
Ansible Tower API Guide
Release Ansible Tower 3.8.5

Red Hat, Inc.

Feb 11, 2023

CONTENTS

1 Tools 2

2 Browsable API 3

3 Conventions 8

4 Sorting 9

5 Searching 10

6 Filtering 11

7 Pagination 14

8 Access Resources 15
8.1 Configuration Settings . 15
8.2 Identifier Format Protocol . 17

9 Read-only Fields 18

10 Tower API Reference Guide 19

11 Index 20

12 Copyright © Red Hat, Inc. 21

Index 22

i

Ansible Tower API Guide, Release Ansible Tower 3.8.5

Thank you for your interest in Ansible Tower. Ansible Tower is a commercial offering that helps teams manage
complex multi-tier deployments by adding control, knowledge, and delegation to Ansible-powered environments.

The Ansible Tower API Guide focuses on helping you understand the Ansible Tower API. This document has been
updated to include information for the latest release of Ansible Tower v3.8.5.

We Need Feedback!

If you spot a typo in this documentation, or if you have thought of a way to make this manual better, we would love to
hear from you! Please send an email to: docs@ansible.com

If you have a suggestion, try to be as specific as possible when describing it. If you have found an error, please include
the manual’s title, chapter number/section number, and some of the surrounding text so we can find it easily. We may
not be able to respond to every message sent to us, but you can be sure that we will be reading them all!

Ansible Tower Version 3.8.5; December 16, 2021; https://access.redhat.com/

CONTENTS 1

mailto:docs@ansible.com
https://access.redhat.com/

CHAPTER

ONE

TOOLS

This document offers a basic understanding of the REST API used by Ansible Tower.

REST stands for Representational State Transfer and is sometimes spelled as “ReST”. It relies on a stateless, client-
server, and cacheable communications protocol, usually the HTTP protocol.

You may find it helpful to see which API calls Tower makes in sequence. To do this, you can use the UI from Firebug
or Chrome with developer plugins.

Another alternative is Charles Proxy (http://www.charlesproxy.com/), which offers a visualizer that you may find
helpful. While it is commercial software, it can insert itself as an OS X proxy, for example, and intercept both requests
from web browsers as well as curl and other API consumers.

Other alternatives include:

• Fiddler (http://www.telerik.com/fiddler)

• mitmproxy (https://mitmproxy.org/)

• Live HTTP headers FireFox extension (https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/)

• Paros (http://sourceforge.net/projects/paros/)

2

http://www.charlesproxy.com/
http://www.telerik.com/fiddler
https://mitmproxy.org/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
http://sourceforge.net/projects/paros/

CHAPTER

TWO

BROWSABLE API

REST APIs provide access to resources (data entities) via URI paths. You can visit the Ansible Tower REST API in a
web browser at: http://<Tower server name>/api/

Ansible Tower 3.2 introduced version 2 of the API, which can be accessed by clicking the v2 link next to “available
versions”:

3

Ansible Tower API Guide, Release Ansible Tower 3.8.5

Alternatively, you can still access version 1 of the API this way, but it will be removed in a future release of Ansible
Tower.

If you perform a GET just the /api/ endpoint, it gives the current_version, which would be the recommended
version.

Clicking on various links in the API allows you to explore related resources.

4

Ansible Tower API Guide, Release Ansible Tower 3.8.5

Clicking on the next to the page name (toward the top of the screen) for an API endpoint gives you documentation
on the access methods for that particular API endpoint and what data is returned when using those methods.

5

Ansible Tower API Guide, Release Ansible Tower 3.8.5

You can also use PUT and POST verbs on the specific API pages by formatting JSON in the various text fields.

You can also view changed settings from factory defaults at /api/v2/settings/changed/ endpoint. It reflects
changes you made in the API browser, not changed settings that come from static settings files.

6

Ansible Tower API Guide, Release Ansible Tower 3.8.5

7

CHAPTER

THREE

CONVENTIONS

Tower uses a standard REST API, rooted at /api/ on the server. The API is versioned for compatibility reasons, and
currently api/v2/ is the latest available version. You can see information about what API versions are available by
querying /api/.

/api/v1/ has been discontinued as of Ansible Tower version 3.6. Refer to previous versions of the api for details
on v1.

You may have to specify the content/type on POST or PUT requests accordingly.

• PUT: Update a specific resource (by an identifier) or a collection of resources. PUT can also be used to create
a specific resource if the resource identifier is known before-hand.

• POST: Create a new resource. Also acts as a catch-all verb for operations that do not fit into the other categories.

All URIs not ending with "/" receive a 301 redirect.

Note: Ansible Tower v3.8.5 API change: Formatting of extra_vars attached to Job Template records is preserved.
Previously, YAML would be converted to JSON and returned as JSON. In 2.2.0 and newer, YAML is returned as
YAML with formatting and comments preserved, and JSON is returned as JSON.

8

CHAPTER

FOUR

SORTING

To provide examples that are easy to follow, the following URL is used throughout this guide:

http://<Tower server name>/api/v2/groups/

To specify that {{ model_verbose_name_plural }} are returned in a particular order, use the order_by query string
parameter on the GET request.

http://<Tower server name>/api/v2/model_verbose_name_plural?order_by={{ order_field }}

Prefix the field name with a dash (-) to sort in reverse:

http://<Tower server name>/api/v2/model_verbose_name_plural?order_by=-{{ order_field }
↪→}

Multiple sorting fields may be specified by separating the field names with a comma (,):

http://<Tower server name>/api/v2/model_verbose_name_plural?order_by={{ order_field }}
↪→,some_other_field

9

CHAPTER

FIVE

SEARCHING

Use the search query string parameter to perform a case-insensitive search within all designated text fields of a model
(added in AWX 1.4):

http://<Tower server name>/api/v2/model_verbose_name?search=findme

Search across related fields (added in AWX 1.4 / Ansible Tower 3.1):

http://<Tower server name>/api/v2/model_verbose_name?related__search=findme

10

CHAPTER

SIX

FILTERING

Any collection is what the system calls a “queryset” and can be filtered via various operators.

For example, to find the groups that contain the name “foo”:

http://<Tower server name>/api/v2/groups/?name__contains=foo

To find an exact match:

http://<Tower server name>/api/v2/groups/?name=foo

If a resource is of an integer type, you must add __int to the end to cast your string input value to an integer, like
so:

http://<Tower server name>/api/v2/arbitrary_resource/?x__int=5

Related resources can also be queried, like so:

http://<Tower server name>/api/v2/users/?first_name__icontains=kim

This will return all users with names that include the string “Kim” in them.

You can also filter against multiple fields at once:

http://<Tower server name>/api/v2/groups/?name__icontains=test&has_active_
↪→failures=false

This finds all groups containing the name “test” that has no active failures.

For more about what types of operators are available, refer to: https://docs.djangoproject.com/en/dev/ref/models/
querysets/

Note: You can also watch the API as the UI is being used to see how it is filtering on various criteria.

Any additional query string parameters may be used to filter the list of results returned to those matching a given value.
Only fields and relations that exist in the database may be used for filtering. Any special characters in the specified
value should be url-encoded. For example:

?field=value%20xyz

Fields may also span relations, only for fields and relationships defined in the database:

?other__field=value

11

https://docs.djangoproject.com/en/dev/ref/models/querysets/
https://docs.djangoproject.com/en/dev/ref/models/querysets/

Ansible Tower API Guide, Release Ansible Tower 3.8.5

To exclude results matching certain criteria, prefix the field parameter with not__:

?not__field=value

(Added in AWX 1.4) By default, all query string filters are AND’ed together, so only the results matching all filters
will be returned. To combine results matching any one of multiple criteria, prefix each query string parameter with
or__:

?or__field=value&or__field=othervalue
?or__not__field=value&or__field=othervalue

(Added in Ansible Tower 1.4.5) The default AND filtering applies all filters simultaneously to each related object
being filtered across database relationships. The chain filter instead applies filters separately for each related object.
To use, prefix the query string parameter with chain__:

?chain__related__field=value&chain__related__field2=othervalue
?chain__not__related__field=value&chain__related__field2=othervalue

If the first query above were written as ?related__field=value&related__field2=othervalue, it
would return only the primary objects where the same related object satisfied both conditions. As written using
the chain filter, it would return the intersection of primary objects matching each condition.

Field lookups may also be used for more advanced queries, by appending the lookup to the field name:

?field__lookup=value

The following field lookups are supported:

• exact: Exact match (default lookup if not specified).

• iexact: Case-insensitive version of exact.

• contains: Field contains value.

• icontains: Case-insensitive version of contains.

• startswith: Field starts with value.

• istartswith: Case-insensitive version of startswith.

• endswith: Field ends with value.

• iendswith: Case-insensitive version of endswith.

• regex: Field matches the given regular expression.

• iregex: Case-insensitive version of regex.

• gt: Greater than comparison.

• gte: Greater than or equal to comparison.

• lt: Less than comparison.

• lte: Less than or equal to comparison.

• isnull: Check whether the given field or related object is null; expects a boolean value.

• in: Check whether the given field’s value is present in the list provided; expects a list of items.

• Boolean values may be specified as True or 1 for true, False or 0 for false (both case-insensitive).

Null values may be specified as None or Null (both case-insensitive), though it is preferred to use the isnull
lookup to explicitly check for null values.

12

Ansible Tower API Guide, Release Ansible Tower 3.8.5

Lists (for the in lookup) may be specified as a comma-separated list of values.

Filtering based on the requesting user’s level of access by query string parameter (added in Ansible Tower 3.1):

• role_level: Level of role to filter on, such as admin_role

13

CHAPTER

SEVEN

PAGINATION

Responses for collections in the API are paginated. This means that while a collection may contain tens or hundreds of
thousands of objects, in each web request, only a limited number of results are returned for API performance reasons.

When you get back the result for a collection you will see something similar to the following:

{'count': 25, 'next': 'http://testserver/api/v2/some_resource?page=2', 'previous':
↪→None, 'results': [...] }

To get the next page, simply request the page given by the ‘next’ sequential URL.

Use the page_size=XX query string parameter to change the number of results returned for each request.

The page_size has a default maximum limit configured to 200, which is enforced when a user tries a value beyond
it, for example, ?page_size=1000. However, you can change this limit by setting the value in /etc/tower/
conf.d/<some file>.py to something higher, e.g. MAX_PAGE_SIZE=1000.

Use the page query string parameter to retrieve a particular page of results.

http://<Tower server name>/api/v2/model_verbose_name?page_size=100&page=2

The previous and next links returned with the results will set these query string parameters automatically.

The serializer is quite efficient, but you should probably not request page sizes beyond a couple of hundred.

The user interface uses smaller values to avoid the user having to do a lot of scrolling.

14

CHAPTER

EIGHT

ACCESS RESOURCES

Traditionally, Ansible Tower uses a primary key to access individual resource objects. Starting in 3.2 and API v2, the
named URL feature allows you to access Tower resources via resource-specific human-readable identifiers. In Ansible
Tower versions prior to 3.2, the only way of accessing a resource object without auxiliary query string is via resource
primary key number, for example, via URL path: /api/v2/hosts/2/. Now, you can use a named URL to do the
same thing, for example, via URL path /api/v2/hosts/host_name++inv_name++org_name/.

8.1 Configuration Settings

There are two named-URL-related Tower configuration settings available under /api/v2/settings/
named-url/:

NAMED_URL_FORMATS and NAMED_URL_GRAPH_NODES

NAMED_URL_FORMATS is a read only key-value pair list of all available named URL identifier formats. A typical
NAMED_URL_FORMATS looks like this:

"NAMED_URL_FORMATS": {
"organizations": "<name>",
"teams": "<name>++<organization.name>",
"credential_types": "<name>+<kind>",
"credentials": "<name>++<credential_type.name>+<credential_type.kind>++<organization.
↪→name>",
"notification_templates": "<name>++<organization.name>",
"job_templates": "<name>++<organization.name>",
"projects": "<name>++<organization.name>",
"inventories": "<name>++<organization.name>",
"hosts": "<name>++<inventory.name>++<organization.name>",
"groups": "<name>++<inventory.name>++<organization.name>",
"inventory_sources": "<name>++<inventory.name>++<organization.name>",
"inventory_scripts": "<name>++<organization.name>",
"instance_groups": "<name>",
"labels": "<name>++<organization.name>",
"workflow_job_templates": "<name>++<organization.name>",
"workflow_job_template_nodes": "<identifier>++<workflow_job_template.name>++
↪→<organization.name>",
"applications": "<name>++<organization.name>",
"users": "<username>",
"instances": "<hostname>"
}

For each item in NAMED_URL_FORMATS, the key is the API name of the resource to have named URL, the value is
a string indicating how to form a human-readable unique identifier for that resource. NAMED_URL_FORMATS exclu-
sively lists every resource that can have named URL, any resource not listed there has no named URL. If a resource

15

Ansible Tower API Guide, Release Ansible Tower 3.8.5

can have named URL, its objects should have a named_url field which represents the object-specific named URL. That
field should only be visible under detail view, not list view. You can access specified resource objects using accurately
generated named URL. This includes not only the object itself but also its related URLs. For example, if /api/
v2/res_name/obj_slug/ is valid, /api/v2/res_name/obj_slug/related_res_name/ should also
be valid.

NAMED_URL_FORMATS are instructive enough to compose human-readable unique identifier and named URL them-
selves. For ease-of-use, every object of a resource that can have named URL will have a related field named_url
that displays that object’s named URL. You can copy and paste that field for your own custom use. Also refer to the
help text of API browser if a resource object has named URL for further guidance.

Suppose you want to manually determine the named URL for a label with ID 5. A typical procedure of composing
a named URL for this specific resource object using NAMED_URL_FORMATS is to first look up the labels field of
NAMED_URL_FORMATS to get the identifier format <name>++<organization.name>:

• The first part of the URL format is <name>, which indicates that the label resource detail can be found in
/api/v2/labels/5/, and look for name field in returned JSON. Suppose you have the name field with
value ‘Foo’, then the first part of the unique identifier is Foo.

• The second part of the format are double pluses ++. That is the delimiter that separates different parts of a
unique identifier. Append them to the unique identifier to get Foo++

• The third part of the format is <organization.name>, which indicates that field is not in the current label
object under investigation, but in an organization which the label object points to. Thus, as the format indicates,
look up the organization in the related field of current returned JSON. That field may or may not exist. If it
exists, follow the URL given in that field, for example, /api/v2/organizations/3/, to get the detail
of the specific organization, extract its name field, for example, ‘Default’, and append it to our current unique
identifier. Since <organizations.name> is the last part of format, thus, generating the resulting named
URL: /api/v2/labels/Foo++Default/. In the case where organization does not exist in related field
of the label object detail, append an empty string instead, which essentially does not alter the current identifier.
So Foo++ becomes the final unique identifier and the resulting generated named URL becomes /api/v2/
labels/Foo++/.

An important aspect of generating a unique identifier for named URL has to do with reserved characters. Be-
cause the identifier is part of a URL, the following reserved characters by URL standard is encoded by percent-
age symbols: ;/?:@=&[]. For example, if an organization is named ;/?:@=&[], its unique identifier should
be %3B%2F%3F%3A%40%3D%26%5B%5D. Another special reserved character is +, which is not reserved by URL
standard but used by named URL to link different parts of an identifier. It is encoded by [+]. For example, if an
organization is named [+], its unique identifier is %5B[+]%5D, where original [and] are percent encoded and + is
converted to [+].

Although NAMED_URL_FORMATS cannot be manually modified, modifications do occur automatically and expanded
over time, reflecting underlying resource modification and expansion. Consult the NAMED_URL_FORMATS on the
same Tower cluster where you want to use the named URL feature.

NAMED_URL_GRAPH_NODES is another read-only list of key-value pairs that exposes the internal graph data struc-
ture Tower used to manage named URLs. This is not intended to be human-readable but should be used for program-
matically generating named URLs. An example script for generating named URL given the primary key of arbitrary
resource objects that can have a named URL, using info provided by NAMED_URL_GRAPH_NODES, can be found in
GitHub at https://github.com/ansible/awx/blob/devel/tools/scripts/pk_to_named_url.py.

8.1. Configuration Settings 16

https://github.com/ansible/awx/blob/devel/tools/scripts/pk_to_named_url.py

Ansible Tower API Guide, Release Ansible Tower 3.8.5

8.2 Identifier Format Protocol

Resources in Tower are identifiable by their unique keys, which are basically tuples of resource fields. Every Tower
resource is guaranteed to have its primary key number alone as a unique key, but there might be multiple other unique
keys. A resource can generate an identifier format thus, have a named URL if it contains at least one unique key that
satisfies the rules below:

1. The key must contain only fields that are either the name field, or text fields with a finite number of possible
choices (like credential type resource’s kind field).

2. The only allowed exceptional fields that breaks rule #1 is a many-to-one related field relating to a resource other
than itself, which is also allowed to have a slug.

Suppose Tower has resources Foo and Bar, both Foo and Bar contain a name field and a choice field that can
only have value ‘yes’ or ‘no’. Additionally, resource Foo contains a many-to-one field (a foreign key) relating to Bar,
e.g. fk. Foo has a unique key tuple (name, choice, fk) and Bar has a unique key tuple (name, choice). Bar
can have named URL because it satisfies rule #1 above. Foo can also have named URL, even though it breaks rule #1,
the extra field breaking rule #1 is the fk field, which is many-to-one-related to Bar and Bar can have named URL.

For resources satisfying rule #1 above, their human-readable unique identifiers are combinations of foreign key fields,
delimited by +. In specific, resource Bar in the above example will have slug format <name>+<choice>. Note the
field order matters in slug format: name field always comes first if present, following by all the rest fields arranged in
lexicographic order of field name. For example, if Bar also has an a_choice field satisfying rule #1 and the unique
key becomes (name, choice, a_choice), its slug format becomes <name>+<a_choice>+<choice>.

For resources satisfying rule #2 above, if traced back via the extra foreign key fields, the result is a tree of resources
that all together identify objects of that resource. In order to generate identifier format, each resource in the traceback
tree generates its own part of standalone format in the way previously described, using all fields but the foreign keys.
Finally all parts are combined by ++ in the following order:

• Put stand-alone format as the first identifier component.

• Recursively generate unique identifiers for each resource. The underlying resource is pointing to using a foreign
key (a child of a traceback tree node).

• Treat generated unique identifiers as the rest of the identifier components. Sort them in lexicographic order of
corresponding foreign keys.

• Combine all components together using ++ to generate the final identifier format.

In reference to the example above, when generating an identifier format for resource Foo, Tower generates the stand-
alone formats, <name>+<choice> for Foo and <fk.name>+<fk.choice> for Bar, then combine them to-
gether to be <name>+<choice>++<fk.name>+<fk.choice>.

When generating identifiers according to the given identifier format, there are cases where a foreign key may point to
nowhere. In this case, Tower substitutes the part of the format corresponding to the resource the foreign key should
point to with an empty string ‘’. For example, if a Foo object has the name =’alice’, choice =’yes’, but fk field =
None, its resulting identifier will be alice+yes++.

8.2. Identifier Format Protocol 17

CHAPTER

NINE

READ-ONLY FIELDS

Certain fields in the REST API are marked read-only. These usually include the URL of a resource, the ID, and
occasionally some internal fields. For instance, the 'created_by' attribute of each object indicates which user
created the resource, and cannot be edited.

If you post some values and notice that they are not changing, these fields may be read-only.

18

CHAPTER

TEN

TOWER API REFERENCE GUIDE

The Ansible Tower API Reference Manual provides in-depth documentation for Tower’s REST API, including exam-
ples on how to integrate with it.

19

CHAPTER

ELEVEN

INDEX

• genindex

20

CHAPTER

TWELVE

COPYRIGHT © RED HAT, INC.

Ansible, Ansible Tower, Red Hat, and Red Hat Enterprise Linux are trademarks of Red Hat, Inc., registered in the
United States and other countries.

If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide
a link to the original version.

Third Party Rights

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

21

INDEX

A
access resources, 15
API

browsable, 3
JSON, 6
POST, 6
PUT, 6
root directory, 8

B
browsable API, 3

C
content type

JSON, 8
conventions, 8

F
filtering, 11

J
JSON

API, 6
content type, 8

O
ordering

sorting, 9

P
pagination, 14
POST

API, 6
PUT

API, 6

Q
queryset, 11

R
read-only fields, 18

root directory
API, 8

S
searching, 10
serializer, 14
sorting

ordering, 9

T
tools, 2

22

	Tools
	Browsable API
	Conventions
	Sorting
	Searching
	Filtering
	Pagination
	Access Resources
	Configuration Settings
	Identifier Format Protocol

	Read-only Fields
	Tower API Reference Guide
	Index
	Copyright © Red Hat, Inc.
	Index

