
Ansible Tower Upgrade and Migration
Release Ansible Tower 3.7.5

Red Hat, Inc.

Jan 26, 2022

CONTENTS

1 Release Notes for Ansible Tower Version 3.7.5 2
1.1 Ansible Tower Version 3.7.5 . 2

2 Upgrading Ansible Tower 3
2.1 Upgrade Planning . 3
2.2 Obtaining Ansible Tower . 4
2.3 Setting up the Inventory File . 4
2.4 The Setup Playbook . 7

3 Role-Based Access Controls 9
3.1 Organization field on Job Templates . 9

4 Using virtualenv with Ansible Tower 10
4.1 Preparing a new custom virtualenv . 10
4.2 Assigning custom virtualenvs . 12

5 Index 15

6 Copyright © Red Hat, Inc. 16

Index 17

i

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

Thank you for your interest in Ansible Tower. Ansible Tower is a commercial offering that helps teams manage
complex multi-tier deployments by adding control, knowledge, and delegation to Ansible-powered environments.

Note: You must upgrade your Ansible Tower to Ansible Tower 3.5 before you can upgrade to Ansible Tower 3.7.0.

We Need Feedback!

If you spot a typo in this documentation, or if you have thought of a way to make this manual better, we would love to
hear from you! Please send an email to: docs@ansible.com

If you have a suggestion, try to be as specific as possible when describing it. If you have found an error, please include
the manual’s title, chapter number/section number, and some of the surrounding text so we can find it easily. We may
not be able to respond to every message sent to us, but you can be sure that we will be reading them all!

Ansible Tower Version 3.7.5; March 09, 2021; https://access.redhat.com/

CONTENTS 1

mailto:docs@ansible.com
https://access.redhat.com/

CHAPTER

ONE

RELEASE NOTES FOR ANSIBLE TOWER VERSION 3.7.5

1.1 Ansible Tower Version 3.7.5

• Improved analytics collection to collect the playbook status for all hosts in a playbook run

• Upgraded to a more recent version of Django to address CVE-2021-3281

• Upgraded to a more recent version of autobahn to address CVE-2020-35678

• Upgraded to a more recent version of nginx to address CVE-2019-20372

• Fixed a security issue that allowed a malicious playbook author to elevate to the awx user from outside the
isolated environment (CVE-2021-20253)

• Fixed access to encrypted Tower settings to prevent intermittent failures that caused failed job launches

2

CHAPTER

TWO

UPGRADING ANSIBLE TOWER

This section covers each component of the upgrading process:

• Upgrade Planning

• Obtaining Ansible Tower

• Setting up the Inventory File

• The Setup Playbook

Note: All upgrades should be no more than two major versions behind what you are currently upgrading to. For
example, in order to upgrade to Ansible Tower 3.7.x, you must first be on version 3.5.x; i.e., there is no direct upgrade
path from version 3.4.x or earlier. Refer to the recommended upgrade path article on the Red Hat customer portal.

In order to run Ansible Tower 3.7, you must also have Ansible 2.8 or later installed.

2.1 Upgrade Planning

This section covers changes that you should keep in mind as you attempt to upgrade your Ansible Tower Instance

• If you need to upgrade Red Hat Enterprise Linux and Ansible Tower, you will need to do a backup and restore
of your Tower data. Refer to Upgrading an Existing Tower Installation in the Ansible Tower Installation and
Reference Guide for further detail.

• Because Ansible Tower runs with Python 3 starting in 3.5, custom settings files in /etc/tower/conf.d
must be valid Python3 prior to upgrading to Ansible Tower 3.5 or later.

• Clustered upgrades require special attention to instance and instance groups prior to starting the upgrade. Refer
to the Setting up the Inventory File and ref:ag_clustering sections.

• Prior versions of Ansible Tower used the variable name rabbitmq_host during installation. If you are
upgrading from a previous version of Tower, and you previously specified rabbitmq_host in your inventory,
simply rename rabbitmq_host to routable_hostname before upgrading. See Clustering for details.

3

https://access.redhat.com/articles/4098921
http://docs.ansible.com/ansible-tower/3.7.5/html/installandreference/upgrade_tower.html#ir-upgrade-existing
http://docs.ansible.com/ansible-tower/3.7.5/html/administration/clustering.html#ag-clustering

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

2.2 Obtaining Ansible Tower

You may install standalone Tower or use the bundled installer:

• if you set up Tower on an environment with a direct Internet access, you can download the standalone Tower
installer

• if you set up Tower on an environment without direct access to online repositories, or your environment enforces
a proxy, you must use the bundled installer

Download and then extract the Ansible Tower installation/upgrade tool: http://releases.ansible.com/ansible-tower/
setup/

root@localhost:~$ tar xvzf ansible-tower-setup-latest.tar.gz
root@localhost:~$ cd ansible-tower-setup-<tower_version>

To install or upgrade, start by editing the inventory file in the ansible-tower-setup-<tower_version>
directory, replacing <tower_version> with the version number, such as 3.7.1 or 3.7.0 directory.

2.3 Setting up the Inventory File

As you edit your inventory file, there are a few things you must keep in mind:

• The contents of the inventory file should be defined in ./inventory, next to the ./setup.sh installer
playbook.

• For installations and upgrades: If you need to make use of external databases, you must ensure the database
sections of your inventory file are properly setup. Edit this file and add your external database information
before running the setup script.

• For upgrading an existing cluster: When upgrading a cluster, you may decide that you want to also reconfigure
your cluster to omit existing instances or instance groups. Omitting the instance or the instance group from
the inventory file will not be enough to remove them from the cluster. In addition to omitting instances or
instance groups from the inventory file, you must also deprovision instances or instance groups before starting
the upgrade. Otherwise, omitted instances or instance groups will continue to communicate with the cluster,
which can cause issues with tower services during the upgrade.

• For clustered installations: If you are creating a clustered setup, you must replace localhost with the
hostname or IP address of all instances. All nodes/instances must be able to reach any others using this hostname
or address. In other words, you cannot use the localhost ansible_connection=local on one of the
nodes AND all of the nodes should use the same format for the host names.

Therefore, this will not work:

[tower]
localhost ansible_connection=local
hostA
hostB.example.com
172.27.0.4

Instead, use these formats:

[tower]
hostA
hostB
hostC

2.2. Obtaining Ansible Tower 4

http://releases.ansible.com/ansible-tower/setup/
http://releases.ansible.com/ansible-tower/setup/
http://docs.ansible.com/ansible-tower/3.7.5/html/administration/clustering.html#ag-cluster-deprovision

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

OR

hostA.example.com
hostB.example.com
hostC.example.com

OR

[tower]
172.27.0.2
172.27.0.3
172.27.0.4

• For all standard installations: When performing an installation, you must supply any necessary passwords in
the inventory file.

Note: Changes made to the installation process now require that you fill out all of the password fields in the inventory
file. If you need to know where to find the values for these they should be:

admin_password='' <— Tower local admin password

pg_password='' <—- Found in /etc/tower/conf.d/postgres.py

Warning: Do not use special characters in pg_password as it may cause the setup to fail.

Example Inventory file

• For provisioning new nodes: When provisioning new nodes add the nodes to the inventory file with all current
nodes, make sure all passwords are included in the inventory file.

• For upgrading a single node: When upgrading, be sure to compare your inventory file to the current release
version. It is recommended that you keep the passwords in here even when performing an upgrade.

Example Single Node Inventory File

[tower]
localhost ansible_connection=local

[database]

[all:vars]
admin_password='password'

pg_host=''
pg_port=''

pg_database='awx'
pg_username='awx'
pg_password='password'

Warning: Do not use special characters in pg_password as it may cause the setup to fail.

Example Multi Node Cluster Inventory File

2.3. Setting up the Inventory File 5

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

[tower]
clusternode1.example.com
clusternode2.example.com
clusternode3.example.com

[database]
dbnode.example.com

[all:vars]
ansible_become=true

admin_password='password'

pg_host='dbnode.example.com'
pg_port='5432'

pg_database='tower'
pg_username='tower'
pg_password='password'

Warning: Do not use special characters in pg_password as it may cause the setup to fail.

Example Inventory file for an external existing database

[tower]
node.example.com ansible_connection=local

[database]

[all:vars]
admin_password='password'
pg_password='password'

pg_host='database.example.com'
pg_port='5432'

pg_database='awx'
pg_username='awx'

Warning: Do not use special characters in pg_password as it may cause the setup to fail.

Example Inventory file for external database which needs installation

[tower]
node.example.com ansible_connection=local

[database]
database.example.com

[all:vars]
admin_password='password'

(continues on next page)

2.3. Setting up the Inventory File 6

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

(continued from previous page)

pg_password='password'

pg_host='database.example.com'
pg_port='5432'

pg_database='awx'
pg_username='awx'

Warning: Do not use special characters in pg_password as it may cause the setup to fail.

Once any necessary changes have been made, you are ready to run ./setup.sh.

Note: Root access to the remote machines is required. With Ansible, this can be achieved in different ways:

• ansible_user=root ansible_ssh_pass=”your_password_here” inventory host or group variables

• ansible_user=root ansible_ssh_private_key_file=”path_to_your_keyfile.pem” inventory host or group variables

• ANSIBLE_BECOME_METHOD=’sudo’ ANSIBLE_BECOME=True ./setup.sh

• ANSIBLE_SUDO=True ./setup.sh (Only applies to Ansible 2.7)

The DEFAULT_SUDO Ansible configuration parameter was removed in Ansible 2.8, which causes the
ANSIBLE_SUDO=True ./setup.sh method of privilege escalation to no longer work. For more information
on become plugins, refer to Understanding Privilege Escalation and the list of become plugins.

2.4 The Setup Playbook

Note: Ansible Tower 3.0 simplifies installation and removes the need to run ./configure/ as part of the instal-
lation setup. Users of older versions should follow the instructions available in the v.2.4.5 (or earlier) releases of the
Tower Documentation available at: http://docs.ansible.com/

The Tower setup playbook script uses the inventory file and is invoked as ./setup.sh from the path where you
unpacked the Tower installer tarball.

root@localhost:~$./setup.sh

The setup script takes the following arguments:

• -h – Show this help message and exit

• -i INVENTORY_FILE – Path to Ansible inventory file (default: inventory)

• -e EXTRA_VARS – Set additional Ansible variables as key=value or YAML/JSON (i.e. -e
bundle_install=false forces an online installation)

• -b – Perform a database backup in lieu of installing

• -r – Perform a database restore in lieu of installing (a default restore path is used unless EXTRA_VARS are
provided with a non-default path, as shown in the code example below)

2.4. The Setup Playbook 7

https://docs.ansible.com/ansible/latest/user_guide/become.html#understanding-privilege-escalation
https://docs.ansible.com/ansible/latest/plugins/become.html#plugin-list
http://docs.ansible.com/

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

./setup.sh -e 'restore_backup_file=/path/to/nondefault/location' -r

Note: Please note that a issue was discovered in Tower 3.0.0 and 3.0.1 that prevented proper system backups and
restorations.

If you need to back up or restore your Tower v3.0.0 or v3.0.1 installation, use the v3.0.2 installer to do so.

2.4. The Setup Playbook 8

CHAPTER

THREE

ROLE-BASED ACCESS CONTROLS

Ansible Tower 3.7 contains minor updates to the Role-Based Access Control (RBAC) system. For the latest RBAC
documentation, refer to the Role-Based Access Controls section in the Tower User Guide.

3.1 Organization field on Job Templates

Job templates in Ansible Tower now include an organization field in the API. This is set on creation based on the
organization of the project used by the Job Template, and cannot be changed. Because of this, a project’s organization
cannot be changed once it is in use by Job Templates.

This changes visibility and access to job templates. Previously, an admin of the organization that a job template’s in-
ventory belonged to would also be granted admin access to the job template. While existing permissions are preserved
on an upgrade to Ansible Tower 3.7, newly created jobs will only grant view access to the job template to the inventory
admin in this scenario.

9

http://docs.ansible.com/ansible-tower/3.7.5/html/userguide/security.html#rbac-ug

CHAPTER

FOUR

USING VIRTUALENV WITH ANSIBLE TOWER

Ansible Tower 3.0 and later uses virtualenv. Virtualenv creates isolated Python environments to avoid problems caused
by conflicting dependencies and differing versions. Virtualenv works by simply creating a folder which contains all of
the necessary executables and dependencies for a specific version of Python. Ansible Tower creates two virtualenvs
during installation–one is used to run Tower, while the other is used to run Ansible. This allows Tower to run in a
stable environment, while allowing you to add or update modules to your Ansible Python environment as necessary
to run your playbooks. For more information on virtualenv, see the Python Guide to Virtual Environments and the
Python virtualenv project itself.

By default, the virtualenv is located at /var/lib/awx/venv/ansible on the file system but starting with An-
sible Tower 3.5, you can create your own custom directories and use them in inventory imports. This allows you to
choose how you run your inventory imports, as inventory sources use custom virtual environments.

Tower also pre-installs a variety of third-party library/SDK support into this virtualenv for its integration points with
a variety of cloud providers (such as EC2, OpenStack, Azure, etc.) Periodically, you may want to add additional SDK
support into this virtualenv, which is described in further detail below.

Note: It is highly recommended that you run umask 0022 before installing any packages to the virtual environment.
Failure to properly configure permissions can result in Tower service failures. An example follows:

source /var/lib/awx/venv/ansible/bin/activate
umask 0022
pip install --upgrade pywinrm
deactivate

In addition to adding modules to the virtualenv that Tower uses to run Ansible, you can create new virtualenvs as
described below.

4.1 Preparing a new custom virtualenv

You can specify a different virtualenv for running Job Templates in Tower. In order to do so, you must specify which
directories those venvs reside. You could choose to keep custom venvs inside /var/lib/awx/venv/, but it is
highly recommended that a custom directory be created. The following examples use a placeholder directory /opt/
my-envs/, but you can replace this with a directory path of your choice anywhere this is specified.

1. Preparing a new custom virtualenv requires the virtualenv package to be pre-installed:

$ sudo yum install python-virtualenv

2. Create a directory for your custom venvs:

10

http://docs.python-guide.org/en/latest/dev/virtualenvs/#virtual-environments

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

$ sudo mkdir /opt/my-envs

3. Make sure to give your directory the appropriate write and execution permissions:

$ sudo chmod 0755 /opt/my-envs

4. Optionally, you can specify in Tower which directory to look for custom venvs by adding this directory to the
CUSTOM_VENV_PATHS setting as follows:

$ curl -X PATCH 'https://user:password@tower.example.org/api/v2/settings/system/' \
-d '{"CUSTOM_VENV_PATHS": ["/opt/my-envs/"]}' -H 'Content-Type:application/json'

If you have venvs spanned over multiple directories, add all the paths and Tower will aggregate venvs from them:

$ curl -X PATCH 'https://user:password@tower.example.org/api/v2/settings/system/' \
-d '{"CUSTOM_VENV_PATHS": ["/path/1/to/venv/", "/path/2/to/venv/", "/path/3/to/

↪→venv/"]}' \
-H 'Content-Type:application/json'

5. Now that a venv directory has been set up, create a virtual environment in that location:

$ sudo virtualenv /opt/my-envs/custom-venv

Note: Multiple versions of Python are supported, but the syntax for creating virtualenvs in Python 3 has changed
slightly: $ sudo python3 -m venv /opt/my-envs/custom-venv

6. Next, install gcc so that psutil can be compiled:

$ yum install gcc

7. Your newly created virtualenv needs a few base dependencies to properly run playbooks (eg., fact gathering):

$ sudo /opt/my-envs/custom-venv/bin/pip install psutil

From here, you can install additional Python dependencies that you care about, such as a per-virtualenv version of
Ansible itself:

$ sudo /opt/my-envs/custom-venv/bin/pip install -U "ansible == X.Y.Z"

Or you can add an additional third-party SDK that is not included with the base Tower installation:

$ sudo /opt/my-envs/custom-venv/bin/pip install -U python-digitalocean

If you want to copy them, the libraries included in Tower’s default virtualenv can be found using pip freeze:

$ sudo /var/lib/awx/venv/ansible/bin/pip freeze

In a clustered Tower installation, you need to ensure that the same custom virtualenv exists on every local file system
at /opt/my-envs/. Custom virtualenvs are supported on isolated instances. If you are using a custom virtual
environment, it needs to also be copied or replicated on any isolated node you would be using, not just on the Tower
node. For setting up custom virtual environments in containers, refer to the Build custom virtual environments section
of the Ansible Tower Administration Guide.

4.1. Preparing a new custom virtualenv 11

http://docs.ansible.com/ansible-tower/3.7.5/html/administration/openshift_configuration.html#ag-os-custom-venv

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

4.2 Assigning custom virtualenvs

Once you have created a custom virtualenv, you can assign it at the Organization, Project, or Job Template level to use
it in job runs. You can set the custom venv on an inventory source to run inventory updates in that venv. However,
starting in Ansible Tower 3.5, Ansible 2.4 or later is required to run inventory updates. Jobs using that inventory
follow their own rules and will not use this venv. If an SCM inventory source does not have a venv selected, it can use
the venv of its linked project. You can assign a custom venv on the organization, but if you do, it will not be used by
inventory updates in the organization, as it is only used in job runs.

The following shows the proper way to assign a custom venv at the desired level.

PATCH https://awx-host.example.org/api/v2/organizations/N/
PATCH https://awx-host.example.org/api/v2/projects/N/
PATCH https://awx-host.example.org/api/v2/job_templates/N/
PATCH https://awx-host.example.org/api/v2/inventory_sources/N/

Content-Type: application/json
{

'custom_virtualenv': '/opt/my-envs/custom-venv'
}

An HTTP GET request to /api/v2/config/ provides a list of detected installed virtualenvs:

{
"custom_virtualenvs": [

"/opt/my-envs/custom-venv",
"/opt/my-envs/my-other-custom-venv",

],
...
}

You can also specify the virtual environment to assign to an Organization, Project, and Job Template from their
respective edit screens in the Ansible Tower User Interface. Select the virtualenv from the Ansible Environment
drop-down menu, as shown in the example below:

4.2. Assigning custom virtualenvs 12

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

When you launch a job template, you will also see the virtualenv specified in the Job Details pane:

4.2. Assigning custom virtualenvs 13

Ansible Tower Upgrade and Migration, Release Ansible Tower 3.7.5

4.2. Assigning custom virtualenvs 14

CHAPTER

FIVE

INDEX

• genindex

15

CHAPTER

SIX

COPYRIGHT © RED HAT, INC.

Ansible, Ansible Tower, Red Hat, and Red Hat Enterprise Linux are trademarks of Red Hat, Inc., registered in the
United States and other countries.

If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide
a link to the original version.

Third Party Rights

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Rackspace trademarks, service marks, logos and domain names are either common-law trademarks/service marks or
registered trademarks/service marks of Rackspace US, Inc., or its subsidiaries, and are protected by trademark and
other laws in the United States and other countries.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

16

INDEX

A
Ansible, executing in a virtual

environment, 10

I
installation script

inventory file setup, 4
playbook setup, 7

inventory file setup, 4

P
permissions, 9
playbook setup, 7

installation script, 7
setup.sh, 7

R
RBAC, 9
roles, 9

S
setup.sh

playbook setup, 7
singleton roles, 9
system-wide roles, 9

U
upgrade, 3
upgrade considerations, 3

V
virtual environment, 10

17

	Release Notes for Ansible Tower Version 3.7.5
	Ansible Tower Version 3.7.5

	Upgrading Ansible Tower
	Upgrade Planning
	Obtaining Ansible Tower
	Setting up the Inventory File
	The Setup Playbook

	Role-Based Access Controls
	Organization field on Job Templates

	Using virtualenv with Ansible Tower
	Preparing a new custom virtualenv
	Assigning custom virtualenvs

	Index
	Copyright © Red Hat, Inc.
	Index

