the name of the Scan project you previously created, or click the button and select it from
the pop-up window.

• Playbook: Select scan_facts.yml from the drop-down menu list. This is the playbook associated with the
Scan project you previously set up.

• Credential: Enter the credential to use for this project or click the button and select it from the pop-up
window. The credential does not have to be an Insights credential.

• Verbosity: Keep the default setting, or select the desired verbosity from the drop-down menu list.

4. Click to select Enable Privilege Escalation and Enable Fact Cache from the Options field.

A scan job template for Insights should be launched with the Privilege Escalation option enabled to allow
the job to access /etc/redhat-access-insights/machine-id as a root user in order to obtain
the value of system_id from the target host. What this does is activate the Insights button from the Host,
which is needed to remediate the Insights inventory. Otherwise, the system_id parameter in the result
of your scan job is set to null and the Insights button will not appear.

25.5. Create a Scan Job Template 271

Ansible Tower User Guide, Release Ansible Tower 3.6.3

5. Click Save when done.

6. Click the icon to launch the scan job template.

Once complete, the job results display in the Job Details page.

25.5. Create a Scan Job Template 272

Ansible Tower User Guide, Release Ansible Tower 3.6.3

25.6 Remediate Insights Inventory

Remediation of an Insights inventory allows Tower to run Insights playbooks with a single click.

1. Click the Inventories () icon from the left navigation bar to access the Inventories page.

2. In the list of inventories, click to open the details of your Insights inventory.

3. Click the Hosts tab to access the Insights hosts that have been loaded from the scan process.

4. Click to open the host that was loaded from Insights.

Notice the Insights tab is now shown on Hosts page. This indicates that Insights and Tower have reconciled the
inventories and is now set up for one-click Insights playbook runs.

5. Click Insights.

The screen below populates with a list of issues and whether or not the issues can be resolved with a playbook is
shown.

25.6. Remediate Insights Inventory 273

Ansible Tower User Guide, Release Ansible Tower 3.6.3

6. Scroll down to the bottom of the Insights inventory page, and click the Remediate Inventory button to update
hosts in the inventory.

Upon remediation, the New Job Template window opens. Notice the Inventory and Project fields are pre-populated.

25.6. Remediate Insights Inventory 274

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Use this new job template to create a job template that pulls Maintenance Plans from Insights.

7. Enter the appropriate details into the required fields, at minimum. Note the following fields requiring specific
Insights-related entries:

• Name: Enter the name of your Maintenance Plan.

• Job Type: If not already populated, select Run from the drop-down menu list.

• Inventory: This field is pre-populated with the Insights inventory you previously created.

• Project: This field is pre-populated with the Insights project you previously created.

• Playbook: Select a playbook associated with the Maintenance Plan you want to run from the drop-down menu
list.

• Credential: Enter the credential to use for this project or click the button and select it from the pop-up
window. The credential does not have to be an Insights credential.

• Verbosity: Keep the default setting, or select the desired verbosity from the drop-down menu list.

25.6. Remediate Insights Inventory 275

Ansible Tower User Guide, Release Ansible Tower 3.6.3

8. Click Save when done.

9. Click the icon to launch the job template.

Once complete, the job results display in the Job Details page.

25.6. Remediate Insights Inventory 276

CHAPTER

TWENTYSIX

BEST PRACTICES

26.1 Use Source Control

While Tower supports playbooks stored directly on the Tower server, best practice is to store your playbooks, roles,
and any associated details in source control. This way you have an audit trail describing when and why you changed
the rules that are automating your infrastructure. Plus, it allows for easy sharing of playbooks with other parts of your
infrastructure or team.

26.2 Ansible file and directory structure

Please review the Ansible Tips and Tricks from the Ansible documentation. If creating a common set of roles to use
across projects, these should be accessed via source control submodules, or a common location such as /opt. Projects
should not expect to import roles or content from other projects.

Note: Playbooks should not use the vars_prompt feature, as Tower does not interactively allow for
vars_prompt questions. If you must use vars_prompt, refer to and make use of the Surveys functionality
of Tower.

Note: Playbooks should not use the pause feature of Ansible without a timeout, as Tower does not allow for
interactively cancelling a pause. If you must use pause, ensure that you set a timeout.

Jobs run in Tower use the playbook directory as the current working directory, although jobs should be coded to use
the playbook_dir variable rather than relying on this.

26.3 Use Dynamic Inventory Sources

If you have an external source of truth for your infrastructure, whether it is a cloud provider or a local CMDB, it is best
to define an inventory sync process and use Tower’s support for dynamic inventory (including cloud inventory sources
and custom inventory scripts). This ensures your inventory is always up to date.

Note: With the release of Ansible Tower 2.4.0, edits and additions to Inventory host variables now persist beyond an
inventory sync as long as --overwrite_vars is not set. To have inventory syncs behave as they did before, it is
now required that both --overwrite and --overwrite_vars are set.

277

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
http://docs.ansible.com/ansible-tower/3.6.3/html/administration/custom_inventory_script.html#ag-custom-inventory-script

Ansible Tower User Guide, Release Ansible Tower 3.6.3

26.4 Variable Management for Inventory

Keeping variable data along with the objects in Tower (see the inventory editor) is encouraged, rather than using
group_vars/ and host_vars/. If you use dynamic inventory sources, Tower can sync such variables with the
database as long as the Overwrite Variables option is not set.

26.5 Autoscaling

Using the “callback” feature to allow newly booting instances to request configuration is very useful for auto-scaling
scenarios or provisioning integration.

26.6 Larger Host Counts

Consider setting “forks” on a job template to larger values to increase parallelism of execution runs. For more infor-
mation on tuning Ansible, see the Ansible blog.

26.7 Continuous integration / Continuous Deployment

For a Continuous Integration system, such as Jenkins, to spawn an Tower job, it should make a curl request to a job
template. The credentials to the job template should not require prompting for any particular passwords. Refer to
AWX CLI Ansible Tower documentation for configuration and usage instructions.

26.8 LDAP authentication performance tips

When an LDAP user authenticates in Tower, by default, all user-related attributes will be updated in the database on
each log in. In some environments, this operation can be skipped due to performance issues. To avoid it, you can
disable the option AUTH_LDAP_ALWAYS_UPDATE_USER. Refer to the Knowledge Base Article 5823061 for its
configuration and usage instructions. Please note that new users will still be created and get their attributes pushed to
the database on their first login.

Warning: With this option set to False, no changes to LDAP user’s attributes will be pushed to Tower. Attributes
will only be pushed to Tower the first time the user is created.

26.4. Variable Management for Inventory 278

http://www.ansible.com/blog/ansible-performance-tuning
https://docs.ansible.com/ansible-tower/latest/html/towercli/usage.html
https://access.redhat.com/solutions/5823061

CHAPTER

TWENTYSEVEN

SECURITY

The following sections will help you gain an understanding of how Ansible Tower handles and lets you control file
system security.

All playbooks are executed via the awx file system user. For running jobs, Ansible Tower defaults to offering job
isolation via Linux namespacing and chroots. This projection ensures jobs can only access playbooks and roles from
the Project directory for that job template and common locations such as /opt. Playbooks are not able to access roles,
playbooks, or data from other Projects by default.

If you need to disable this protection (not recommended), you can edit /etc/tower/conf.d/custom.py and
set AWX_PROOT_ENABLED to False.

Note: In this scenario, playbooks have access to the file system and all that implies; therefore, users who have access
to edit playbooks must be trusted.

For credential security, users may choose to upload locked SSH keys and set the unlock password to “ask”. You can
also choose to have the system prompt them for SSH credentials or sudo passwords rather than having the system store
them in the database.

27.1 Playbook Access and Information Sharing

By default, Tower’s multi-tenant security prevents playbooks from reading files outside of their project directory. In
older version of Ansible Tower a system called proot was used to isolate tower job processes from the rest of the
system. For Tower version 3.1 and later, bubblewrap is used instead, due to its light weight and maintained process
isolation system.

By default bubblewrap is enabled, but can be turned off via the Configure Tower screen in the Tower User Interface or
from the tower settings file.

279

Ansible Tower User Guide, Release Ansible Tower 3.6.3

To access the Configure Tower screen, refer to the Tower Configuration section.

Process isolation, when enabled, will be used for the following Job types:

• Job Templates - Launching jobs from regular job templates

• Ad-hoc Commands - Launching ad-hoc commands against one or more hosts in an inventory

By default, process isolation hides the following directories from the above tasks:

• /etc/tower - to prevent exposing Tower configuration

• /etc/ssh - to prevent exposing the system configuration that identifies the private and public key pairs for the
host

• /var/lib/awx - with the exception of the current project being used (for regular job templates)

• /var/log

• /tmp (or whatever the system temp directory is) - with the exception of the processes’ own temp files

You can customize what to hide or expose when running playbooks, using the Configure Tower screen or the settings
file. Refer the next section, Bubblewrap functionality and variables for more information.

27.1. Playbook Access and Information Sharing 280

http://docs.ansible.com/ansible-tower/3.6.3/html/administration/configure_tower_in_tower.html#ag-configure-tower

Ansible Tower User Guide, Release Ansible Tower 3.6.3

27.1.1 Bubblewrap functionality and variables

The bubblewrap functionality in Ansible Tower limits which directories on the Tower file system are available for
playbooks to see and use during playbook runs. You may find that you need to customize your bubblewrap settings in
some cases. To fine tune your usage of bubblewrap, there are certain variables that can be set.

To disable or enable bubblewrap support for running jobs (playbook runs only), ensure you are logged in as the Admin
user:

1. Click the Settings () icon from the left navigation bar.

2. Click the Jobs tab.

3. Scroll down until you see “Enable Job Isolation” and change the toggle button selection to OFF to disable
bubblewrap support or select ON to enable it.

By default, the Tower will use the system’s tmp directory (/tmp by default) as its staging area. This can be changed
in the Job Execution Path field of the Configure tower screen, or by updating the following entry in the settings file:

AWX_PROOT_BASE_PATH = "/opt/tmp"

If there is other information on the system that is sensitive and should be hidden, you can specify those in the Configure
Tower screen in the Paths to Hide From Isolated Jobs or by updating the following entry in the settings file:

AWX_PROOT_HIDE_PATHS = ['/list/of/', '/paths']

If there are any directories that should specifically be exposed, you can specify those in the Configure Tower screen in
the Paths to Expose to Isolated Jobs or by updating the following entry in the settings file:

27.1. Playbook Access and Information Sharing 281

Ansible Tower User Guide, Release Ansible Tower 3.6.3

AWX_PROOT_SHOW_PATHS = ['/list/of/', '/paths']

Note: The primary file you may want to add to AWX_PROOT_SHOW_PATHS is /var/lib/awx/.
ssh, if your playbooks need to use keys or settings defined there.

If you made changes in the settings file, be sure to restart services with the ansible-tower-service restart
command after your changes have been saved.

27.2 Role-Based Access Controls

Role-Based Access Controls (RBAC) are built into Tower and allow Tower administrators to delegate access to server
inventories, organizations, and more. Administrators can also centralize the management of various credentials, al-
lowing end users to leverage a needed secret without ever exposing that secret to the end user. RBAC controls allow
Tower to help you increase security and streamline management.

RBACs are easiest to think of in terms of Roles which define precisely who or what can see, change, or delete an
“object” for which a specific capability is being set. In releases prior to Ansible Tower version 3.0, RBAC was thought
of in terms of granting permissions to users or teams. Starting with Tower 3.0, RBAC is best thought of as granting
roles to users or teams, which is a more intuitive approach.

There are a few main concepts that you should become familiar with regarding Tower’s RBAC design–roles, resources,
and users. Users can be members of a role, which gives them certain access to any resources associated with that role,
or any resources associated with “descendant” roles.

A role is essentially a collection of capabilities. Users are granted access to these capabilities and Tower’s resources
through the roles to which they are assigned or through roles inherited through the role hierarchy.

Roles associate a group of capabilities with a group of users. All capabilities are derived from membership within a
role. Users receive capabilities only through the roles to which they are assigned or through roles they inherit through
the role hierarchy. All members of a role have all capabilities granted to that role. Within an organization, roles are
relatively stable, while users and capabilities are both numerous and may change rapidly. Users can have many roles.

27.2.1 Role Hierarchy and Access Inheritance

Imagine that you have an organization named “SomeCompany” and want to allow two people, “Josie” and “Carter”,
access to manage all the settings associated with that organization. You should make both people members of the
organization’s admin_role.

27.2. Role-Based Access Controls 282

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Often, you will have many Roles in a system and you will want some roles to include all of the capabilities of
other roles. For example, you may want a System Administrator to have access to everything that an Organization
Administrator has access to, who has everything that a Project Administrator has access to, and so on.

This concept is referred to as the ‘Role Hierarchy’:

• Parent roles get all capabilities bestowed on any child roles

• Members of roles automatically get all capabilities for the role they are a member of, as well as any child roles.

The Role Hierarchy is represented by allowing Roles to have “Parent Roles”. Any capability that a Role has is
implicitly granted to any parent roles (or parents of those parents, and so on).

27.2. Role-Based Access Controls 283

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Often, you will have many Roles in a system and you will want some roles to include all of the capabilities of
other roles. For example, you may want a System Administrator to have access to everything that an Organization
Administrator has access to, who has everything that a Project Administrator has access to, and so on. We refer to this
concept as the ‘Role Hierarchy’ and it is represented by allowing Roles to have “Parent Roles”. Any capability that a
Role has is implicitly granted to any parent roles (or parents of those parents, and so on). Of course Roles can have
more than one parent, and capabilities are implicitly granted to all parents.

27.2. Role-Based Access Controls 284

Ansible Tower User Guide, Release Ansible Tower 3.6.3

RBAC controls also give you the capability to explicitly permit User and Teams of Users to run playbooks against
certain sets of hosts. Users and teams are restricted to just the sets of playbooks and hosts to which they are granted
capabilities. And, with Tower, you can create or import as many Users and Teams as you require–create users and
teams manually or import them from LDAP or Active Directory.

RBACs are easiest to think of in terms of who or what can see, change, or delete an “object” for which a specific
capability is being determined.

27.2.2 Applying RBAC

The following sections cover how to apply Tower’s RBAC system in your environment.

Editing Users

When editing a user, a Tower system administrator may specify the user as being either a System Administrator (also
referred to as the Superuser) or a System Auditor.

• System administrators implicitly inherit all capabilities for all objects (read/write/execute) within the Tower
environment.

• System Auditors implicitly inherit the read-only capability for all objects within the Tower environment.

27.2. Role-Based Access Controls 285

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Editing Organizations

When editing an organization, system administrators may specify the following roles:

• One or more users as organization administrators

• One or more users as organization auditors

• And one or more users (or teams) as organization members

Users/teams that are members of an organization can view their organization administrator.

Users who are organization administrators implicitly inherit all capabilities for all objects within that Tower organiza-
tion.

Users who are organization auditors implicitly inherit the read-only capability for all objects within that Tower orga-
nization.

Editing Projects in an Organization

When editing a project in an organization for which they are the administrator, system administrators and organization
administrators may specify:

• One or more users/teams that are project administrators

• One or more users/teams that are project members

• And one or more users/teams that may update the project from SCM, from among the users/teams that are
members of that organization.

Users who are members of a project can view their project administrators.

Project administrators implicitly inherit the capability to update the project from SCM.

Administrators can also specify one or more users/teams (from those that are members of that project) that can use
that project in a job template.

Creating Inventories and Credentials within an Organization

All access that is granted to use, read, or write credentials is now handled through roles. You no longer set the “team”
or “user” for a credential. Instead, you use Tower’s RBAC system to grant ownership, auditor, or usage roles.

System administrators and organization administrators may create inventories and credentials within organizations
under their administrative capabilities.

Whether editing an inventory or a credential, System administrators and organization administrators may specify one
or more users/teams (from those that are members of that organization) to be granted the usage capability for that
inventory or credential.

System administrators and organization administrators may specify one or more users/teams (from those that are
members of that organization) that have the capabilities to update (dynamic or manually) an inventory. Administrators
can also execute ad hoc commands for an inventory.

27.2. Role-Based Access Controls 286

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Editing Job Templates

System administrators, organization administrators, and project administrators, within a project under their adminis-
trative capabilities, may create and modify new job templates for that project.

When editing a job template, administrators (Tower, organization, and project) can select among the inventory and
credentials in the organization for which they have usage capabilities or they may leave those fields blank so that they
will be selected at runtime.

Additionally, they may specify one or more users/teams (from those that are members of that project) that have ex-
ecution capabilities for that job template. The execution capability is valid regardless of any explicit capabilities the
user/team may have been granted against the inventory or credential specified in the job template.

User View

A user can:

• See any organization or project for which they are a member

• Create their own credential objects which only belong to them

• See and execute any job template for which they have been granted execution capabilities

If a job template a user has been granted execution capabilities on does not specify an inventory or credential, the user
will be prompted at run-time to select among the inventory and credentials in the organization they own or have been
granted usage capabilities.

Users that are job template administrators can make changes to job templates; however, to change to the inventory,
project, playbook, or credentials used in the job template, the user must also have the “Use” role for the project and
inventory currently being used or being set.

27.2.3 Roles

As stated earlier in this documentation, all access that is granted to use, read, or write credentials is now handled
through roles, and roles are defined for a resource.

Built-in roles

The following table lists the RBAC system roles and a brief description of the how that role is defined with regard to
privileges in Tower.

27.2. Role-Based Access Controls 287

Ansible Tower User Guide, Release Ansible Tower 3.6.3

System Role What it can do
System Administrator - System wide singleton Manages all aspects of the system
System Auditor - System wide singleton Views all aspects of the system
Ad Hoc Role - Inventory Runs ad hoc commands on an Inventory
Admin Role - Organizations, Teams, Inventory,
Projects, Job Templates

Manages all aspects of a defined Organization, Team, Inven-
tory, Project, or Job Template

Auditor Role - All Views all aspects of a defined Organization, Project, Inven-
tory, or Job Template

Execute Role - Job Templates Runs assigned Job Template
Member Role - Organization, Team User is a member of a defined Organization or Team
Read Role - Organizations, Teams, Inventory,
Projects, Job Templates

Views all aspects of a defined Organization, Team, Inventory,
Project, or Job Template

Update Role - Project Updates the Project from the configured source control man-
agement system

Update Role - Inventory Updates the Inventory using the cloud source update system
Owner Role - Credential Owns and manages all aspects of this Credential
Use Role - Credential, Inventory, Project Uses the Credential, Inventory, or Project in a Job Template

A Singleton Role is a special role that grants system-wide permissions. Ansible Tower currently provides two built-in
Singleton Roles but the ability to create or customize a Singleton Role is not supported at this time.

Common Team Roles - “Personas”

Tower support personnel typically works on ensuring that Tower is available and manages it a way to balance support-
ability and ease-of-use for users. Often, Ansible Tower support will assign “Organization Owner/Admin” to users in
order to allow them to create a new Organization and add members from their team the respective access needed. This
minimizes supporting individuals and focuses more on maintaining uptime of the service and assisting users who are
using Ansible Tower.

Below are some common roles managed by the Tower Organization:

27.2. Role-Based Access Controls 288

Ansible Tower User Guide, Release Ansible Tower 3.6.3

System Role
(for Organizations)

Common User
Roles

Description

Owner Team Lead -
Technical Lead

This user has the ability to control
access for other users in their
organization.
They can add/remove and grant
users specific access to projects,
inventories, and job templates.
This user also has the ability to
create/remove/modify any aspect of
an organization’s projects,
templates, inventories, teams, and
credentials.

Auditor Security Engineer -
Project Manager

This account can view all aspects of
the organization in read-only mode.
This may be good for a user who
checks in and maintains
compliance.
This might also be a good role for a
service account who manages or
ships job data from Ansible Tower
to some other data collector.

Member -
Team

All other users These users by default as an
organization member do not receive
any access to any aspect
of the organization. In order to
grant them access the respective
organization owner needs
to add them to their respective team
and grant them Admin, Execute,
Use, Update, Ad-hoc
permissions to each component of
the organization’s projects,
inventories, and job templates.

Member -
Team “Owner”

Power users -
Lead Developer

Organization Owners can provide
“admin” through the team interface,
over any component
of their organization including
projects, inventories, and job
templates. These users are able
to modify and utilize the respective
component given access.

Member -
Team “Execute”

Developers -
Engineers

This will be the most common and
allows the organization member the
ability to execute
job templates and read permission
to the specific components. This is
permission applies to templates.

Member -
Team “Use”

Developers -
Engineers

This permission applies to an
organization’s credentials,
inventories, and projects.
This permission allows the ability
for a user to the respective
component within their job
template.

Member -
Team “Update”

Developers -
Engineers

This permission applies to projects.
Allows the user to be able to run an
SCM update on a project.

27.2. Role-Based Access Controls 289

Ansible Tower User Guide, Release Ansible Tower 3.6.3

27.3 Function of roles: editing and creating

A new organization “resource roles” functionality was introduced in Ansible Tower 3.3 that are specific to a certain
resource type - such as workflows. Being a member of such a role usually provides two types of permissions, in the
case of workflows, where a user is given a “workflow admin role” for the organization “Default”:

• this user can create new workflows in the organization “Default”

• user can edit all workflows in the “Default” organization

One exception is job templates, where having the role is irrelevant of creation permission (more details on its own
section).

27.3.1 Independence of resource roles and organization membership roles

Resource-specific organization roles are independent of the organization roles of admin and member. Having the
“workflow admin role” for the “Default” organization will not allow a user to view all users in the organization, but
having a “member” role in the “Default” organization will. The two types of roles are delegated independently of each
other.

Necessary permissions to edit job templates

Users can edit fields not impacting job runs (non-sensitive fields) with a Job Template admin role alone. However, to
edit fields that impact job runs in a job template, a user needs the following:

• admin role to the job template

• use role to related project

• use role to related inventory

An “organization job template admin” role was introduced, but having this role isn’t sufficient by itself to edit a job
template within the organization if the user does not have use role to the project / inventory a job template uses.

In order to delegate full job template control (within an organization) to a user or team, you will need grant the team
or user all 3 organization-level roles:

• job template admin

• project admin

• inventory admin

This will ensure that the user (or all users who are members of the team with these roles) have full access to modify
job templates in the organization. If a job template uses an inventory or project from another organization, the user
with these organization roles may still not have permission to modify that job template. For clarity of managing
permissions, it is best-practice to not mix projects / inventories from different organizations.

27.3. Function of roles: editing and creating 290

Ansible Tower User Guide, Release Ansible Tower 3.6.3

RBAC permissions

Each role should have a content object, for instance, the org admin role has a content object of the org. To delegate
a role, you need admin permission to the content object, with some exceptions that would result in you being able to
reset a user’s password.

Parent is the organization.

Allow is what this new permission will explicitly allow.

Scope is the parent resource that this new role will be created on. Example: Organization.
project_create_role.

An assumption is being made that the creator of the resource should be given the admin role for that resource. If there
are any instances where resource creation does not also imply resource administration, they will be explicitly called
out.

Here are the rules associated with each admin type:

Project Admin

• Allow: Create, read, update, delete any project

• Scope: Organization

• User Interface: Project Add Screen - Organizations

Inventory Admin

• Parent: Org admin

• Allow: Create, read, update, delete any inventory

• Scope: Organization

• User Interface: Inventory Add Screen - Organizations

Note: As it is with the Use role, if you give a user Project Admin and Inventory Admin, it allows them to create Job
Templates (not workflows) for your organization.

Credential Admin

• Parent: Org admin

• Allow: Create, read, update, delete shared credentials

• Scope: Organization

• User Interface: Credential Add Screen - Organizations

Notification Admin

• Parent: Org admin

• Allow: Assignment of notifications

• Scope: Organization

Workflow Admin

• Parent: Org admin

• Allow: Create a workflow

• Scope: Organization

27.3. Function of roles: editing and creating 291

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Org Execute

• Parent: Org admin

• Allow: Executing JTs and WFJTs

• Scope: Organization

The following is a sample scenario showing an organization with its roles and which resource(s) each have access to:

27.3. Function of roles: editing and creating 292

CHAPTER

TWENTYEIGHT

INDEX

• genindex

293

CHAPTER

TWENTYNINE

COPYRIGHT © 2020 RED HAT, INC.

Ansible, Ansible Tower, Red Hat, and Red Hat Enterprise Linux are trademarks of Red Hat, Inc., registered in the
United States and other countries.

If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide
a link to the original version.

Third Party Rights

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Rackspace trademarks, service marks, logos and domain names are either common-law trademarks/service marks or
registered trademarks/service marks of Rackspace US, Inc., or its subsidiaries, and are protected by trademark and
other laws in the United States and other countries.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

294

INDEX

Symbols
|at|

credential types, 59

A
activity streams, 15
ad hoc commands, 135

inventories, 135
add new

inventories, 111
smart inventories, 111

adding new
applications, 87
credentials, 56

adding tokens
applications, 88

admin menu, 21
Amazon Web Services

credential types, 58
inventories, 127

Ansible collections, 105
Ansible Galaxy, 104
Ansible Galaxy integration

features, 3
Ansible Tower

inventories, 133
API bearer token

credential types, 65
API considerations

credential types, 72
API endpoints

notifications, 260
applications

adding new, 87
adding tokens, 88
authentication, 86
create, 87
getting started, 86
tokens, 86, 88

authentication, 86
applications, 86
features, 5

automation
features, 2

autoscaling
best practices, 278

autoscaling flexibility
features, 3

AWS
cloud credentials, 166

Azure
KMS, credential, 84

B
backup and restore

features, 3
best practices, 277

autoscaling, 278
deployment, continuous, 278
dynamic inventory sources, 277
file and directory structure, 277
host counts, larger, 278
integration, continuous, 278
ldap, 278
source control, 277
variable inventory management, 278

bubblewrap
functionality, 281
playbooks, 279
troubleshooting, 281
variables, 281

C
callbacks

extra variables, 169
capacity

jobs, 222
check

job types, 139
cloud credentials

AWS, 166
Google, 166
job templates, 164
MS Azure, 166

295

Ansible Tower User Guide, Release Ansible Tower 3.6.3

OpenStack, 165
Rackspace, 166
VMware, 167

cloud flexibility
features, 3

CloudForms
credential types, 67

clustering
features, 5

collections support, 105
components

licenses, 9
configure Tower

settings menu, 22
container support

features, 6
create

applications, 87
create template

notifications, 245
creating new

credential types, 74
credential

Azure KMS, 84
CyberArk AIM, 82
CyberArk Conjur, 83
HashiCorp KV, 83
HashiCorp SSH Secrets Engine, 84
MS Azure KMS, 84
plugins, 79
secret management, 79

credential management
features, 7

credential plugins
features, 7

credential types, 57, 72
|at|, 59
Amazon Web Services, 58
API bearer token, 65
API considerations, 72
CloudForms, 67
creating new, 74
GitHub PAT, 59
GitLab PAT, 59
Google Compute Engine, 60
insights, 61
Kubernetes, 65
machine, 61
Microsoft Azure Resource Manager, 63
network, 64
OpenShift, 65
OpenStack, 67
oVirt, 68
Red Hat Satellite, 68

Red Hat Virtualization, 68
rhv, 68
source control, 69
Vault, 70
VMware, 70

credentials, 54, 79
adding new, 56
getting started, 54, 73
how they work, 54
Insights, 265
types, 57

custom
fact scan job, 162

custom environment
features, 5

custom fact scans
playbook, 162
system tracking, 162

custom script
inventories, 133

CyberArk AIM, 82
credential, 82

CyberArk Conjur, 83
credential, 83

D
dashboard, 17

host count, 17
job status, 17
jobs tab, 17
main menu, 15
schedule status, 17

DEB files
licenses, 9

deployment, continuous
best practices, 278

distributed
job types, 171

dynamic inventory sources
best practices, 277

E
Email

notifications types, 246
environment, FIPS

features, 6
evaluation, 8
extra variables

callbacks, 169
provisioning callbacks, 169
surveys, 169, 176, 205

extra_vars, 169, 205

Index 296

Ansible Tower User Guide, Release Ansible Tower 3.6.3

F
fact cache

features, 4
fact caching

playbook, 163
fact scan job

custom, 162
playbook, 160

fact scan playbook
system tracking, 160

facts
scan job templates, 163

features, 7
Ansible Galaxy integration, 3
authentication, 5
automation, 2
autoscaling flexibility, 3
backup and restore, 3
cloud flexibility, 3
clustering, 5
container support, 6
credential management, 7
credential plugins, 7
custom environment, 5
environment, FIPS, 6
fact cache, 4
instance groups, 5
inventory plugins, 7
inventory sources, Red Hat

CloudForms, 4
inventory sources, Red Hat

Satellite 6, 4
jobs, distribution, 6
jobs, slicing, 6
limiting, hosts, 6
notifications, 4
OAuth 2 token, 5
OpenStack inventory support, 3
overview, 2
playbooks, Red Hat Insights, 5
real-time playbook, 2
remote command execution, 4
RESTful API, 3
role-based access control, 2
run-time job customization, 5
secret management system, 7
system tracking, 4
UI, 5
user interface, 5
venv, 5
workflows, approval, 6
workflows, convergence nodes, 6
workflows, inventory overrides, 6
workflows, nesting, 6

workflows, pause, 6
file and directory structure

best practices, 277
forks

jobs, 222
functionality

bubblewrap, 281

G
Galaxy support, 104
getting started

applications, 86
credentials, 54, 73

git refspec
templates, 229

GitHub
webhooks, 230

GitHub PAT
credential types, 59

GitLab
webhooks, 230

GitLab PAT
credential types, 59

Google
cloud credentials, 166

Google Compute Engine
credential types, 60
inventories, 128

Grafana
notifications types, 246

groups
notifications, 244

H
HashiCorp KV, 83

credential, 83
HashiCorp SSH Secrets Engine, 84

credential, 84
hierarchy

notifications, 244
Hipchat

notifications types, 246
host count

dashboard, 17
host counts, larger

best practices, 278
hostname configuration

notifications, 260
how they work

credentials, 54

I
Insights

credentials, 265

Index 297

Ansible Tower User Guide, Release Ansible Tower 3.6.3

inventory, 268, 273
project, 267
projects, 265

insights
credential types, 61

installation bundle
licenses, 9

instance groups, 207
features, 5

integration, continuous
best practices, 278

inventories, 107
ad hoc commands, 135
add new, 111
Amazon Web Services, 127
Ansible Tower, 133
custom script, 133
Google Compute Engine, 128
groups, 117
groups; add new, 117
Microsoft Azure Resource Manager,

129
OpenStack, 132
plugins, 110
project-sourced, 126
Red Hat CloudForms, 131
Red Hat Satellite 6, 131
Red Hat Virtualization, 132
scan job templates, 159
smart, 109
VMware vCenter, 130

inventory
Insights, 268, 273

inventory plugins
features, 7

inventory source
scheduling, 262

inventory sources
notifications, 244

inventory sources, Red Hat CloudForms
features, 4

inventory sources, Red Hat Satellite 6
features, 4

inventory sync
job results, 214

IRC
notifications types, 246

J
job branch

overriding, 225
job results, 213

inventory sync, 214
job slice, 171

job splitting, 171
job status

dashboard, 17
job templates, 139

cloud credentials, 164
job variables, 169
jobs, launching, 156
provisioning callbacks, 167
relaunch, 170
scheduling, 152, 153, 262
survey creation, 154
survey extra variables, 169
survey optional questions, 155
surveys, 153

job templates, hierarchy, 169
job templates, overview, 169
job types

check, 139
distributed, 171
run, 139
scan, 139
slice, 171
splitting, 171

job variables
job templates, 169
workflow templates, 205

jobs, 212
capacity, 222
event summary, 219
events summary, 218
forks, 222
host events, 221
host status bar, 219
host summary, 219
job summary, 218
notifications, 244
results, 213
views, 17

jobs results
playbook run, 217
SCM, 216

jobs tab
dashboard, 17

jobs, distribution
features, 6

jobs, launching
job templates, 156
workflow templates, 203

jobs, slicing
features, 6

K
KMS

credential Azure, 84

Index 298

Ansible Tower User Guide, Release Ansible Tower 3.6.3

Kubernetes
credential types, 65

L
ldap

best practices, 278
license, 7, 8

nodes, 9
trial, 8
troubleshooting, 13
types, 8

license features, 7
license, add manually, 13
license, import, 11
license, viewing, 22
licenses

components, 9
DEB files, 9
installation bundle, 9
RPM files, 9

limiting, hosts
features, 6

logging in, 10

M
machine

credential types, 61
main menu

dashboard, 15
Mattermost

notifications types, 246
Microsoft Azure Resource Manager

credential types, 63
inventories, 129

MS Azure
cloud credentials, 166

MS Azure KMS, 84
credential, 84

my view, 17

N
network

credential types, 64
notifications

API endpoints, 260
create template, 245
features, 4
groups, 244
hierarchy, 244
hostname configuration, 260
inventory sources, 244
jobs, 244
organizations, 37
resetting the TOWER_URL_BASE, 260

template, 244, 245
template workflow, 245
troubleshooting TOWER_URL_BASE, 260
types, 246
types Email, 246
types Grafana, 246
types Hipchat, 246
types IRC, 246
types Mattermost, 246
types pagerduty, 246
types Rocket.Chat, 246
types Slack, 246
types Twilio, 246
types Webhook, 246

O
OAuth 2 token

features, 5
OpenShift

credential types, 65
OpenStack

cloud credentials, 165
credential types, 67
inventories, 132

OpenStack inventory support
features, 3

ordering
sorting, 25

organization
summary, 38

organizations, 27
notifications, 37
permissions, 31
users, 30, 42

overriding
job branch, 225

overview
features, 2

oVirt
credential types, 68

P
pagerduty

notifications types, 246
payload

webhooks, 230
permissions

organizations, 31
projects, 98
teams, 51
users, 43

playbook
custom fact scans, 162
fact caching, 163

Index 299

Ansible Tower User Guide, Release Ansible Tower 3.6.3

fact scan job, 160
scan job, 159

playbook run
jobs results, 217

playbooks
bubblewrap, 279
manage manually, 93
process isolation, 279
projects, 93, 94
PRoot settings, 279
sharing access, 279
sharing content, 279
source control, 94

playbooks, Red Hat Insights
features, 5

plugins
credential, 79
inventories, 110

process isolation
playbooks, 279

project
Insights, 267
Scan, 269

project-sourced
inventories, 126

projects, 91
add new, 93
Insights, 265
permissions, 98
playbooks, 93, 94
scheduling, 103, 262
source control update, 97

PRoot settings
playbooks, 279

provisioning callbacks
extra variables, 169
job templates, 167

R
Rackspace

cloud credentials, 166
RBAC

security, 282
real-time playbook

features, 2
Red Hat CloudForms

inventories, 131
Red Hat Satellite

credential types, 68
Red Hat Satellite 6

inventories, 131
Red Hat Virtualization

credential types, 68
inventories, 132

relaunch
job templates, 170

remote command execution
features, 4

resetting the TOWER_URL_BASE
notifications, 260

RESTful API
features, 3

rhv
credential types, 68

Rocket.Chat
notifications types, 246

role-based access control
features, 2

role-based access controls, 282
RPM files

licenses, 9
run

job types, 139
run-time job customization

features, 5

S
Scan

project, 269
scan

job types, 139
scan job

playbook, 159
scan job templates

facts, 163
inventories, 159

schedule
views, 17

schedule status
dashboard, 17

scheduling
add new, 153, 187
inventory source, 262
job templates, 152, 153, 262
projects, 103, 262
workflow template, 187
workflow templates, 187, 262

SCM
jobs results, 216

searching, 23
secret management

credential, 79
secret management system

features, 7
security, 279

RBAC, 282
settings menu

configure Tower, 22

Index 300

Ansible Tower User Guide, Release Ansible Tower 3.6.3

view license, 22
sharing access

playbooks, 279
sharing content

playbooks, 279
Slack

notifications types, 246
slice

job types, 171
smart

inventories, 109
smart inventories

add new, 111
sorting

ordering, 25
source control

best practices, 277
credential types, 69

source control update
projects, 97

splitting
job types, 171

summary
organization, 38

support, 7, 8
survey extra variables

job templates, 169
workflow templates, 205
workflows, 176

surveys
creation, 154, 188
extra variables, 169, 176, 205
job templates, 153
optional questions, 155, 189
workflow templates, 187

system tracking
custom fact scans, 162
fact scan playbook, 160
features, 4
scan job, 139

T
teams, 48

permissions, 51
users, 42, 49

template
notifications, 244, 245

template workflow
notifications, 245

templates
git refspec, 229

token authentication, 86
tokens

applications, 86, 88

Tower admin menu, 21
Tower settings menu, 22
trial, 8
troubleshooting

bubblewrap, 281
license, 13

troubleshooting TOWER_URL_BASE
notifications, 260

Twilio
notifications types, 246

types
Email, notifications, 246
Grafana, notifications, 246
Hipchat, notifications, 246
IRC, notifications, 246
Mattermost, notifications, 246
notifications, 246
pagerduty, notifications, 246
Rocket.Chat, notifications, 246
Slack, notifications, 246
Twilio, notifications, 246
Webhook, notifications, 246

U
UI

features, 5
updates, 8
user interface

features, 5
users, 39

organizations, 30, 42
permissions, 43
teams, 42, 49

V
variable inventory management

best practices, 278
variable precedence, 169, 205
variables

bubblewrap, 281
Vault

credential types, 70
venv

features, 5
view license

settings menu, 22
views

jobs, 17
schedule, 17

visualizer
workflow, 190

VMware
cloud credentials, 167
credential types, 70

Index 301

Ansible Tower User Guide, Release Ansible Tower 3.6.3

VMware vCenter
inventories, 130

W
Webhook

notifications types, 246
webhooks, 230

GitHub, 230
GitLab, 230
payload, 230

workflow
visualizer, 190

workflow job templates, 179
workflow template

scheduling, 187
workflow templates

job variables, 205
jobs, launching, 203
scheduling, 187, 262
survey creation, 188
survey extra variables, 205
survey optional questions, 189
surveys, 187
workflow visualizer, 190

workflow templates, hierarchy, 205
workflow templates, overview, 205
workflow visualizer

workflow templates, 190
workflows, 174

survey extra variables, 176
workflows, approval

features, 6
workflows, convergence nodes

features, 6
workflows, inventory overrides

features, 6
workflows, nesting

features, 6
workflows, pause

features, 6

Index 302

	Overview
	Real-time Playbook Output and Exploration
	“Push Button” Automation
	Enhanced and Simplified Role-Based Access Control and Auditing
	Cloud & Autoscaling Flexibility
	The Ideal RESTful API
	Backup and Restore
	Ansible Galaxy Integration
	Inventory Support for OpenStack
	Remote Command Execution
	System Tracking
	Integrated Notifications
	Satellite and CloudForms Integration
	Run-time Job Customization
	Red Hat Insights Integration
	Enhanced Tower User Interface
	Custom Virtual Environments
	Authentication Enhancements
	Cluster Management
	Container Platform Support
	Workflow Enhancements
	Job Distribution
	Support for deployment in a FIPS-enabled environment
	Limit the number of hosts per organization
	Inventory Plugins
	Secret Management System

	Tower Licensing, Updates, and Support
	Support
	Trial / Evaluation
	Subscription Types
	Node Counting in Licenses
	Tower Component Licenses

	Logging In
	Import a License
	Adding a Tower License Manually

	The Tower User Interface
	Activity Streams
	Views
	Resources and Access
	Tower Administration Menu

	Search
	Searching Tips
	Sort

	Organizations
	Creating a New Organization
	Work with Users
	Work with Permissions
	Work with Notifications
	Organization Summary

	Users
	Create a User
	User Types - Quick View
	Users - Organizations
	Users - Teams
	Users - Permissions
	Users - Tokens

	Teams
	Create a Team

	Credentials
	Understanding How Credentials Work
	Getting Started with Credentials
	Add a New Credential
	Credential Types

	Custom Credential Types
	Backwards-Compatible API Considerations
	Getting Started with Credential Types
	Create a New Credential Type

	Secret Management System
	Configure and link secret lookups

	Applications
	Getting Started with Applications
	Create a new application

	Projects
	Add a new project
	Work with Permissions
	Work with Notifications
	Work with Job Templates
	Work with Schedules
	Ansible Galaxy Support
	Collections Support

	Inventories
	Smart Inventories
	Inventory Plugins
	Add a new inventory
	Running Ad Hoc Commands

	Job Templates
	Create a Job Template
	Add Permissions
	Work with Notifications
	View Completed Jobs
	Scheduling
	Surveys
	Launch a Job Template
	Copy a Job Template
	Scan Job Templates
	Fact Caching
	Utilizing Cloud Credentials
	Provisioning Callbacks
	Extra Variables

	Job Slicing
	Job slice considerations
	Job slice execution behavior
	Search job slices

	Workflows
	Workflow scenarios and considerations
	Extra Variables
	Workflow States
	Role-Based Access Controls

	Workflow Job Templates
	Create a Workflow Template
	Work with Permissions
	Work with Notifications
	View Completed Jobs
	Work with Schedules
	Surveys
	Workflow Visualizer
	Launch a Workflow Template
	Copy a Workflow Template
	Extra Variables

	Instance Groups
	Create an instance group

	Jobs
	Job Details - Inventory Sync
	Job Details - SCM
	Job Details - Playbook Run
	Ansible Tower Capacity Determination and Job Impact
	Job branch overriding

	Working with Webhooks
	GitHub webhook setup
	GitLab webhook setup
	Payload output

	Notifications
	Notification Hierarchy
	Workflow
	Create a Notification Template
	Notification Types
	Create custom notifications
	Enable and Disable Notifications
	Configure the towerhost hostname
	Notifications API

	Schedules
	Add a new schedule

	Setting up an Insights Project
	Create Insights Credential
	Create an Insights Project
	Create Insights Inventory
	Create a Scan Project
	Create a Scan Job Template
	Remediate Insights Inventory

	Best Practices
	Use Source Control
	Ansible file and directory structure
	Use Dynamic Inventory Sources
	Variable Management for Inventory
	Autoscaling
	Larger Host Counts
	Continuous integration / Continuous Deployment
	LDAP authentication performance tips

	Security
	Playbook Access and Information Sharing
	Role-Based Access Controls
	Function of roles: editing and creating

	Index
	Copyright © 2020 Red Hat, Inc.
	Index

