
Automation Controller Administration
Guide

Release Automation Controller 4.3.0

Red Hat, Inc.

Dec 16, 2022

CONTENTS

1 Red Hat Ansible Automation Platform Controller Licensing, Updates, and Support 2
1.1 Support . 2
1.2 Trial / Evaluation . 2
1.3 Subscription Types . 2
1.4 Node Counting in Licenses . 3
1.5 Attaching Subscriptions . 3
1.6 Ansible Automation Platform Component Licenses . 4

2 Starting, Stopping, and Restarting the Controller 5

3 Custom Inventory Scripts 6

4 Inventory File Importing 7
4.1 Custom Dynamic Inventory Scripts . 7
4.2 SCM Inventory Source Fields . 8

5 Multi-Credential Assignment 9
5.1 Background . 9
5.2 Important Changes . 9
5.3 Launch Time Considerations . 10
5.4 Multi-Vault Credentials . 10

6 Management Jobs 13
6.1 Removing Old Activity Stream Data . 14
6.2 Cleanup Expired OAuth2 Tokens . 17
6.3 Cleanup Expired Sessions . 17
6.4 Removing Old Job History . 17

7 Clustering 19
7.1 Setup Considerations . 19
7.2 Install and Configure . 20
7.3 Status and Monitoring via Browser API . 21
7.4 Instance Services and Failure Behavior . 21
7.5 Job Runtime Behavior . 22
7.6 Deprovision Instances . 23

8 Container and Instance Groups 24
8.1 Instance Groups . 24
8.2 Container Groups . 30

9 Managing Capacity With Instances 36

i

9.1 Prerequisites . 36
9.2 Manage instances . 37
9.3 Add an instance . 39

10 Topology Viewer 43

11 Controller Logfiles 47

12 Logging and Aggregation 49
12.1 Loggers . 50
12.2 Set Up Logging . 55
12.3 Troubleshoot Logging . 57

13 Metrics 58
13.1 Set up Prometheus . 58

14 Improving Controller Performance 60
14.1 Performance improvements . 60
14.2 Capacity Planning . 62
14.3 Monitoring Controller . 66
14.4 Database Settings . 66
14.5 Additional Resources . 69

15 Secret handling and connection security 71
15.1 Secret Handling . 71
15.2 Connection Security . 72

16 Security Best Practices 74
16.1 General best practices . 74
16.2 Understand the architecture of Ansible and the controller . 74
16.3 Granting access . 75
16.4 Available resources . 76

17 The awx-manage Utility 78
17.1 Inventory Import . 78
17.2 Cleanup of old data . 79
17.3 Cluster management . 79
17.4 Token and session management . 79
17.5 Analytics gathering . 81

18 Controller Configuration 82
18.1 Authentication . 82
18.2 Jobs . 83
18.3 System . 84
18.4 User Interface . 85
18.5 License . 88

19 Isolation functionality and variables 92

20 Token-Based Authentication 94
20.1 Managing OAuth 2 Applications and Tokens . 94
20.2 Using OAuth 2 Token System for Personal Access Tokens (PAT) . 97
20.3 Application Functions . 99
20.4 Application Token Functions . 101

ii

21 Setting up Social Authentication 104
21.1 GitHub settings . 104
21.2 Google OAuth2 settings . 110
21.3 Organization and Team Mapping . 112

22 Setting up Enterprise Authentication 114
22.1 Azure AD settings . 115
22.2 LDAP Authentication . 116
22.3 RADIUS settings . 116
22.4 SAML settings . 116
22.5 TACACS+ settings . 126

23 Setting up LDAP Authentication 127
23.1 Referrals . 132
23.2 Enabling Logging for LDAP . 133
23.3 LDAP Organization and Team Mapping . 133

24 Changing the Default Timeout for Authentication 135

25 User Authentication with Kerberos 136
25.1 AD and Kerberos Credentials . 137
25.2 Working with Kerberos Tickets . 138

26 Working with Session Limits 139

27 Backing Up and Restoring 141
27.1 Backup/Restore Playbooks . 142
27.2 Backup and Restoration Considerations . 142
27.3 Backup and Restore for Clustered Environments . 143

28 Using Custom Logos in automation controller 144

29 Usability Analytics and Data Collection 146
29.1 Automation Analytics . 147
29.2 Details of data collection . 151

30 Troubleshooting the controller 162
30.1 Error logs . 162
30.2 sosreport . 162
30.3 Problems connecting to your host . 162
30.4 Unable to login to the controller via HTTP . 163
30.5 WebSockets port for live events not working . 163
30.6 Problems running a playbook . 163
30.7 Problems when running a job . 163
30.8 Playbooks aren’t showing up in the “Job Template” drop-down . 164
30.9 Playbook stays in pending . 164
30.10 Cancel a controller job . 164
30.11 Reusing an external database causes installations to fail . 164
30.12 Private EC2 VPC Instances in the controller Inventory . 166
30.13 Troubleshooting “Error: provided hosts list is empty” . 167

31 Controller Tips and Tricks 168
31.1 Using the Controller CLI Tool . 168
31.2 Changing the Controller Admin Password . 169
31.3 Creating a controller Admin from the commandline . 169
31.4 Setting up a jump host to use with the controller . 169

iii

31.5 View Ansible outputs for JSON commands when using the controller 170
31.6 Locate and configure the Ansible configuration file . 170
31.7 View a listing of all ansible_ variables . 170
31.8 The ALLOW_JINJA_IN_EXTRA_VARS variable . 170
31.9 Using execution environments . 171
31.10 Configuring the controllerhost hostname for notifications . 171
31.11 Launching Jobs with curl . 172
31.12 Dynamic Inventory and private IP addresses . 172
31.13 Filtering instances returned by the dynamic inventory sources in the controller 172
31.14 Using an unreleased module from Ansible source with the controller 173
31.15 Using callback plugins with the controller . 173
31.16 Connecting to Windows with winrm . 174
31.17 Importing existing inventory files and host/group vars into the controller 174

32 Postface 176

33 Index 179

34 Copyright © Red Hat, Inc. 180

Index 181

iv

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Thank you for your interest in Red Hat Ansible Automation Platform controller. The automation controller is a
commercial offering that helps teams manage complex multi-tier deployments by adding control, knowledge, and
delegation to Ansible-powered environments.

The Automation Controller Administration Guide documents the administration of automation controller through cus-
tom scripts, management jobs, and more. Written for DevOps engineers and administrators, the Automation Controller
Administration Guide assumes a basic understanding of the systems requiring management with the controller’s easy-
to-use graphical interface. This document has been updated to include information for the latest release of Automation
Controller v4.3.0.

We Need Feedback!

If you spot a typo in this documentation, or if you have thought of a way to make this manual better, we would love to
hear from you! Please send an email to: docs@ansible.com

If you have a suggestion, try to be as specific as possible when describing it. If you have found an error, please include
the manual’s title, chapter number/section number, and some of the surrounding text so we can find it easily. We may
not be able to respond to every message sent to us, but you can be sure that we will be reading them all!

Automation Controller Version 4.3.0; November 29, 2022; https://access.redhat.com/

CONTENTS 1

mailto:docs@ansible.com
https://access.redhat.com/

CHAPTER

ONE

RED HAT ANSIBLE AUTOMATION PLATFORM CONTROLLER
LICENSING, UPDATES, AND SUPPORT

Red Hat Ansible Automation Platform controller (“Automation Controller”) is a software product provided as part
of an annual Red Hat Ansible Automation Platform subscription entered into between you and Red Hat, Inc. (“Red
Hat”).

Ansible is an open source software project and is licensed under the GNU General Public License version 3, as detailed
in the Ansible source code: https://github.com/ansible/ansible/blob/devel/COPYING

You must have valid subscriptions attached before installing the Ansible Automation Platform. See Attaching Sub-
scriptions for detail.

1.1 Support

Red Hat offers support to paid Red Hat Ansible Automation Platform customers.

If you or your company has purchased a subscription for Ansible Automation Platform, you can contact the support
team at https://access.redhat.com. To better understand the levels of support which match your Ansible Automa-
tion Platform subscription, refer to Subscription Types. For details of what is covered under an Ansible Automa-
tion Platform subscription, please see the Scopes of Support at: https://access.redhat.com/support/policy/updates/
ansible-tower#scope-of-coverage-4 and https://access.redhat.com/support/policy/updates/ansible-engine.

1.2 Trial / Evaluation

While a license is required for automation controller to run, there is no fee for a trial license.

• Trial licenses for Red Hat Ansible Automation are available at: http://ansible.com/license

• Support is not included in a trial license or during an evaluation of the automation controller software.

1.3 Subscription Types

Red Hat Ansible Automation Platform is provided at various levels of support and number of machines as an annual
Subscription.

• Standard

– Manage any size environment

– Enterprise 8x5 support and SLA

2

https://github.com/ansible/ansible/blob/devel/COPYING
https://access.redhat.com
https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4
https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4
https://access.redhat.com/support/policy/updates/ansible-engine
http://ansible.com/license

Automation Controller Administration Guide, Release Automation Controller 4.3.0

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

• Premium

– Manage any size environment, including mission-critical environments

– Premium 24x7 support and SLA

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

All Subscription levels include regular updates and releases of automation controller, Ansible, and any other compo-
nents of the Platform.

For more information, contact Ansible via the Red Hat Customer portal at https://access.redhat.com/ or at http://www.
ansible.com/contact-us/.

1.4 Node Counting in Licenses

The Red Hat Ansible Automation Platform controller license defines the number of Managed Nodes that can be
managed as part of a Red Hat Ansible Automation Platform subscription. A typical license will say ‘License Count:
500’, which sets the maximum number of Managed Nodes at 500.

For more information on managed node requirements for licensing, please see https://access.redhat.com/articles/
3331481.

1.5 Attaching Subscriptions

You must have valid subscriptions attached before installing the Ansible Automation Platform. Attaching an Ansible
Automation Platform subscription enables Automation Hub repositories. A valid subscription needs to be attached
to the Automation Hub node only. Other nodes do not need to have a valid subscription/pool attached, even if the
[automationhub] group is blank, given this is done at the repos_el role level and that this role is run on both
[default] and [automationhub] hosts.

Note: Attaching subscriptions is unnecessary if your Red Hat account enabled Simple Content Access Mode. But
you still need to register to RHSM or Satellite before installing the Ansible Automation Platform.

To find out the pool_id of your Ansible Automation Platform subscription:

#subscription-manager list --available --all | grep "Ansible Automation Platform" -B
↪→3 -A 6

The command returns the following:

1.4. Node Counting in Licenses 3

https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity
https://access.redhat.com/
http://www.ansible.com/contact-us/
http://www.ansible.com/contact-us/
https://access.redhat.com/articles/3331481
https://access.redhat.com/articles/3331481
https://access.redhat.com/articles/simple-content-access

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Subscription Name: Red Hat Ansible Automation Platform, Premium (5000 Managed Nodes)
Provides: Red Hat Ansible Engine
Red Hat Single Sign-On
Red Hat Ansible Automation Platform
SKU: MCT3695
Contract: ********
Pool ID: ********************
Provides Management: No
Available: 4999
Suggested: 1

To attach this subscription:

#subscription-manager attach --pool=<pool_id>

If this is properly done, and all nodes have Red Hat Ansible Automation Platform attached, then it will find the
Automation Hub repositories correctly.

To check whether the subscription was successfully attached:

#subscription-manager list --consumed

To remove this subscription:

#subscription-manager remove --pool=<pool_id>

1.6 Ansible Automation Platform Component Licenses

To view the license information for the components included within automation controller, refer to /usr/share/
doc/automation-controller-<version>/README where <version> refers to the version of automa-
tion controller you have installed.

To view a specific license, refer to /usr/share/doc/automation-controller-<version>/*.txt,
where * is replaced by the license file name to which you are referring.

1.6. Ansible Automation Platform Component Licenses 4

CHAPTER

TWO

STARTING, STOPPING, AND RESTARTING THE CONTROLLER

Automation controller ships with an admin utility script, automation-controller-service, that can start,
stop, and restart all the controller services running on the current single controller node (including the message queue
components, and the database if it is an integrated installation). External databases must be explicitly managed by
the administrator. The services script resides in /usr/bin/automation-controller-service and can be
invoked as follows:

root@localhost:~$ automation-controller-service restart

Note: In clustered installs, automation-controller-service restart does not include PostgreSQL
as part of the services that are restarted because it exists external to the controller, and because PostgreSQL does not
always require a restart. Use systemctl restart automation-controller to restart services on clustered
environments instead. Also you must restart each cluster node for certain changes to persist as opposed to a single
node for a localhost install. For more information on clustered environments, see the Clustering section.

You can also invoke the services script via distribution-specific service management commands. Distribution packages
often provide a similar script, sometimes as an init script, to manage services. Refer to your distribution-specific
service management system for more information.

Note: When running the controller in a container, do not use the automation-controller-service script.
Restart the pod using the container environment instead.

5

CHAPTER

THREE

CUSTOM INVENTORY SCRIPTS

Inventory scripts have been discontinued. For more information, see Export old inventory scripts in the Automation
Controller User Guide.

If you use custom inventory scripts, migrate to sourcing these scripts from a project. See Inventory File Importing in
the subsequent chapter, and also refer to Inventory Sources in the Automation Controller User Guide for more detail.

If you are setting up an inventory file, refer to the Red Hat Ansible Automation Platform Installation Guide on ac-
cess.redhat.com and find examples specific to your setup.

If you are migrating to execution environments, see:

• Upgrading to Execution Environments

• Automation mesh design patterns

• View mesh topology in the Ansible Automation Platform Upgrade and Migration Guide to validate your topol-
ogy

To learn more about automation mesh, refer to the Red Hat Ansible Automation Mesh Guide on access.redhat.com.

If you already have a mesh topology set up and want to view node type, node health, and specific details about each
node, see Topology Viewer later in this guide.

6

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/inventories.html#ug-customscripts
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/inventories.html#ug-inventory-sources
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.2/html/red_hat_ansible_automation_platform_installation_guide/assembly-platform-install-scenario#editing_the_red_hat_ansible_automation_platform_installer_inventory_file
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform
http://docs.ansible.com/automation-controller/4.3.0/html/upgrade-migration-guide/upgrade_to_ees.html#upgrade-venv
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.2/html/red_hat_ansible_automation_platform_automation_mesh_guide/design-patterns
http://docs.ansible.com/automation-controller/4.3.0/html/upgrade-migration-guide/upgrade_to_ees.html#mesh-topology-ee
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.2/html/red_hat_ansible_automation_platform_automation_mesh_guide/assembly-planning-mesh
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform

CHAPTER

FOUR

INVENTORY FILE IMPORTING

The controller allows you to choose an inventory file from source control, rather than creating one from scratch. This
function is the same as custom inventory scripts, except that the contents are obtained from source control instead
of editing their contents browser. This means, the files are non-editable and as inventories are updated at the source,
the inventories within the projects are also updated accordingly, including the group_vars and host_vars files
or directory associated with them. SCM types can consume both inventory files and scripts, the overlap between
inventory files and custom types in that both do scripts.

Any imported hosts will have a description of “imported” by default. This can be overridden by setting the
_awx_description variable on a given host. For example, if importing from a sourced .ini file, you could add the
following host variables:

[main]
127.0.0.1 _awx_description="my host 1"
127.0.0.2 _awx_description="my host 2"

Similarly, group descriptions also default to “imported”, but can be overridden by the _awx_description as well.

In order to use old inventory scripts in source control, see Export old inventory scripts in the Automation Controller
User Guide for detail.

4.1 Custom Dynamic Inventory Scripts

A custom dynamic inventory script stored in version control can be imported and run. This makes it much easier to
make changes to an inventory script — rather than having to copy and paste one into the controller, it is pulled directly
from source control and then executed. The script must be written to handle any credentials needed for doing its work
and you are responsible for installing any Python libraries needed by the script (which is the same requirement for
custom dynamic inventory scripts). And this applies to both user-defined inventory source scripts and SCM sources as
they are both exposed to Ansible virtualenv requirements related to playbooks.

You can specify environment variables when you edit the SCM inventory source itself. For some scripts, this will be
sufficient, however, this is not a secure way to store secret information that gives access to cloud providers or inventory.

The better way is to create a new credential type for the inventory script you are going to use. The credential type will
need to specify all the necessary types of inputs. Then, when you create a credential of this type, the secrets will be
stored in an encrypted form. If you apply that credential to the inventory source, the script will have access to those
inputs like environment variables or files.

For more detail, refer to Credential types.

7

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/inventories.html#ug-customscripts
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/credential_types.html#ug-credential-types

Automation Controller Administration Guide, Release Automation Controller 4.3.0

4.2 SCM Inventory Source Fields

The source fields used are:

• source_project: project to use

• source_path: relative path inside the project indicating a directory or a file. If left blank, “” is still a relative
path indicating the root directory of the project

• source_vars: if set on a “file” type inventory source then they will be passed to the environment vars when
running

An update of the project automatically triggers an inventory update where it is used. An update of the project is
scheduled immediately after creation of the inventory source. Neither inventory nor project updates are blocked while
a related job is running. In cases where you have a big project (around 10 GB), disk space on /tmp may be an issue.

You can specify a location manually in the controller User Interface from the Create Inventory Source page. Refer to
the Inventories section of the Automation Controller User Guide for instructions on creating an inventory source.

This listing should be refreshed to latest SCM info on a project update. If no inventory sources use a project as an
SCM inventory source, then the inventory listing may not be refreshed on update.

For inventories with SCM sources, the Job Details page for inventory updates show a status indicator for the project
update as well as the name of the project. The status indicator links to the project update job. The project name links
to the project.

An inventory update can be performed while a related job is running.

4.2.1 Supported File Syntax

automation controller uses the ansible-inventory module from Ansible to process inventory files, and supports
all valid inventory syntax that the controller requires.

4.2. SCM Inventory Source Fields 8

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/inventories.html#ug-inventories

CHAPTER

FIVE

MULTI-CREDENTIAL ASSIGNMENT

automation controller provides support for assigning zero or more credentials to a job template.

5.1 Background

Prior to automation controller 3.3, job templates had a certain set of requirements with respect to credentials:

• All job templates (and jobs) were required to have exactly one Machine/SSH or Vault credential (or one of both).

• All job templates (and jobs) could have zero or more “extra” credentials.

• Extra credentials represented “Cloud” and “Network” credentials that could be used to provide authentication
to external services via environment variables (e.g., AWS_ACCESS_KEY_ID).

This model required a variety of disjoint interfaces for specifying credentials on a job template and it lacked the
ability associate multiple Vault credentials with a playbook run, a use case supported by Ansible core from Ansible
2.4 onwards.

This model also poses a stumbling block for certain playbook execution workflows, such as having to attach a
“dummy” Machine/SSH credential to the job template simply to satisfy the requirement.

5.2 Important Changes

Job templates now have a single interface for credential assignment. From the API endpoint:

GET /api/v2/job_templates/N/credentials/

You can associate and disassociate credentials using POST requests, similar to the behavior in the deprecated
extra_credentials endpoint:

POST /api/v2/job_templates/N/credentials/ {'associate': true, 'id': 'X'}
POST /api/v2/job_templates/N/credentials/ {'disassociate': true, 'id': 'Y'}

Under this model, a job template is considered valid even when there are no credentials assigned to it. This model also
provides users the ability to assign multiple Vault credentials to a job template.

9

Automation Controller Administration Guide, Release Automation Controller 4.3.0

5.3 Launch Time Considerations

Prior to automation controller 3.3, job templates had a configurable attribute, ask_credential_on_launch.
This value was used at launch time to determine which missing credential values were necessary for launch - this was
primarily used as a way to specify a Machine/SSH credential to satisfy the minimum credential requirement.

Under the new unified credential list model, this attribute still exists, but it is no longer “requiring” a credential. Now
when ask_credential_on_launch is True, it signifies that if desired, you may specify a list of credentials at
launch time to override those defined on the job template. For example:

POST /api/v2/job_templates/N/launch/ {'credentials': [A, B, C]}`

If ask_credential_on_launch is False, it signifies that custom credentials provided in the POST /api/
v2/job_templates/N/launch/ will be ignored.

Under this model, the only purpose for ask_credential_on_launch is to signal API clients to prompt the user
for (optional) changes at launch time.

5.4 Multi-Vault Credentials

As it possible to assign multiple credentials to a job, you can specify multiple Vault credentials to decrypt when your
job template runs. This functionality mirrors the support for multiple vault passwords for a playbook run in Ansible
2.4 and later.

Vault credentials now have an optional field, vault_id, which is analogous to the --vault-id argument to
ansible-playbook. To run a playbook which makes use of multiple vault passwords:

1. Create a Vault credential in the controller for each vault password; specify the Vault ID as a field on the credential
and input the password (which will be encrypted and stored).

2. Assign multiple vault credentials to the job template via the new credentials endpoint:

POST /api/v2/job_templates/N/credentials/

{
'associate': true,
'id': X

}

Alternatively, you can perform the same assignment in the controller User Interface in the Create Credential page:

5.3. Launch Time Considerations 10

http://docs.ansible.com/ansible/latest/vault.html#vault-ids-and-multiple-vault-passwords

Automation Controller Administration Guide, Release Automation Controller 4.3.0

In the above example, the credential created specifies the secret to be used by its Vault Identifier (“first”) and password
pair. When this credential is used in a Job Template, as in the example below, it will only decrypt the secret associated
with the “first” Vault ID:

If you have a playbook that is setup the traditional way with all the secrets in one big file without distinction, then
leave the Vault Identifier field blank when setting up the Vault credential:

5.4.1 Prompted Vault Credentials

Passwords for Vault credentials that are marked with “Prompt on launch”, the launch endpoint of any related Job
Templates will communicate necessary Vault passwords via the passwords_needed_to_start key:

GET /api/v2/job_templates/N/launch/
{

'passwords_needed_to_start': [
'vault_password.X',
'vault_password.Y',

]
}

X and Y in the above example are primary keys of the associated Vault credentials.

5.4. Multi-Vault Credentials 11

Automation Controller Administration Guide, Release Automation Controller 4.3.0

POST /api/v2/job_templates/N/launch/
{

'credential_passwords': {
'vault_password.X': 'first-vault-password'
'vault_password.Y': 'second-vault-password'

}
}

5.4.2 Linked credentials

Instead of uploading sensitive credential information into the controller, you can link credential fields to external
systems and using them to run your playbooks. Refer to the Secret Management System section of the Automation
Controller User Guide.

5.4. Multi-Vault Credentials 12

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/credential_plugins.html#ug-credential-plugins

CHAPTER

SIX

MANAGEMENT JOBS

Management Jobs assist in the cleaning of old data from the controller, including system tracking information,
tokens, job histories, and activity streams. You can use this if you have specific retention policies or need to decrease
the storage used by your controller database. Click Management Jobs from the left navigation bar.

Several job types are available for you to schedule and launch:

• Cleanup Activity Stream: Remove activity stream history older than a specified number of days

• Cleanup Expired OAuth 2 Tokens: Remove expired OAuth 2 access tokens and refresh tokens

• Cleanup Expired Sessions: Remove expired browser sessions from the database

• Cleanup Job Details: Remove job history older than a specified number of days

13

Automation Controller Administration Guide, Release Automation Controller 4.3.0

6.1 Removing Old Activity Stream Data

To remove older activity stream data, click on the launch () button beside Cleanup Activity Stream.

Enter the number of days of data you would like to save and click Launch.

6.1.1 Scheduling

To review or set a schedule for purging data marked for deletion, click on the button.

Note that you can turn this scheduled management job on and off easily using the ON/OFF toggle button to the left
of the Job Name.

Click on the Job Name, in this example “Cleanup Activity Schedule”, to review or edit the schedule settings. You can
also use the Add button to create a new schedule for this management job.

6.1. Removing Old Activity Stream Data 14

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Enter the appropriate details into the following fields and click Save:

• Name (required)

• Start Date (required)

• Start Time (required)

• Local Time Zone (the entered Start Time should be in this timezone)

• Repeat Frequency (the appropriate options display as the update frequency is modified.)

The Details tab displays a description of the schedule and a list of the scheduled occurrences in the selected Local
Time Zone.

Note: Jobs are scheduled in UTC. Repeating jobs that runs at a specific time of day may move relative to a local
timezone when Daylight Saving Time shifts occur.

6.1. Removing Old Activity Stream Data 15

Automation Controller Administration Guide, Release Automation Controller 4.3.0

6.1.2 Notifications

To set or review notifications associated with this management job, click the Notifications () icon.

If none exist, click the Notifications link to create a new notification. Notification types include:

• Email

• Grafana

• IRC

• Mattermost

• PagerDuty

• Rocket.Chat

• Slack

• Twilio

• Webhook

Refer to Notifications in the Automation Controller User Guide for more information.

6.1. Removing Old Activity Stream Data 16

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/notifications.html#ug-notifications

Automation Controller Administration Guide, Release Automation Controller 4.3.0

6.2 Cleanup Expired OAuth2 Tokens

To remove expired OAuth2 tokens, click on the launch () button beside Cleanup Expired OAuth2 Tokens.

You can review or set a schedule for cleaning up expired OAuth2 tokens by performing the same procedure described
for activity stream management jobs. See Scheduling for detail.

You can also set or review notifications associated with this management job the same way as described in Notifications
for activity stream management jobs, and refer to Notifications in the Automation Controller User Guide for more
detail.

6.3 Cleanup Expired Sessions

To remove expired sessions, click on the launch () button beside Cleanup Expired Sessions.

You can review or set a schedule for cleaning up expired sessions by performing the same procedure described for
activity stream management jobs. See Scheduling for detail.

You can also set or review notifications associated with this management job the same way as described in Notifications
for activity stream management jobs, and refer to Notifications in the Automation Controller User Guide for more
detail.

6.4 Removing Old Job History

To remove job history older than a specified number of days, click on the launch () button beside Cleanup Job
Details.

6.2. Cleanup Expired OAuth2 Tokens 17

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/notifications.html#ug-notifications
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/notifications.html#ug-notifications

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Enter the number of days of data you would like to save and click Launch.

Note: The initial job run for a controller resource (e.g. Projects, Job Templates) is excluded from Cleanup Job
Details, regardless of retention value.

You can review or set a schedule for cleaning up old job history by performing the same procedure described for
activity stream management jobs. See Scheduling for detail.

You can also set or review notifications associated with this management job the same way as described in Notifications
for activity stream management jobs, and refer to Notifications in the Automation Controller User Guide for more
detail.

6.4. Removing Old Job History 18

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/notifications.html#ug-notifications

CHAPTER

SEVEN

CLUSTERING

Clustering is sharing load between hosts. Each instance should be able to act as an entry point for UI and API access.
This should enable the controller administrators to use load balancers in front of as many instances as they wish and
maintain good data visibility.

Note: Load balancing is optional and is entirely possible to have ingress on one or all instances as needed.

Each instance should be able to join the controller cluster and expand its ability to execute jobs. This is a simple
system where jobs can and will run anywhere rather than be directed on where to run. Also, clustered instances can be
grouped into different pools/queues, called Instance Groups.

Ansible Automation Platform supports container-based clusters using Kubernetes, meaning new controller instances
can be installed on this platform without any variation or diversion in functionality. You can create instance groups to
point to a Kubernetes container. For more detail, see the Container and Instance Groups section.

Supported Operating Systems

The following operating systems are supported for establishing a clustered environment:

• Red Hat Enterprise Linux 7 or later (RHEL8 recommended, can be either RHEL 7 or Centos 7 instances)

Note: Isolated instances are not supported in conjunction with running automation controller in OpenShift.

7.1 Setup Considerations

This section covers initial setup of clusters only. For upgrading an existing cluster, refer to Upgrade Planning of the
Ansible Automation Platform Upgrade and Migration Guide.

Important considerations to note in the new clustering environment:

• PostgreSQL is still a standalone instance and is not clustered. The controller does not manage replica configu-
ration or database failover (if the user configures standby replicas).

• When spinning up a cluster, the database node should be a standalone server, and PostgreSQL should not be
installed on one of the controller nodes.

• The maximum supported instances in a cluster is 20.

• All instances should be reachable from all other instances and they should be able to reach the database. It is
also important for the hosts to have a stable address and/or hostname (depending on how the controller host is
configured).

• All instances must be geographically collocated, with reliable low-latency connections between instances.

19

http://docs.ansible.com/automation-controller/4.3.0/html/upgrade-migration-guide/upgrade_considerations.html#upgrade-planning

Automation Controller Administration Guide, Release Automation Controller 4.3.0

• For purposes of upgrading to a clustered environment, your primary instance must be part of the default
group in the inventory AND it needs to be the first host listed in the default group.

• Manual projects must be manually synced to all instances by the customer, and updated on all instances at once.

• The inventory file for platform deployments should be saved/persisted. If new instances are to be provi-
sioned, the passwords and configuration options, as well as host names, must be made available to the installer.

7.2 Install and Configure

Provisioning new instances involves updating the inventory file and re-running the setup playbook. It is
important that the inventory file contains all passwords and information used when installing the cluster
or other instances may be reconfigured. The inventory file inventory contains a single inventory group,
automationcontroller.

Note: All instances are responsible for various housekeeping tasks related to task scheduling, like determining where
jobs are supposed to be launched and processing playbook events, as well as periodic cleanup.

[automationcontroller]
hostA
hostB
hostC

[instance_group_east]
hostB
hostC

[instance_group_west]
hostC
hostD

Note: If no groups are selected for a resource then the automationcontroller group is used, but if any other
group is selected, then the automationcontroller group will not be used in any way.

The database group remains for specifying an external PostgreSQL. If the database host is provisioned separately,
this group should be empty:

[automationcontroller]
hostA
hostB
hostC

[database]
hostDB

When a playbook runs on an individual controller instance in a cluster, the output of that playbook is broadcast to all
of the other nodes as part of the controller’s websocket-based streaming output functionality. It is best to handle this
data broadcast using internal addressing by specifying a private routable address for each node in your inventory:

[automationcontroller]
hostA routable_hostname=10.1.0.2

(continues on next page)

7.2. Install and Configure 20

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

hostB routable_hostname=10.1.0.3
hostC routable_hostname=10.1.0.4

Note: Prior versions of automation controller used the variable name rabbitmq_host. If you are upgrading from
a previous version of the platform, and you previously specified rabbitmq_host in your inventory, simply rename
rabbitmq_host to routable_hostname before upgrading.

7.2.1 Instances and Ports Used by the Controller and Automation Hub

Ports and instances used by the controller and also required by the on-premise Automation Hub node are as follows:

• 80, 443 (normal controller and Automation Hub ports)

• 22 (ssh - ingress only required)

• 5432 (database instance - if the database is installed on an external instance, needs to be opened to the controller
instances)

7.3 Status and Monitoring via Browser API

The controller itself reports as much status as it can via the Browsable API at /api/v2/ping in order to provide
validation of the health of the cluster, including:

• The instance servicing the HTTP request

• The timestamps of the last heartbeat of all other instances in the cluster

• Instance Groups and Instance membership in those groups

View more details about Instances and Instance Groups, including running jobs and membership information at /
api/v2/instances/ and /api/v2/instance_groups/.

7.4 Instance Services and Failure Behavior

Each controller instance is made up of several different services working collaboratively:

• HTTP Services - This includes the controller application itself as well as external web services.

• Callback Receiver - Receives job events from running Ansible jobs.

• Dispatcher - The worker queue that processes and runs all jobs.

• Redis - This key value store is used as a queue for event data propagated from ansible-playbook to the applica-
tion.

• Rsyslog - log processing service used to deliver logs to various external logging services.

The controller is configured in such a way that if any of these services or their components fail, then all services are
restarted. If these fail sufficiently often in a short span of time, then the entire instance will be placed offline in an
automated fashion in order to allow remediation without causing unexpected behavior.

For backing up and restoring a clustered environment, refer to Backup and Restore for Clustered Environments section.

7.3. Status and Monitoring via Browser API 21

Automation Controller Administration Guide, Release Automation Controller 4.3.0

7.5 Job Runtime Behavior

The way jobs are run and reported to a ‘normal’ user of controller does not change. On the system side, some
differences are worth noting:

• When a job is submitted from the API interface it gets pushed into the dispatcher queue. Each controller instance
will connect to and receive jobs from that queue using a particular scheduling algorithm. Any instance in the
cluster is just as likely to receive the work and execute the task. If a instance fails while executing jobs, then the
work is marked as permanently failed.

• Project updates run successfully on any instance that could potentially run a job. Projects will sync themselves
to the correct version on the instance immediately prior to running the job. If the needed revision is already
locally checked out and Galaxy or Collections updates are not needed, then a sync may not be performed.

7.5. Job Runtime Behavior 22

Automation Controller Administration Guide, Release Automation Controller 4.3.0

• When the sync happens, it is recorded in the database as a project update with a launch_type = sync and
job_type = run. Project syncs will not change the status or version of the project; instead, they will update
the source tree only on the instance where they run.

• If updates are needed from Galaxy or Collections, a sync is performed that downloads the required roles, con-
suming that much more space in your /tmp file. In cases where you have a big project (around 10 GB), disk
space on /tmp may be an issue.

7.5.1 Job Runs

By default, when a job is submitted to the controller queue, it can be picked up by any of the workers. However, you
can control where a particular job runs, such as restricting the instances from which a job runs on.

In order to support temporarily taking an instance offline, there is a property enabled defined on each instance. When
this property is disabled, no jobs will be assigned to that instance. Existing jobs will finish, but no new work will be
assigned.

7.6 Deprovision Instances

Re-running the setup playbook does not automatically deprovision instances since clusters do not currently distinguish
between an instance that was taken offline intentionally or due to failure. Instead, shut down all services on the
controller instance and then run the deprovisioning tool from any other instance:

1. Shut down the instance or stop the service with the command, automation-controller-service
stop.

2. Run the deprovision command $ awx-manage deprovision_instance --hostname=<name
used in inventory file> from another instance to remove it from the controller cluster.

Example: awx-manage deprovision_instance --hostname=hostB

Similarly, deprovisioning instance groups in the controller does not automatically deprovision or remove instance
groups. For more information, refer to the Deprovision Instance Groups section.

7.6. Deprovision Instances 23

CHAPTER

EIGHT

CONTAINER AND INSTANCE GROUPS

The controller allows you to execute jobs via ansible playbook runs directly on a member of the cluster or in a
namespace of an Openshift cluster with the necessary service account provisioned called a Container Group. You can
execute jobs in a container group only as-needed per playbook. For more information, see Container Groups towards
the end of this section.

For execution environments, see Execution Environments in the Automation Controller User Guide.

8.1 Instance Groups

Instances can be grouped into one or more Instance Groups. Instance groups can be assigned to one or more of the
resources listed below.

• Organizations

• Inventories

• Job Templates

When a job associated with one of the resources executes, it will be assigned to the instance group associated with
the resource. During the execution process, instance groups associated with Job Templates are checked before those
associated with Inventories. Similarly, instance groups associated with Inventories are checked before those associated
with Organizations. Thus, Instance Group assignments for the three resources form a hierarchy: Job Template >
Inventory > Organization.

Here are some of the things to consider when working with instance groups:

• You may optionally define other groups and group instances in those groups. These groups should be
prefixed with instance_group_. Instances are required to be in the automationcontroller or
execution_nodes group alongside other instance_group_ groups. In a clustered setup, at least one
instance must be present in the automationcontroller group, which will appear as controlplane in
the API instance groups. See automationcontroller group policies for example scenarios.

• A default API instance group is automatically created with all nodes capable of running jobs. Technically, it
is like any other instance group but if a specific instance group is not associated with a specific resource, then job
execution will always fall back to the default instance group. The default instance group always exists (it
cannot be deleted nor renamed).

• Do not create a group named instance_group_default.

• Do not name any instance the same as a group name.

24

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/execution_environments.html#ug-execution-environments

Automation Controller Administration Guide, Release Automation Controller 4.3.0

8.1.1 automationcontroller group policies

Use the following criteria when defining nodes:

• nodes in the automationcontroller group can define node_type hostvar to be hybrid (default) or
control

• nodes in the execution_nodes group can define node_type hostvar to be execution (default) or hop

You can define custom groups in the inventory file by naming groups with instance_group_* where * becomes
the name of the group in the API. Or, you can create custom instance groups in the API after the install has finished.

The current behavior expects a member of an instance_group_* be part of automationcontroller or
execution_nodes group. Consider this example scenario:

[automationcontroller]
126-addr.tatu.home ansible_host=192.168.111.126 node_type=control

[automationcontroller:vars]
peers=execution_nodes

[execution_nodes]

[instance_group_test]
110-addr.tatu.home ansible_host=192.168.111.110 receptor_listener_port=8928

As a result of running the installer, you will get the error below:

TASK [ansible.automation_platform_installer.check_config_static : Validate mesh
↪→topology] ***
fatal: [126-addr.tatu.home -> localhost]: FAILED! => {"msg": "The host '110-addr.tatu.
↪→home' is not present in either [automationcontroller] or [execution_nodes]"}

To fix this, you could move the box 110-addr.tatu.home to an execution_node group.

[automationcontroller]
126-addr.tatu.home ansible_host=192.168.111.126 node_type=control

[automationcontroller:vars]
peers=execution_nodes

[execution_nodes]
110-addr.tatu.home ansible_host=192.168.111.110 receptor_listener_port=8928

[instance_group_test]
110-addr.tatu.home

This results in:

TASK [ansible.automation_platform_installer.check_config_static : Validate mesh
↪→topology] ***
ok: [126-addr.tatu.home -> localhost] => {"changed": false, "mesh": {"110-addr.tatu.
↪→home": {"node_type": "execution", "peers": [], "receptor_control_filename":
↪→"receptor.sock", "receptor_control_service_name": "control", "receptor_listener":
↪→true, "receptor_listener_port": 8928, "receptor_listener_protocol": "tcp",
↪→"receptor_log_level": "info"}, "126-addr.tatu.home": {"node_type": "control", "peers
↪→": ["110-addr.tatu.home"], "receptor_control_filename": "receptor.sock", "receptor_
↪→control_service_name": "control", "receptor_listener": false, "receptor_listener_
↪→port": 27199, "receptor_listener_protocol": "tcp", "receptor_log_level": "info"}}}

8.1. Instance Groups 25

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Upon upgrading from controller 4.0 or earlier, the legacy instance_group_ member will most likely have the awx
code installed, which would cause that node to be placed in the automationcontroller group.

8.1.2 Configuring Instance Groups from the API

Instance groups can be created by POSTing to /api/v2/instance_groups as a system administrator.

Once created, instances can be associated with an instance group with:

HTTP POST /api/v2/instance_groups/x/instances/ {'id': y}`

An instance that is added to an instance group will automatically reconfigure itself to listen on the group’s work queue.
See the following section, Instance group policies, for more details.

8.1.3 Instance group policies

You can configure controller instances to automatically join Instance Groups when they come online by defining a
policy. These policies are evaluated for every new instance that comes online.

Instance Group Policies are controlled by three optional fields on an Instance Group:

• policy_instance_percentage: This is a number between 0 - 100. It guarantees that this percentage of
active controller instances will be added to this Instance Group. As new instances come online, if the number of
Instances in this group relative to the total number of instances is less than the given percentage, then new ones
will be added until the percentage condition is satisfied.

• policy_instance_minimum: This policy attempts to keep at least this many instances in the Instance
Group. If the number of available instances is lower than this minimum, then all instances will be placed in this
Instance Group.

• policy_instance_list: This is a fixed list of instance names to always include in this Instance Group.

The Instance Groups list view from the automation controller User Interface provides a summary of the capacity levels
for each instance group according to instance group policies:

8.1. Instance Groups 26

Automation Controller Administration Guide, Release Automation Controller 4.3.0

8.1.4 Notable policy considerations

• policy_instance_percentage and policy_instance_minimum both set minimum allocations.
The rule that results in more instances assigned to the group will take effect. For example, if you have
a policy_instance_percentage of 50% and a policy_instance_minimum of 2 and you start
6 instances, 3 of them would be assigned to the Instance Group. If you reduce the number of to-
tal instances in the cluster to 2, then both of them would be assigned to the Instance Group to satisfy
policy_instance_minimum. This way, you can set a lower bound on the amount of available resources.

• Policies do not actively prevent instances from being associated with multiple Instance Groups, but this can
effectively be achieved by making the percentages add up to 100. If you have 4 instance groups, assign each a
percentage value of 25 and the instances will be distributed among them with no overlap.

8.1.5 Manually pinning instances to specific groups

If you have a special instance which needs to be exclusively assigned to a specific Instance Group but don’t want it to
automatically join other groups via “percentage” or “minimum” policies:

1. Add the instance to one or more Instance Groups’ policy_instance_list

2. Update the instance’s managed_by_policy property to be False.

This will prevent the Instance from being automatically added to other groups based on percentage and minimum
policy; it will only belong to the groups you’ve manually assigned it to:

HTTP PATCH /api/v2/instance_groups/N/
{
"policy_instance_list": ["special-instance"]
}

HTTP PATCH /api/v2/instances/X/
{
"managed_by_policy": False
}

8.1.6 Job Runtime Behavior

When you run a job associated with a instance group, some behaviors worth noting are:

• If a cluster is divided into separate instance groups, then the behavior is similar to the cluster as a whole. If two
instances are assigned to a group then either one is just as likely to receive a job as any other in the same group.

• As controller instances are brought online, it effectively expands the work capacity of the system. If those
instances are also placed into instance groups, then they also expand that group’s capacity. If an instance is
performing work and it is a member of multiple groups, then capacity will be reduced from all groups for which
it is a member. De-provisioning an instance will remove capacity from the cluster wherever that instance was
assigned. See the Deprovision Instances section for more detail.

Note: Not all instances are required to be provisioned with an equal capacity.

8.1. Instance Groups 27

Automation Controller Administration Guide, Release Automation Controller 4.3.0

8.1.7 Control Where a Job Runs

If any of the job template, inventory, or organization has instance groups associated with them, a job ran from that
job template will not be eligible for the default behavior. That means that if all of the instances inside of the instance
groups associated with these 3 resources are out of capacity, the job will remain in the pending state until capacity
becomes available.

The order of preference in determining which instance group to submit the job to is as follows:

1. job template

2. inventory

3. organization (by way of project)

If instance groups are associated with the job template, and all of these are at capacity, then the job will be submitted
to instance groups specified on inventory, and then organization. Jobs should execute in those groups in preferential
order as resources are available.

The global default group can still be associated with a resource, just like any of the custom instance groups defined
in the playbook. This can be used to specify a preferred instance group on the job template or inventory, but still allow
the job to be submitted to any instance if those are out of capacity.

As an example, by associating group_a with a Job Template and also associating the default group with its
inventory, you allow the default group to be used as a fallback in case group_a gets out of capacity.

In addition, it is possible to not associate an instance group with one resource but designate another resource as the
fallback. For example, not associating an instance group with a job template and have it fall back to the inventory
and/or the organization’s instance group.

This presents two other great use cases:

1. Associating instance groups with an inventory (omitting assigning the job template to an instance group) will
allow the user to ensure that any playbook run against a specific inventory will run only on the group associated
with it. This can be super useful in the situation where only those instances have a direct link to the managed
nodes.

2. An administrator can assign instance groups to organizations. This effectively allows the administrator to seg-
ment out the entire infrastructure and guarantee that each organization has capacity to run jobs without interfer-
ing with any other organization’s ability to run jobs.

Likewise, an administrator could assign multiple groups to each organization as desired, as in the following scenario:

• There are three instance groups: A, B, and C. There are two organizations: Org1 and Org2.

• The administrator assigns group A to Org1, group B to Org2 and then assign group C to both Org1
and Org2 as an overflow for any extra capacity that may be needed.

• The organization administrators are then free to assign inventory or job templates to whichever group
they want (or just let them inherit the default order from the organization).

8.1. Instance Groups 28

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Arranging resources in this way offers a lot of flexibility. Also, you can create instance groups with only one instance,
thus allowing you to direct work towards a very specific Host in the controller cluster.

8.1.8 Deprovision Instance Groups

Re-running the setup playbook does not automatically deprovision instances since clusters do not currently distinguish
between an instance that was taken offline intentionally or due to failure. Instead, shut down all services on the
controller instance and then run the deprovisioning tool from any other instance:

1. Shut down the instance or stop the service with the command, automation-controller-service
stop.

2. Run the deprovision command $ awx-manage deprovision_instance --hostname=<name
used in inventory file> from another instance to remove it from the controller cluster registry.

Example: awx-manage deprovision_instance --hostname=hostB

Similarly, deprovisioning instance groups in the controller does not automatically deprovision or remove instance
groups, even though re-provisioning will often cause these to be unused. They may still show up in API endpoints and
stats monitoring. These groups can be removed with the following command:

Example: awx-manage unregister_queue --queuename=<name>

Removing an instance’s membership from an instance group in the inventory file and re-running the setup playbook
does not ensure the instance won’t be added back to a group. To be sure that an instance will not be added back to
a group, remove via the API and also remove it in your inventory file, or you can stop defining instance groups in
the inventory file altogether. You can also manage instance group topology through the automation controller User
Interface. For more information on managing instance groups in the UI, refer to Instance Groups in the Automation
Controller User Guide.

Note: If you have isolated instance groups created in older versions of the controller (3.8.x and earlier) and want to
migrate them to execution nodes to make them compatible for use with the automation mesh architecture, see Migrate
isolated instances to execution nodes in the Ansible Automation Platform Upgrade and Migration Guide.

8.1. Instance Groups 29

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/instance_groups.html#ug-instance-groups
http://docs.ansible.com/automation-controller/4.3.0/html/upgrade-migration-guide/upgrade_to_ees.html#migrate-iso-to-exe
http://docs.ansible.com/automation-controller/4.3.0/html/upgrade-migration-guide/upgrade_to_ees.html#migrate-iso-to-exe

Automation Controller Administration Guide, Release Automation Controller 4.3.0

8.2 Container Groups

Ansible Automation Platform supports Container Groups, which allow you to execute jobs in the controller regardless
of whether the controller is installed as a standalone, in a virtual environment, or in a container. Container groups act
as a pool of resources within a virtual environment. You can create instance groups to point to an OpenShift container,
which are job environments that are provisioned on-demand as a Pod that exists only for the duration of the playbook
run. This is known as the ephemeral execution model and ensures a clean environment for every job run.

In some cases, it is desirable to have container groups be “always-on”, which is configured through the creation of an
instance.

Note: Container Groups upgraded from versions prior to automation controller 4.0 will revert back to default and
completely remove the old pod definition, clearing out all custom pod definitions in the migration.

Container groups are different from execution environments in that execution environments are container images and
do not use a virtual environment. See Execution Environments in the Automation Controller User Guide for further
detail.

8.2.1 Create a container group

A ContainerGroup is a type of InstanceGroup that has an associated Credential that allows for connecting to
an OpenShift cluster. To set up a container group, you must first have the following:

• A namespace you can launch into (every cluster has a “default” namespace, but you may want to use a specific
namespace)

• A service account that has the roles that allow it to launch and manage Pods in this namespace

• If you will be using execution environments in a private registry, and have a Container Registry credential
associated to them in the automation controller, the service account also needs the roles to get, create, and delete
secrets in the namespace. If you do not want to give these roles to the service account, you can pre-create the
ImagePullSecrets and specify them on the pod spec for the ContainerGroup. In this case, the execution
environment should NOT have a Container Registry credential associated, or the controller will attempt to create
the secret for you in the namespace.

• A token associated with that service account (OpenShift or Kubernetes Bearer Token)

• A CA certificate associated with the cluster

This section describes creating a Service Account in an Openshift cluster (or K8s) in order to be used to run jobs in
a container group via automation controller. After the Service Account is created, its credentials are provided to the
controller in the form of an Openshift or Kubernetes API bearer token credential. Below describes how to create a
service account and collect the needed information for configuring automation controller.

To configure the controller:

1. To create a service account, you may download and use this sample service account, containergroup sa
and modify it as needed to obtain the above credentials.

2. Apply the configuration from containergroup-sa.yml:

oc apply -f containergroup-sa.yml

3. Get the secret name associated with the service account:

export SA_SECRET=$(oc get sa containergroup-service-account -o json | jq '.
↪→secrets[0].name' | tr -d '"')

8.2. Container Groups 30

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/glossary.html#term-Container-Groups
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/execution_environments.html#ug-execution-environments

Automation Controller Administration Guide, Release Automation Controller 4.3.0

4. Get the token from the secret:

oc get secret $(echo ${SA_SECRET}) -o json | jq '.data.token' | xargs | base64 --
↪→decode > containergroup-sa.token

5. Get the CA cert:

oc get secret $SA_SECRET -o json | jq '.data["ca.crt"]' | xargs | base64 --decode
↪→> containergroup-ca.crt

6. Use the contents of containergroup-sa.token and containergroup-ca.crt to provide the infor-
mation for the OpenShift or Kubernetes API Bearer Token required for the container group.

To create a container group:

1. Use the controller user interface to create an OpenShift or Kubernetes API Bearer Token credential that will be
used with your container group, see Add a New Credential in the Automation Controller User Guide for detail.

2. Create a new container group by navigating to the Instance Groups configuration window by clicking Instance
Groups from the left navigation bar.

3. Click the Add button and select Create Container Group.

4. Enter a name for your new container group and select the credential previously created to associate it to the
container group.

8.2.2 Customize the Pod spec

Ansible Automation Platform provides a simple default Pod specification, however, you can provide a cus-
tom YAML (or JSON) document that overrides the default Pod spec. This field uses any custom fields (i.e.
ImagePullSecrets) that can be “serialized” as valid Pod JSON or YAML. A full list of options can be found
in the OpenShift documentation.

To customize the Pod spec, specify the namespace in the Pod Spec Override field by using the toggle to enable and
expand the Pod Spec Override field and click Save when done.

You may provide additional customizations, if needed. Click Expand to view the entire customization window.

8.2. Container Groups 31

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/credentials.html#ug-credentials-ocp-k8s
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/credentials.html#ug-credentials-ocp-k8s
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/credentials.html#ug-credentials-add
https://docs.openshift.com/online/pro/architecture/core_concepts/pods_and_services.html

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Note: The image used at job launch time is determined by which execution environment is associated with the job.
If a Container Registry credential is associated with the execution environment, then the controller will attempt to
make a ImagePullSecret to pull the image. If you prefer not to give the service account permission to manage
secrets, you must pre-create the ImagePullSecret and specify it on the pod spec, and omit any credential from
the execution environment used.

Refer to the Allowing Pods to Reference Images from Other Secured Registries section of the Red Hat Container
Registry Authentication article for more information on how to create image pull secrets.

Once the container group is successfully created, the Details tab of the newly created container group remains, which
allows you to review and edit your container group information. This is the same menu that is opened if the Edit

() button is clicked from the Instance Group link. You can also edit Instances and review Jobs associated with
this instance group.

Container groups and instance groups are labeled accordingly.

Note: Despite the fact that customers have custom Pod specs, upgrades may be difficult if the default pod_spec
changes. Most any manifest can be applied to any namespace, with the namespace specified separately, most likely
you will only need to override the namespace. Similarly, pinning a default image for different releases of the platform
to different versions of the default job runner container is tricky. If the default image is specified in the Pod spec, then
upgrades do not pick up the new default changes are made to the default Pod spec.

8.2. Container Groups 32

https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/RegistryAuthentication

Automation Controller Administration Guide, Release Automation Controller 4.3.0

8.2.3 Verify container group functions

To verify the deployment and termination of your container:

1. Create a mock inventory and associate the container group to it by populating the name of the container group
in the Instance Group field. See Add a new inventory in the Automation Controller User Guide for detail.

2. Create “localhost” host in inventory with variables:

{'ansible_host': '127.0.0.1', 'ansible_connection': 'local'}

3. Launch an ad hoc job against the localhost using the ping or setup module. Even though the Machine Credential
field is required, it does not matter which one is selected for this simple test.

8.2. Container Groups 33

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/inventories.html#ug-inventories-add

Automation Controller Administration Guide, Release Automation Controller 4.3.0

You can see in the jobs detail view the container was reached successfully using one of ad hoc jobs.

If you have an OpenShift UI, you can see Pods appear and disappear as they deploy and terminate. Alternatively,
you can use the CLI to perform a get pod operation on your namespace to watch these same events occurring in
real-time.

8.2. Container Groups 34

Automation Controller Administration Guide, Release Automation Controller 4.3.0

8.2.4 View container group jobs

When you run a job associated with a container group, you can see the details of that job in the Details view and its
associated container group and the execution environment that spun up.

8.2.5 Kubernetes API failure conditions

When running a container group and the Kubernetes API responds that the resource quota has been exceeded, the
controller keeps the job in pending state. Other failures result in the traceback of the Error Details field showing the
failure reason, similar to the example here:

8.2.6 Container capacity limits

Capacity limits and quotas for containers are defined via objects in the Kubernetes API:

• To set limits on all pods within a given namespace, use the LimitRange object. Refer to the OpenShift
documentation for Quotas and Limit Ranges.

• To set limits directly on the pod definition launched by the controller, see Customize the Pod spec and refer to
the OpenShift documentation to set the options to compute resources.

Note: Container groups do not use the capacity algorithm that normal nodes use. You would need to explicitly set
the number of forks at the job template level, for instance. If forks are configured in the controller, that setting will be
passed along to the container.

8.2. Container Groups 35

https://docs.openshift.com/online/pro/dev_guide/compute_resources.html#overview
https://docs.openshift.com/online/pro/dev_guide/compute_resources.html#dev-compute-resources

CHAPTER

NINE

MANAGING CAPACITY WITH INSTANCES

Scaling your mesh is only available on Openshift deployments of Ansible Automation Platform and is possible through
adding or removing nodes from your cluster dynamically, through the Instances resource of the automation controller
User Interface, without running the installation script.

9.1 Prerequisites

• Be sure you have the minimum requirements for the RHEL virtual machine before proceeding. Refer to Red
Hat Ansible Automation Platform system requirements for details.

• RHEL nodes must properly be subscribed to:

– RHEL subscription and with baseos and appstream repositories enabled

– Ansible Automation Platform subscription and the proper Ansible Automation Platform channel
enabled:

ansible-automation-platform-2.3-for-rhel-8-x86_64-rpms for RHEL 8
ansible-automation-platform-2.3-for-rhel-9-x86_64-rpms for RHEL 9

• The system that is going to run the ansible-playbook requires the collection ansible.receptor to
be installed:

– If machine has access to the internet:

ansible-galaxy install -r requirements.yml

Installing the receptor collection dependency from the requirements.yml file will consistently
retrieve the receptor version specified there, as well as any other collection dependencies that may be
needed in the future.

– If machine does not have access to the internet, refer to Downloading a collection from Automa-
tion Hub to configure Automation Hub in Ansible Galaxy locally.

• If you are using the default execution environment (provided with the controller) to run on remote execution
nodes, you must add a pull secret in the controller that contains the credential for pulling the execution environ-
ment image. To do this, create a pull secret on the Ansible Automation Controller namespace and configure the
ee_pull_credentials_secret parameter in the Operator:

1. Create a secret:

oc create secret generic ee-pull-secret \
--from-literal=username=<username> \
--from-literal=password=<password> \
--from-literal=url=registry.redhat.io

36

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.2/html/red_hat_ansible_automation_platform_installation_guide/planning-installation#red_hat_ansible_automation_platform_system_requirements
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.2/html/red_hat_ansible_automation_platform_installation_guide/planning-installation#red_hat_ansible_automation_platform_system_requirements
https://docs.ansible.com/ansible/latest/galaxy/user_guide.html#downloading-a-collection-from-automation-hub
https://docs.ansible.com/ansible/latest/galaxy/user_guide.html#downloading-a-collection-from-automation-hub
https://console.redhat.com/ansible/automation-hub

Automation Controller Administration Guide, Release Automation Controller 4.3.0

oc edit automationcontrollers <instance name>

2. Add ee_pull_credentials_secret ee-pull-secret to the spec:

spec.ee_pull_credentials_secret=ee-pull-secret

9.2 Manage instances

Click Instances from the left side navigation menu to access the Instances list.

The Instances list displays all the current nodes in your topology, along with relevant details:

• Host Name

• Status indicates the state of the node:

– Installed: a node that has successfully installed and configured, but has not yet passed the periodic health
check

– Ready: a node that is available to run jobs or route traffic between nodes on the mesh. This replaces the
previously “Healthy” node state used in the mesh topology

– Provisioning: a node that is in the process of being added to a current mesh, but is awaiting the job to
install all of the packages (currently not yet supported and is subject to change in a future release)

– Deprovisioning: a node that is in the process of being removed from a current mesh and is finishing up
jobs currently running on it

– Unavailable: a node that did not pass the most recent health check, indicating connectivity or receptor
problems

– Provisioning Failure: a node that failed during provisioning (currently not yet supported and is subject to
change in a future release)

9.2. Manage instances 37

Automation Controller Administration Guide, Release Automation Controller 4.3.0

– De-provisioning Failure: a node that failed during deprovisioning (currently not yet supported and is
subject to change in a future release)

• Node Type specifies whether the node is a control, hybrid, hop, or execution node. See node for further detail.

• Capacity Adjustment allows you to adjust the number of forks in your nodes

• Used Capacity indicates how much capacity has been used

• Actions allow you to enable or disable the instance to control whether jobs can be assigned to it

From this page, you can add, remove or run health checks on your nodes. Use the check boxes next to an instance to
select it to remove or run a health check against. When a button is grayed-out, you do not have permission for that
particular action. Contact your Administrator to grant you the required level of access. If you are able to remove an
instance, you will receive a prompt for confirmation, like the one below:

Note: You can still remove an instance even if it is active and jobs are running on it. The controller will attempt to
wait for any jobs running on this node to complete before actually removing it.

Click Remove to confirm.

If running a health check on an instance, at the top of the Details page, a message displays that the health check is in
progress.

Click Reload to refresh the instance status.

Note: Health checks are ran asynchronously, and may take up to a minute for the instance status to update, even with
a refresh. The status may or may not change after the health check. At the bottom of the Details page, a timer/clock
icon displays next to the last known health check date and time stamp if the health check task is currently running.

9.2. Manage instances 38

Automation Controller Administration Guide, Release Automation Controller 4.3.0

The example health check shows the status updates with an error on node ‘one’:

9.3 Add an instance

One of the ways to expand capacity is to create an instance, which serves as a node in your topology.

1. Click Instances from the left side navigation menu.

2. In the Instances list view, click the Add button and the Create new Instance window opens.

9.3. Add an instance 39

Automation Controller Administration Guide, Release Automation Controller 4.3.0

An instance has several attributes that may be configured:

• Enter a fully qualified domain name (ping-able DNS) or IP address for your instance in the Host Name field
(required). This field is equivalent to hostname in the API.

• Optionally enter a Description for the instance

• The Instance State field is auto-populated, indicating that it is being installed, and cannot be modified

• The Listener Port is pre-populated with the most optimal port, however you can change the port to one that is
more appropriate for your configuration. This field is equivalent to listener_port in the API.

• The Instance Type field is auto-populated and cannot be modified. Only execution nodes can be created at this
time.

• Check the Enable Instance box to make it available for jobs to run on it

3. Once the attributes are configured, click Save to proceed.

Upon successful creation, the Details of the created instance opens.

Note: The proceeding steps 4-8 are intended to be ran from any computer that has SSH access to the newly created
instance. It should not be ran from a machine that is part of the AAP deployment.

4. Click the download button next to the Install Bundle field to download the tarball that includes this new instance
and the files relevant to install the node into the mesh.

9.3. Add an instance 40

Automation Controller Administration Guide, Release Automation Controller 4.3.0

5. Extract the downloaded tar.gz file from the location you downloaded it. The install bundle contains yaml
files, certificates, and keys that will be used in the installation process.

6. Before running the ansible-playbook command, edit the following fields in the inventory.yml file:

• ansible_user with the username running the installation

• ansible_ssh_private_key_file to contain the filename of the private key used to connect to the in-
stance

all:

hosts:
remote-execution:

ansible_host: 18.206.206.34
ansible_user: <username> # user provided
ansible_ssh_private_key_file: ~/.ssh/id_rsa

The content of the inventory.yml file serves as a template and contains variables for roles that are applied during
the installation and configuration of a receptor node in a mesh topology. You may modify some of the other fields, or
replace the file in its entirety for advanced scenarios. Refer to Role Variables for more information on each variable.

7. Save the file to continue.

8. Run the following command on the machine you want to update your mesh:

ansible-playbook -i inventory.yml install_receptor.yml

9. To view other instances within the same topology, click the Peers tab associated with the control node.

Note: You will only be able to view peers of the control plane nodes at this time, which are the execution nodes.
Since you are limited to creating execution nodes in this release, you will be unable to create or view peers of execution
nodes.

9.3. Add an instance 41

https://github.com/ansible/receptor-collection/blob/main/README.md

Automation Controller Administration Guide, Release Automation Controller 4.3.0

You may run a health check by selecting the node and clicking the Run health check button from its Details page.

10. To view a graphical representation of your updated topology, refer to the Topology Viewer section of this guide.

9.3. Add an instance 42

CHAPTER

TEN

TOPOLOGY VIEWER

Note: The topology viewer is in tech preview and is subject to change in a future release.

The topology viewer allows you to view node type, node health, and specific details about each node if you already
have a mesh topology deployed. To learn more about automation mesh, refer to the Red Hat Ansible Automation
Mesh Guide on access.redhat.com.

To access the topology viewer from the controller user interface:

1. In the Administration menu from left navigation bar, click Topology View.

The Topology View opens and displays a graphic representation of how each receptor node links together.

2. To adjust the zoom levels, or manipulate the graphic views, use the control buttons on the upper right-hand
corner of the window.

43

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.1/html/red_hat_ansible_automation_platform_automation_mesh_guide/assembly-planning-mesh
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.1/html/red_hat_ansible_automation_platform_automation_mesh_guide/assembly-planning-mesh
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform

Automation Controller Administration Guide, Release Automation Controller 4.3.0

You can also click and drag to pan around; and use the scroll wheel on your mouse or trackpad to zoom. The fit-to-
screen feature automatically scales the graphic to fit on the screen and repositions it in the center. It is particularly
useful when you want to see a large mesh in its entirety.

To reset the view to its default view, click Reset zoom.

3. Refer to the Legend to the left of the graphic to identify the type of nodes that are represented. See Control and
execution planes for more information on each type of node.

Note: If the Legend is not present, use the toggle on the upper right corner of the window to enable it.

The Legend shows the node status by color, which is indicative of the health of the node. The status of Error in the
legend encompasses the Unavailable state (as displayed in the Instances list view) plus any future error conditions
encountered in later versions of the controller. Also depicted in the legend are the link statuses:

• Established: this is a link state that indicates a peer connection between nodes that are either ready, unavailable,
or disabled

• Adding: this is a link state indicating a peer connection between nodes that was selected to be added to the
mesh topology

44

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.1/html/red_hat_ansible_automation_platform_automation_mesh_guide/assembly-planning-mesh#con-automation-mesh-node-types
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.1/html/red_hat_ansible_automation_platform_automation_mesh_guide/assembly-planning-mesh#con-automation-mesh-node-types

Automation Controller Administration Guide, Release Automation Controller 4.3.0

• Removing: this is a link state indicating a peer connection between nodes that was selected to be removed from
the topology

4. Hover over a node and the connectors highlight to show its immediate connected nodes (peers) or click on a
node to retrieve details about it, such as its hostname, node type, and status.

5. Click on the link for instance hostname from the details displayed, and you will be redirected to its Details page
that provides more information about that node, most notably for information about an Error status, as in the
example below.

45

Automation Controller Administration Guide, Release Automation Controller 4.3.0

At the bottom of the Details view, you can remove the instance, run a health check on the instance on an as-needed
basis, or unassign jobs from the instance. By default, jobs can be assigned to each node. However, you can disable it
to exclude the node from having any jobs running on it.

For more information on creating new nodes and scaling the mesh, refer to Managing Capacity With Instances in this
guide for more detail.

46

CHAPTER

ELEVEN

CONTROLLER LOGFILES

The controller logfiles have been consolidated and can be easily accessed from two centralized locations:

• /var/log/tower/

• /var/log/supervisor/

In the /var/log/tower/ directory, you can view logfiles related to:

• callback_receiver.log: captures callback receiver logs that handles callback events when running ansible jobs.

• dispatcher.log: captures log messages for the controller dispatcher worker service.

• job_lifecycle.log: captures details of the job run, whether it is blocked, and what condition is blocking it.

• management_playbooks.log: captures the logs of management playbook runs, the isolated job runs like copy-
ing the metadata, etc.

• rsyslog.err: captures rsyslog errors authenticating with external logging services when sending logs to them.

• task_system.log: - captures the logs of tasks that the controller is running in the background, such as adding
cluster instances and logs related to information gathering/processing for analytics, etc.

• tower.log: captures the log messages such as runtime errors that occur when the job is executed.

• tower_rbac_migrations.log: captures the logs for rbac database migration or upgrade.

• tower_system_tracking_migrations.log: captures the logs the controller system tracking migration or upgrade.

• wsbroadcast.log: captures the logs of websocket connections in the controller nodes.

• isolated_manager.log: captures logs associated with isolated nodes.

In the /var/log/supervisor/ directory, you can view logfiles related to:

• awx-callback-receiver.log: captures the log of callback receiver that handles callback events when running
ansible jobs, managed by supervisord.

• awx-daphne.log: captures the logs of Websocket communication of WebUI.

• awx-dispatcher.log: captures the logs that occur when dispatching a task to a controller instance, such as when
running a job.

• awx-rsyslog.log: captures the logs for rsyslog service.

• awx-uwsgi.log: captures the logs related to uWSGI, which is an application server.

• awx-wsbroadcast.log: captures the logs of websocket service that is used by the controller.

• failure-event-handler.stderr.log: captures the standard errors for /usr/bin/failure-event-handler supervisord’s
subprocess.

• supervisord.log: captures the logs related to supervisord itself.

47

Automation Controller Administration Guide, Release Automation Controller 4.3.0

The /var/log/supervisor/ directory includes stdout files for all services as well.

You can expect the following log paths to be generated by services used by Tower (and the Ansible Automation
Platform):

• /var/log/nginx/

• /var/opt/rh/rh-postgresql10/

• /var/opt/rh/rh-redis5/log/redis/

"Mooving around: Consolidated logfiles for easier access!"
\
\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

48

CHAPTER

TWELVE

LOGGING AND AGGREGATION

Logging is a feature that provides the capability to send detailed logs to several kinds of 3rd party external log ag-
gregation services. Services connected to this data feed serve as a useful means in gaining insight into the controller
usage or technical trends. The data can be used to analyze events in the infrastructure, monitor for anomalies, and
correlate events from one service with events in another. The types of data that are most useful to the controller are job
fact data, job events/job runs, activity stream data, and log messages. The data is sent in JSON format over a HTTP
connection using minimal service-specific tweaks engineered in a custom handler or via an imported library.

Installing automation controller will install a newer version of rsyslog, which will replace the version that comes with
the RHEL base. The version of rsyslog that is installed by automation controller does not include the following rsyslog
modules:

• rsyslog-udpspoof.x86_64

• rsyslog-libdbi.x86_64

After installing automation controller, use only the controller provided rsyslog package for any logging outside of the
controller that may have previously been done with the RHEL provided rsyslog package. If you already use rsyslog
for logging system logs on the controller instances, you can continue to use rsyslog to handle logs from outside of the
controller by running a separate rsyslog process (using the same version of rsyslog that the controller is), and pointing
it to a separate /etc/rsyslog.conf.

Note: For systems that use rsyslog outside of the controller (on the controller VM/machine), consider any conflict
that may arise with also using new version of rsyslog that comes with the controller.

You can configure from the /api/v2/settings/logging/ endpoint how the controller rsyslog process handles
messages that have not yet been sent in the event that your external logger goes offline:

• LOG_AGGREGATOR_MAX_DISK_USAGE_GB: specifies the amount of data to store (in gigabytes) during an
outage of the external log aggregator (defaults to 1). Equivalent to the rsyslogd queue.maxdiskspace
setting.

• LOG_AGGREGATOR_MAX_DISK_USAGE_PATH: specifies the location to persist logs that should be retried
after an outage of the external log aggregator (defaults to /var/lib/awx). Equivalent to the rsyslogd
queue.spoolDirectory setting.

For example, if Splunk goes offline, rsyslogd stores a queue on the disk until Splunk comes back online. By default, it
will store up to 1GB of events (while Splunk is offline) but you can make that more than 1GB if necessary, or change
the path where you save the queue.

49

Automation Controller Administration Guide, Release Automation Controller 4.3.0

12.1 Loggers

Below are special loggers (except for awx, which constitutes generic server logs) that provide large amount of in-
formation in a predictable structured or semi-structured format, following the same structure as one would expect if
obtaining the data from the API:

• job_events: Provides data returned from the Ansible callback module

• activity_stream: Displays the record of changes to the objects within the automation controller applica-
tion

• system_tracking: Provides fact data gathered by Ansible setup module (i.e. gather_facts:
True) when job templates are ran with Enable Fact Cache selected

• awx: Provides generic server logs, which include logs that would normally be written to a file. It contains the
standard metadata that all logs have, except it only has the message from the log statement.

These loggers only use log-level of INFO, except for the awx logger, which may be any given level.

Additionally, the standard controller logs are be deliverable through this same mechanism. It is apparent how to enable
or disable each of these five sources of data without manipulating a complex dictionary in your local settings file, as
well as adjust the log-level consumed from the standard controller logs.

To configure various logging components in automation controller, click Settings from the left navigation bar then
select Logging settings from the list of System options.

12.1.1 Log message schema

Common schema for all loggers:

• cluster_host_id: Unique identifier of the host within the controller cluster

• level: Standard python log level, roughly reflecting the significance of the event All of the data loggers as a
part of this feature use INFO level, but the other controller logs will use different levels as appropriate

• logger_name: Name of the logger we use in the settings, for example, “activity_stream”

• @timestamp: Time of log

• path: File path in code where the log was generated

12.1.2 Activity stream schema

• (common): This uses all the fields common to all loggers listed above

• actor: Username of the user who took the action documented in the log

• changes: JSON summary of what fields changed, and their old/new values.

• operation: The basic category of the changed logged in the activity stream, for instance, “associate”.

• object1: Information about the primary object being operated on, consistent with what we show in the activity
stream

• object2: If applicable, the second object involved in the action

12.1. Loggers 50

Automation Controller Administration Guide, Release Automation Controller 4.3.0

12.1.3 Job event schema

This logger reflects the data being saved into job events, except when they would otherwise conflict with expected
standard fields from the logger, in which case the fields are nested. Notably, the field host on the job_event model
is given as event_host. There is also a sub-dictionary field, event_data within the payload, which contains
different fields depending on the specifics of the Ansible event.

This logger also includes the common fields.

12.1.4 Scan / fact / system tracking data schema

These contain a detailed dictionary-type fields that are either services, packages, or files.

• (common): This uses all the fields common to all loggers listed above

• services: For services scans, this field is included and has keys based on the name of the service. NOTE:
Periods are disallowed by elastic search in names, and are replaced with “_” by our log formatter

• package: Included for log messages from package scans

• files: Included for log messages from file scans

• host: Name of host scan applies to

• inventory_id: Inventory id host is inside of

12.1.5 Job status changes

This is a intended to be a lower-volume source of information about changes in job states compared to job events, and
also intended to capture changes to types of unified jobs other than job template based jobs.

In addition to common fields, these logs include fields present on the job model.

12.1.6 Controller logs

In addition to the common fields, this contains a msg field with the log message. Errors contain a separate
traceback field. These logs can be enabled or disabled with the ENABLE EXTERNAL LOGGING option from
the Logging settings page.

12.1.7 Logging Aggregator Services

The logging aggregator service works with the following monitoring and data analysis systems:

• Splunk

• Loggly

• Sumologic

• Elastic stack (formerly ELK stack)

12.1. Loggers 51

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Splunk

Automation controller’s Splunk logging integration uses the Splunk HTTP Collector. When configuring a SPLUNK
logging aggregator, add the full URL to the HTTP Event Collector host, like in the following example:

https://yourcontrollerfqdn.com/api/v2/settings/logging

{
"LOG_AGGREGATOR_HOST": "https://yoursplunk:8088/services/collector/event",
"LOG_AGGREGATOR_PORT": null,
"LOG_AGGREGATOR_TYPE": "splunk",
"LOG_AGGREGATOR_USERNAME": "",
"LOG_AGGREGATOR_PASSWORD": "$encrypted$",
"LOG_AGGREGATOR_LOGGERS": [

"awx",
"activity_stream",
"job_events",
"system_tracking"

],
"LOG_AGGREGATOR_INDIVIDUAL_FACTS": false,
"LOG_AGGREGATOR_ENABLED": true,
"LOG_AGGREGATOR_CONTROLLER_UUID": ""

}

Splunk HTTP Event Collector listens on 8088 by default so it is necessary to provide the full HEC event URL (with
port) in order for incoming requests to be processed successfully. These values are entered in the example below:

For further instructions on configuring the HTTP Event Collector, refer to the Splunk documentation.

12.1. Loggers 52

http://docs.splunk.com/Documentation/Splunk/latest/Data/UsetheHTTPEventCollector

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Loggly

To set up the sending of logs through Loggly’s HTTP endpoint, refer to https://www.loggly.com/docs/http-endpoint/.
Loggly uses the URL convention described at http://logs-01.loggly.com/inputs/TOKEN/tag/http/, which is shown in-
putted in the Logging Aggregator field in the example below:

Sumologic

In Sumologic, create a search criteria containing the json files that provide the parameters used to collect the data you
need.

12.1. Loggers 53

https://www.loggly.com/docs/http-endpoint/
http://logs-01.loggly.com/inputs/TOKEN/tag/http/

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Elastic stack (formerly ELK stack)

If starting from scratch, standing up your own version the elastic stack, the only change you required is to add the
following lines to the logstash logstash.conf file:

filter {
json {
source => "message"

}
}

Note: Backward-incompatible changes were introduced with Elastic 5.0.0, and different configurations may be
required depending on what versions you are using.

12.1. Loggers 54

Automation Controller Administration Guide, Release Automation Controller 4.3.0

12.2 Set Up Logging

12.2.1 Log Aggregation

To set up logging to any of the aggregator types:

1. Click Settings from the left navigation bar.

2. Under the list of System options, click to select Logging settings.

3. At the bottom of the Logging settings screen, click Edit.

4. Set the configurable options from the fields provided:

• Enable External Logging: Click the toggle button to ON if you want to send logs to an external log aggregator.

• Logging Aggregator: Enter the hostname or IP address you want to send logs.

• Logging Aggregator Port: Specify the port for the aggregator if it requires one.

Note: When the connection type is HTTPS, you can enter the hostname as a URL with a port number and therefore,
you are not required to enter the port again. But TCP and UDP connections are determined by the hostname and port
number combination, rather than URL. So in the case of TCP/UDP connection, supply the port in the specified field. If
instead a URL is entered in host field (Logging Aggregator field), its hostname portion will be extracted as the actual
hostname.

• Logging Aggregator Type: Click to select the aggregator service from the drop-down menu:

• Logging Aggregator Username: Enter the username of the logging aggregator if it requires it.

• Logging Aggregator Password/Token: Enter the password of the logging aggregator if it requires it.

• Log System Tracking Facts Individually: Click the tooltip icon for additional information whether or not
you want to turn it on, or leave it off by default.

• Logging Aggregator Protocol: Click to select a connection type (protocol) to communicate with the log aggre-
gator. Subsequent options vary depending on the selected protocol.

• Logging Aggregator Level Threshold: Select the level of severity you want the log handler to report.

• TCP Connection Timeout: Specify the connection timeout in seconds. This option is only applicable to HTTPS
and TCP log aggregator protocols.

12.2. Set Up Logging 55

Automation Controller Administration Guide, Release Automation Controller 4.3.0

• Enable/disable HTTPS certificate verification: Certificate verification is enabled by default for HTTPS log
protocol. Click the toggle button to OFF if you do not want the log handler to verify the HTTPS certificate sent
by the external log aggregator before establishing a connection.

• Loggers to Send Data to the Log Aggregator Form: All four types of data are pre-populated by default. Click

the tooltip icon next to the field for additional information on each data type. Delete the data types you do
not want.

• Log Format For API 4XX Errors: Configure a specific error message. See API 4XX Error Configuration for
further detail.

5. Review your entries for your chosen logging aggregation. Below is an example of one set up for Splunk:

7. When done, click Save to apply the settings or Cancel to abandon the changes.

8. To verify if your configuration is set up correctly, click Save first then click Test. This sends a test log message
to the log aggregator using the current logging configuration in automation controller. You should check to make
sure this test message was received by your external log aggregator.

Note: If the Test button is disabled, it is an indication that the fields are different than their initial values so save your
changes first, and make sure the Enable External Logging toggle is set to ON.

12.2.2 API 4XX Error Configuration

When the API encounters an issue with a request, it will typically return an HTTP error code in the 400 range along
with an error. When this happens, an error message will be generated in the log which follows the pattern:

` status {status_code} received by user {user_name} attempting to access
{url_path} from {remote_addr} `

These messages can be configured as required. To modify the default API 4XX errors log message format, do the
following:

1. Click Settings from the left navigation bar.

12.2. Set Up Logging 56

Automation Controller Administration Guide, Release Automation Controller 4.3.0

2. Under the list of System options, click to select Logging settings.

3. At the bottom of the Logging settings screen, click Edit.

4. Modify the field Log Format For API 4XX Errors.

Items surrounded by {} will be substituted when the log error is generated. The following variables can be used:

• status_code: The HTTP status code the API is returning

• user_name: The name of the user that was authenticated when making the API request

• url_path: The path portion of the URL being called (aka the API endpoint)

• remote_addr: The remote address received by Controller

• error: The error message returned by the API or, if no error is specified, the HTTP status as text

12.3 Troubleshoot Logging

12.3.1 Logging Aggregation

If you have sent a message with the test button to your configured logging service via http/https, but did not receive
the message, check the /var/log/tower/rsyslog.err log file. This is where errors are stored if they occurred
when authenticating rsyslog with an http/https external logging service. Note that if there are no errors, this file will
not exist.

12.3.2 API 4XX Errors

You can include the API error message for 4XX errors by modifying the log format for those messages. Refer to the
API 4XX Error Configuration section for more detail.

12.3.3 LDAP

You can enable logging messages for the LDAP adapter. Refer to the Enabling Logging for LDAP section for more
detail.

12.3.4 SAML

You can enable logging messages for the SAML adapter the same way you can enable logging for LDAP. Refer to the
Enabling Logging for LDAP section for more detail.

12.3. Troubleshoot Logging 57

CHAPTER

THIRTEEN

METRICS

A metrics endpoint is available in the API: /api/v2/metrics/ that surfaces instantaneous metrics about the
controller, which can be consumed by system monitoring software like the open source project Prometheus.

The type of data shown at the metrics/ endpoint is Content-type: text/plain and application/
json as well. This endpoint contains useful information, such as counts of how many active user sessions there are,
or how many jobs are actively running on each controller node. Prometheus can be configured to scrape these metrics
from the controller by hitting the controller metrics endpoint and storing this data in a time-series database. Clients
can later use Prometheus in conjunction with other software like Grafana or Metricsbeat to visualize that data and set
up alerts.

13.1 Set up Prometheus

To set up and use Prometheus, you will need to install Prometheus on a virtual machine or container. Refer to the
Prometheus documentation for further detail.

1. In the Prometheus config file (typically prometheus.yml), specify a <token_value>, a valid
user/password for a controller user you have created, and a <controller_host>.

Note: Alternatively, you can provide an OAuth2 token (which can be generated at /api/v2/
users/N/personal_tokens/). By default, the config assumes a user with username=admin
and password=password.

Using an OAuth2 Token, created at the /api/v2/tokens endpoint to authenticate prometheus with the
controller, the following example provides a valid scrape config if the URL for your controller’s metrics
endpoint was https://controller_host:443/metrics.

scrape_configs

- job_name: 'controller'
tls_config:

insecure_skip_verify: True
metrics_path: /api/v2/metrics
scrape_interval: 5s
scheme: https
bearer_token: <token_value>
basic_auth:
username: admin
password: password
static_configs:

(continues on next page)

58

https://prometheus.io/docs/introduction/first_steps/

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

- targets:
- <controller_host>

For help configuring other aspects of Prometheus, such as alerts and service discovery configurations,
refer to the Prometheus configuration docs.

If Prometheus is already running, you must restart it in order to apply the configuration changes by making
a POST to the reload endpoint, or by killing the Prometheus process or service.

2. Use a browser to navigate to your graph in the Prometheus UI at http://your_prometheus:9090/
graph and test out some queries. For example, you can query the current number of active controller user
sessions by executing: awx_sessions_total{type="user"}.

Refer to the metrics endpoint in the controller API for your instance (api/v2/metrics) for more ways to query.

13.1. Set up Prometheus 59

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

CHAPTER

FOURTEEN

IMPROVING CONTROLLER PERFORMANCE

This section aims to provide the guidelines for tuning automation controller for performance and scalability. Although
care has been given to make the content applicable to cover a wide set of use cases, please reach out to Red Hat Support
if there is a use case not covered here.

14.1 Performance improvements

Controller 4.3 brings multiple improvements that support large scale deployments of the controller. Major gains have
been made to support workloads with many more concurrent jobs. In the past, there were issues with excessive
database connections, job scheduling issues when there were thousands of pending and running jobs, and issues with
successfully starting jobs when operating near 100% capacity of control nodes.

Additionally, changes have been made by default to take advantage of CPU capacity available on larger control nodes.
This means customers who provision larger control nodes and want to run thousands of concurrent jobs have multiple
improvements to look forward to in this release:

• Vertical scaling improvements

• Job scheduling improvements

• Database resource usage improvements

• Stability improvements

• Metrics enhancements

• LDAP login and basic authentication

14.1.1 Vertical scaling improvements

Control nodes are responsible for processing the output of jobs and writing them to the database. The process that
does this is called the callback receiver. The callback receiver has a configurable number of workers, controlled by
the setting JOB_EVENT_WORKERS. In the past, the default for this setting was always 4, regardless of the CPU or
memory capacity of the node. Now, in traditional virtual machines, the JOB_EVENT_WORKERS will be set to the
same as the number of CPU if that is greater than 4. This means administrators that provision larger control nodes will
see greater ability for those nodes to keep up with the job output created by jobs without having to manually adjust
JOB_EVENT_WORKERS. For additional information, refer to the Enhancing/Maximizing your Scaling capability with
Automation Controller support blog.

60

https:xxx.xx.xxx
https:xxx.xx.xxx

Automation Controller Administration Guide, Release Automation Controller 4.3.0

14.1.2 Job scheduling improvements

When jobs are created either via a schedule, a workflow, the UI or the API, they are first created in Pending state. To
determine when and where to run this job, a background task called the Task Manager collects all pending and running
jobs and determines where capacity is available to run the job. In previous versions of the controller, scheduling
slowed as the number of pending and running jobs increased, and the Task Manager was vulnerable to timing out
without having made any progress. The scenario exhibits symptoms of having thousands of pending jobs, available
capacity, but no jobs starting.

Optimizations in the job scheduler have made scheduling faster, as well as safeguards to better ensure the scheduler
commits its progress even if it is nearing time out. Additionally, work that previously occurred in the Task Manager
that blocked its progress has been decoupled into separate, non-blocking work units executed by the Dispatcher.

14.1.3 Database resource usage improvements

In controller 4.3, the use of database connections by running jobs has dramatically decreased, which removes a previ-
ous limit to concurrent running jobs, as well reduces pressure on memory consumption of PostgreSQL.

Each job in the controller has a worker process, called the dispatch worker, on the control node that started the process,
which submits the work to the execution node via the Receptor, as well as consumes the output of the job and puts it
in the Redis queue for the callback receiver to serialize the output and write it to the database as job events.

The dispatch worker is also responsible for noticing if the job has been canceled by the user in order to then cancel the
receptor work unit. In the past, the worker maintained multiple open database connections per job. This caused two
main problems:

• PostgreSQL is configured with a maximum number of connections at startup, which the Ansible Automation
Platform installer sets it 1024 by default. However, given that the previous version of controller had up to 3
database connections open per job, this means the application would begin to experience errors attempting to
open new database connections (for API calls or other essential processes) when there were more than 350 jobs
running concurrently, unless users increased the maximum number of connections.

• Even idle connections consume memory. For example, in experiments done by AWS, idle connections to Post-
greSQL were shown to consume at least 1.5 MB of memory. So if a controller administrator wanted to support
running 2,000 concurrent jobs, this could result in 9GB of memory consumed on PostgreSQL from just idle
connections alone.

Now, in controller 4.3, the dispatch process closes database connections once the job has started. This means now the
number of concurrent running jobs is no longer limited by the maximum number of database connections, and the risk
of over-consuming memory on PostgreSQL is greatly reduced.

14.1.4 Stability improvements

Notable stability improvements in this release:

• Improvements to job reaping - Fixed root cause of jobs in waiting getting reaped before the job ever started,
which often occurred when running near 100% capacity on control and hybrid nodes.

• Improvements in stability for Operator-based deployments - Resolved issues with multiple control pod
deployments erroneously marking each other as offline. Now scaling operator-based deployments horizontally
is more stable.

14.1. Performance improvements 61

Automation Controller Administration Guide, Release Automation Controller 4.3.0

14.1.5 Metrics enhancements

Metrics added in this release to track:

• awx_database_connections_total - Tracks current number of open database connections. When included in
monitoring, can help identify when errors have occurred due lack of available database connections.

• callback_receiver_event_processing_avg_seconds - Proxy for “how far behind the callback receiver workers
are in processing output”. If this number stays large, consider horizontally scaling the control plane and reducing
the capacity_adjustment value on the node.

14.1.6 LDAP login and basic authentication

Enhancements were made to the authentication backend that syncs LDAP configuration with the organizations and
teams in the automation controller. Logging in with large mappings between LDAP groups and automation controller
4.3 organizations and teams is now up to 10 times faster than in previous versions such as automation controller 4.2.

14.2 Capacity Planning

14.2.1 Virtual machine deployments

There are two types of capacity that controller administrators should plan for when designing their deployments.

• Control Capacity

– In traditional VM deployments, “control” type and “hybrid” type nodes have control capacity.

– Every job is assigned a control node. This control node is responsible for starting the work and processing
the output.

– Being assigned as a control node for a job consumes a constant amount of capacity on a control node (see
AWX_CONTROL_NODE_TASK_IMPACT). The default value is 1. Therefore, a control node with 100
capacity can control a maximum of 100 jobs.

• Execution Capacity

– In traditional VM deployments, “execution” and “hybrid” type nodes have execution capacity.

– Jobs that are assigned a VM execution node or hybrid node consume the number of capacity units that
are equal to the “forks” set on the job template or the number of hosts in the inventory, whichever is less,
plus one additional capacity unit to account for the main ansible process. For example, a job template with
the default forks value of 5 acting on an inventory with 50 hosts will consume 6 capacity units from the
execution node it is assigned to.

– Jobs that are assigned to a container group do not consume capacity. There is no concept of the maximum
capacity of a container group at this time.

Assuming default forks per job (5 forks) and the default AWX_CONTROL_NODE_TASK_IMPACT (1 fork), the maxi-
mum recommended ratio of control capacity to execution capacity is 1:5 in traditional VM deployments. This ensures
that there is enough control capacity to run jobs on all the execution capacity available and process the output. Any
less control capacity in relation to the execution capacity, and it would not be able to launch enough jobs to use the
execution capacity.

There are cases in which you may want to modify this ration closer to 1:1. In cases where a job produces a high level
of job events, reducing the amount of execution capacity in relation to the control capacity helps relieve pressure on
the control nodes to process that output. The next section describes such a scenario in more detail.

14.2. Capacity Planning 62

Automation Controller Administration Guide, Release Automation Controller 4.3.0

14.2.2 Example capacity planning exercise

Determining the number and size of instances to support the desired workload must take into account the following:

• Managed hosts

• Tasks/hour per host

• Maximum number of concurrent jobs you want to support

• Maximum number of forks set on jobs

• Node size you prefer to deploy (CPU/Memory/Disk)

With this data, you can calculate the number of tasks per hour, which the cluster needs control capacity to process; as
well as the number of “forks” or capacity you need to be able to run your peak load, which the cluster needs execution
capacity to run.

For example, to plan for a cluster with:

• 300 managed hosts

• 1,000 tasks/hour per host, or 16 tasks per minute per host

• 10 concurrent jobs

• Forks set to 5 on playbooks

• Average event size 1 Mb

• Preferred node size of 4 cpu and 16 GB Ram with disks rated at 3000 IOPs

Known factors:

• To run the 10 concurrent jobs, you need at least (10 jobs * 5 forks) + (10 jobs * 1 base task impact of a job) =
60 execution capacity

• To control 10 concurrent jobs, you need at least 10 control capacity.

• Running 1000 tasks * 300 managed hosts/hour will produce at least 300,000 events/hour. You would need to run
the job to see exactly how many events it produces because this is dependent on the specific task and verbosity.
For example, a debug task printing “Hello World” produces 6 job events with the verbosity of 1 on one host.
With a verbosity of 3, it produces 34 job events on one host. Therefore, estimate the task produces at least 6
events. That means, closer to 3,000,000 events/hour or approximately 833 events/second.

To determine how many execution and control nodes you will need, reference experiment results in the following
table that show the observed event processing rate of a single control node with 5 execution nodes of equal size (API
Capacity column). The default “forks” setting of job templates is 5, so using this default the maximum number of jobs
a control node can dispatch to execution nodes will make 5 execution nodes of equal CPU/RAM use 100% of their
capacity, arriving to the previously mentioned 1:5 ratio of control to execution capacity.

14.2. Capacity Planning 63

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Node API Capacity Default
Ex-
ecu-
tion
Ca-
pac-
ity

Default
Con-
trol
Ca-
pac-
ity

Mean Event
Processing
Rate at 100%
capacity us-
age

Mean Events
Processing
Rate at 50%
capacity
usage

Mean Events
Processing
Rate at 40%
capacity
usage

4 CPU @ 2.5Ghz,
16 GB RAM Control
Node, max 3000 IOPs
disk

100 - 300 re-
quests/second

n/a 137
jobs

1100/second 1400/second 1630/second

4 CPU @ 2.5Ghz, 16
GB RAM Execution
Node, max 3000 IOPs
disk

n/a 137 0 n/a n/a n/a

4 CPU @ 2.5Ghz, 16
GB RAM DB Node,
max 3000 IOPs disk

n/a n/a n/a n/a n/a n/a

This table shows that controlling jobs competes with job event processing on the control node. Therefore, over-
provisioning control capacity can have a positive impact on reducing processing times. When processing times are
high, users can experience a delay between when the job runs and when they can view the output in the API or UI.

For the example workload on 300 managed hosts, executing 1000 tasks/hour per host, 10 concurrent jobs with forks
set to 5 on playbooks, and an average event size 1 Mb, do the following:

• Deploy 1 execution node, 1 control node, 1 DB node of 4 CPU @ 2.5Ghz, 16 GB RAM with disk having ~3000
IOPs

• Keep default fork setting of 5 on job templates

• Use the capacity adjustment feature on the control node to reduce the capacity down to 16 (lowest value) to
reserve more of the Control node’s capacity for processing events

14.2. Capacity Planning 64

Automation Controller Administration Guide, Release Automation Controller 4.3.0

14.2.3 Factors influencing node size choice

The previous exercise was done given that the cluster administrator already had a preferred node size, which happened
to be the minimum recommended node size for automation controller. Increasing the RAM and CPU on nodes in-
creases the calculated capacity of the instances. For each instance type, there are different considerations as to why
you may want to vertically scale the node.

Control nodes

Vertically scaling a control node increases the number of jobs it can perform control tasks for, which requires both
more CPU and memory. In general, scaling CPU alongside memory in the same proportion is recommended (e.g.
1 CPU: 4GB RAM). Even in the case where memory consumption is observed to be high, increasing the CPU of an
instance can often relieve pressure, as most memory consumption of control nodes is usually from unprocessed events.

As mentioned in the Performance improvements section, increasing the number of CPU can also increase the job
event processing rate of a control node. At this time, vertically scaling a control node does not increase the number
of workers that handle web requests, so horizontally scaling is more effective, if the desire is to increase the API
availability.

Execution Nodes

Vertical scaling an execution node will provide more forks for job execution. As mentioned in the example, a host
with 16 GB of memory will by default, be assigned the capacity to run 137 “forks”, which at the default setting
of 5 forks/job, will be able to run around 22 jobs concurrently. In general, scaling CPU alongside memory in the
same proportion is recommended. Like control and hybrid nodes, there is a “capacity adjustment” on each execution
instance that can be used to align actual utilization with the estimation of capacity consumption the controller makes.
By default, all nodes are set to the top range of the capacity controller estimates the node to have. If actual monitoring
data reveals the node to be over-utilized, decreasing the capacity adjustment can help bring this in line with actual
usage.

Vertically scaling execution will do exactly what the user expects and increase the number of concurrent jobs an
instance can run. One downside is that concurrently running jobs on the same execution node, while isolated from
each other in the sense that they cannot access the other’s data, can impact the other’s performance, if a particular job
is very resource-consumptive and overwhelms the node to the extent that it degrades performance of the entire node.
Horizontal scaling the execution plane (e.g deploying more execution nodes) can provide some additional isolation
of workloads, as well as allowing administrators to assign different instances to different instance groups, which can
then be assigned to Organizations, Inventories, or Job Templates. This can enable something like an instance group
that can only be used for running jobs against a “production” Inventory, this way jobs for development do not end up
eating up capacity and causing higher priority jobs to queue waiting for capacity.

Hop Nodes

Hop nodes have very low memory and CPU utilization and there is no significant motivation for vertically scaling hop
nodes. A hop node that serves as the sole connection of many execution nodes to the control plane should be monitored
for network bandwidth utilization, if this is seen to be saturated, changes to the network may be worth considering.

14.2. Capacity Planning 65

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Hybrid nodes

Hybrid nodes perform both execution and control tasks, so vertically scaling these nodes both increases the number of
jobs they can run, and now in 4.3.0, how many events they can process.

14.2.4 Capacity planning for Operator based Deployments

For Operator based deployments, refer to Red Hat Ansible Automation Platform Performance Considerations for
Operator Based Installations, which includes all pertinent adjustments for that specific deployment.

14.3 Monitoring Controller

It is a best practice to monitor your automation controller hosts both from a system level as well as at the application
level. System level monitoring would include information about disk I/O, RAM utilization, CPU utilization, and
network traffic.

For application level monitoring, Automation Controller provides Prometheus-style metrics on an API endpoint /
api/v2/metrics. This can be used to monitor aggregate data about job status as well as subsystem performance
such as for job output processing or job scheduling.

Monitoring the actual CPU and memory utilization of your hosts is important because capacity management for
instances does not dynamically introspect into the actual resource usage of hosts. The resource impact of automation
will vary based on what exactly the playbooks are doing. For example, many cloud or networking modules do most of
the actual processing on the node running the Ansible playbook (the execution node), which can have a significantly
different impact on the controller than running yum update across many hosts, where the execution node spends
much of the time during this task waiting on results.

If CPU or memory usage is very high, consider lowering the capacity adjustment on affected instances in the controller.
This will limit how many jobs are run on or controlled by this instance.

Using this in combination with application level metrics can help identify what was happening in the application when
and if any service degradation occurred. Especially when working with Red Hat support or account teams, having
information about automation controller’s performance over time can be very useful in diagnosing problems or doing
capacity planning for future growth.

Additional insights into automation usage are available when users enable data collection for Automation Analytics.
Refer to the product documentation for Automation analytics and Red Hat Insights for Red Hat Ansible Automation
Platform for more detail.

14.4 Database Settings

The following are configurable settings in the database that may help improve performance:

• Autovacuuming. Setting this PostgreSQL setting to true is a good practice. However, autovacuuming will not
occur if there is never any idle time on the database. If it is observed that autovacuuming is not sufficiently
cleaning up space on the database disk, then scheduling specific vacuum tasks during specific maintenance
windows can be a solution.

• GUC parameters. Following are certain GUC (Grand Unified Configuration) parameters recommended for
memory management in PostgreSQL, which is helpful for improving the performance of the database server.
Recommended settings for each parameter are also provided.

– shared_buffers (integer)

14.3. Monitoring Controller 66

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.3/html/red_hat_ansible_automation_platform_performance_considerations_for_operator_based_installations/index
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.3/html/red_hat_ansible_automation_platform_performance_considerations_for_operator_based_installations/index
https://www.ansible.com/products/insights-for-ansible
https://www.ansible.com/products/insights-for-ansible

Automation Controller Administration Guide, Release Automation Controller 4.3.0

– work_mem (integer)

– maintenance_work_mem (integer)

All of these parameters reside under the postgresql.conf file (inside $PDATA directory), which manages the
configurations of the database server.

The shared_buffers parameter determines how much memory is dedicated to the server for caching data. Set in
postgresql.conf, the default value for this parameter is:

#sharedPostgres_buffers = 128MB

The value should be set at 15%-25% of the machine’s total RAM. For example: if your machine’s RAM size is 32
GB, then the recommended value for shared_buffers is 8 GB. Please note that the database server needs to be
restarted after this change.

The work_mem parameter basically provides the amount of memory to be used by internal sort operations and hash
tables before writing to temporary disk files. Sort operations are used for order by, distinct, and merge join operations.
Hash tables are used in hash joins and hash based aggregation. Set in postgresql.conf, the default value for this
parameter is:

#work_mem = 4MB

Setting the correct value of work_mem parameter can result in less disk-swapping, and therefore far quicker queries.

We can use the formula below to calculate the optimal work_mem value for the database server:

Total RAM * 0.25 / max_connections

The max_connections parameter is one of the GUC parameters to specify the maximum number of concurrent
connections to the database server. Please note setting a large work_mem can cause issues like PostgreSQL server
going out of memory (OOM), if there are too many open connections to the database.

The maintenance_work_mem parameter basically provides the maximum amount of memory to be used by mainte-
nance operations like vacuum, create index, and alter table add foreign key operations. Set in postgresql.conf,
the default value for this parameter is:

#maintenance_work_mem = 64MB

It is recommended to set this value higher than work_mem; this can improve performance for vacuuming. In general,
it should calculated as:

Total RAM * 0.05

14.4.1 Controller Settings

Many controller settings are available to set via the controller UI or API. There are additional settings that are only
available as file-based settings. Refer to product documentation about where each of these settings can be set. This
section will focus on why administrators may want to adjust these values.

14.4. Database Settings 67

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Live events in the Controller UI

Events are broadcast to all control nodes in controller 4.3.0 so that the events can be served over websocket to any
client that connects to a control node’s web service. This task is expensive, and becomes more expensive as the number
of events that the cluster is producing increases as well as the number of control nodes increase, because all events are
broadcast to all nodes regardless of how many clients are subscribed to particular jobs.

There are a few settings that allow you to influence behavior of how job events are displayed in the UI and served over
websockets.

For large clusters with large job event loads, an easy way to avoid the additional overhead is to disable live stream-
ing events (the events are only loaded on hard refresh to a job’s output detail page). This is possible by setting
UI_LIVE_UPDATES_ENABLED to False or set the Enable Activity Stream toggle to Off from the controller UI
Miscellaneous System Settings window.

If disabling live streaming of events is not possible, for very verbose jobs with many events, administrators can consider
reducing the number of events shown per second or before truncating or hiding events in the UI. The following settings
all address issues of rate or size of events.

Returned in the header on event api lists as a recommendation to the UI
on how many events to display before truncating/hiding
MAX_UI_JOB_EVENTS = 4000

The maximum size of the ansible callback event's res data structure
beyond this limit and the value will be removed
MAX_EVENT_RES_DATA = 700000

Note: These settings may be overridden by database settings.
EVENT_STDOUT_MAX_BYTES_DISPLAY = 1024
MAX_WEBSOCKET_EVENT_RATE = 30

The amount of time before a stdout file is expired and removed locally
Note that this can be recreated if the stdout is downloaded
LOCAL_STDOUT_EXPIRE_TIME = 2592000

14.4. Database Settings 68

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Job Event Processing (Callback Receiver) Settings

The callback receiver is a process with multiple workers. The number of workers spawned is determined by the setting
JOB_EVENT_WORKERS. These workers pull events off of a queue in Redis where unprocessed events are placed by
jobs’ respective dispatch workers as results are available. As mentioned in the Performance improvements section, this
number of workers increased based on the number of CPU detected on the control instance. Previously, this setting
was hardcoded to 4 workers, and administrators had to set this file based setting via a custom settings file on each
control node.

This setting is still available for administrators to modify, with the knowledge that that values above 1 worker per
CPU or less than 4 workers is not recommended. Greater values will have more workers available to clear the Redis
queue as events stream to the controller, but may compete with other processes for CPU seconds. Lower values of
workers may compete less for CPU on a node that also has had its number of UWSGI workers increased significantly,
to prioritize serving web requests.

Task Manager (Job Scheduling) Settings

The task manager is a periodic task that collects tasks that need to be scheduled and determines what instances have
capacity and are eligible for running them. Its job is to find and assign the control and execution instances, update the
job’s status to waiting, and send the message to the control node via pg_notify for the dispatcher to pick up the
task and start running it.

As mentioned in the Performance improvements section, a number of optimizations and refactors of this process were
implemented in version 4.3. One such refactor was to fix a defect that when the task manager did reach its timeout,
it was terminated in such a way that it did not make any progress. Multiple changes were implemented to fix this, so
that as the task manager approaches its timeout, it makes an effort to exit and commit any progress made on that run.
These issues generally arise when there are thousands of pending jobs, so may not be applicable to your use case.

The first “short-circuit” available to limit how much work the task manager attempts to do in one run is
START_TASK_LIMIT. The default is 100 jobs, which is a safe default. If there are remaining jobs to schedule,
a new run of the task manager will be scheduled to run immediately after the current run. Users who are willing
to risk potentially longer individual runs of the task manager in order to start more jobs in individual run may con-
sider increasing the START_TASK_LIMIT. One metric, the Prometheus metrics, available in /api/v2/metrics
observes how long individual runs of the task manager take is “task_manager__schedule_seconds”.

As a safeguard against excessively long runs of the task manager, there is a timeout which is determined by
the setting “TASK_MANAGER_TIMEOUT”. This is when the task manager will begin to exit any loops and
attempt to commit any progress it made. The task is not actually killed until TASK_MANAGER_TIMEOUT +
TASK_MANAGER_TIMEOUT_GRACE_PERIOD seconds has passed.

14.5 Additional Resources

For workloads with high levels of API interaction, refer to the previously published guidance in a blog, Scaling
Automation Controller for API Driven Workloads. To summarize the guidance, best practices include:

• Use a load balancer

• Limit the rate

• Set max connections per controller to 100

• Use dynamic inventory sources instead of individually creating inventory hosts via the API

• Use webhook notifications instead of polling for job status

14.5. Additional Resources 69

https://www.ansible.com/blog/scaling-automation-controller-for-api-driven-workloads
https://www.ansible.com/blog/scaling-automation-controller-for-api-driven-workloads

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Since the published blog, additional observations have been made in the field regarding authentication methods. For
automation clients that will make many requests in rapid succession, using tokens is a best practice, because depending
on the type of user, there may be additional overhead when using basic authentication. For example, LDAP users using
basic authentication trigger a process to reconcile if the LDAP user is correctly mapped to particular organizations,
teams and roles. Refer to Token-Based Authentication for detail on how to generate and use tokens.

14.5. Additional Resources 70

CHAPTER

FIFTEEN

SECRET HANDLING AND CONNECTION SECURITY

This document describes how Red Hat Ansible Automation Platform controller handles secrets and connections in a
secure fashion.

15.1 Secret Handling

automation controller manages three sets of secrets:

• user passwords for local automation controller users

• secrets for automation controller operational use (database password, message bus password, etc.)

• secrets for automation use (SSH keys, cloud credentials, external password vault credentials, etc.)

15.1.1 User passwords for local users

automation controller hashes local automation controller user passwords with the PBKDF2 algorithm using a SHA256
hash. Users who authenticate via external account mechanisms (LDAP, SAML, OAuth, and others) do not have any
password or secret stored.

15.1.2 Secret handling for operational use

automation controller contains the following secrets used operationally:

• /etc/tower/SECRET_KEY

– A secret key used for encrypting automation secrets in the database (see below). If the SECRET_KEY
changes or is unknown, no encrypted fields in the database will be accessible.

• /etc/tower/tower.{cert,key}

– SSL certificate and key for the automation controller web service. A self-signed cert/key is installed by
default; the customer can provide a locally appropriate certificate and key.

• Database password in /etc/tower/conf.d/postgres.py and message bus password in /etc/tower/conf.d/channels.py

– Passwords for connecting to automation controller component services

These secrets are all stored unencrypted on the automation controller server, as they are all needed to be read by the
automation controller service at startup in an automated fashion. All secrets are protected by Unix permissions, and
restricted to root and the automation controller service user awx.

If hiding of these secrets is required, the files that these secrets are read from are interpreted Python. These files can
be adjusted to retrieve these secrets via some other mechanism anytime a service restarts. Doing so is a customer

71

Automation Controller Administration Guide, Release Automation Controller 4.3.0

provided modification that may need to be reapplied every upgrade. Red Hat Support and Red Hat Consulting has
examples of such modifications.

Note: If the secrets system is down, the controller will be unable to get the information and may fail in a way that
would be recoverable once the service is restored. Using some redundancy on that system is highly recommended.

If, for any reason you believe the SECRET_KEY the controller generated for you has been compromised and needs to
be regenerated, you can run a tool from the installer that behaves much like the controller backup and restore tool. To
generate a new secret key:

1. Backup your controller database before you do anything else! Follow the procedure described in the Backing
Up and Restoring section of this guide.

2. Using the inventory from your install (same inventory with which you run backups/restores), run setup.sh
-k.

A backup copy of the prior key is saved in /etc/tower/.

15.1.3 Secret handling for automation use

automation controller stores a variety of secrets in the database that are either used for automation or are a result of
automation. These secrets include:

• all secret fields of all credential types (passwords, secret keys, authentication tokens, secret cloud credentials)

• secret tokens and passwords for external services defined in automation controller settings

• “password” type survey fields entries

To encrypt secret fields, the controller uses AES in CBC mode with a 256-bit key for encryption, PKCS7 padding,
and HMAC using SHA256 for authentication. The encryption/decryption process derives the AES-256 bit encryption
key from the SECRET_KEY (described above), the field name of the model field and the database assigned auto-
incremented record ID. Thus, if any attribute used in the key generation process changes, the controller fails to correctly
decrypt the secret. automation controller is designed such that the SECRET_KEY is never readable in playbooks
automation controller launches, that these secrets are never readable by the controller users, and no secret field values
are ever made available via the automation controller REST API. If a secret value is used in a playbook, we recommend
using no_log on the task so that it is not accidentally logged.

15.2 Connection Security

15.2.1 Internal Services

automation controller connects to the following services as part of internal operation:

• PostgreSQL database

• A Redis key/value store

The connection to redis is over a local unix socket, restricted to the awx service user.

The connection to the PostgreSQL database is done via password authentication over TCP, either via localhost or re-
motely (external database). This connection can use PostgreSQL’s built in support for SSL/TLS, as natively configured
by the installer support. SSL/TLS protocols are configured by the default OpenSSL configuration.

15.2. Connection Security 72

http://docs.ansible.com/automation-controller/4.3.0/html/administration/backup_restore.html#ag-backup-restore
http://docs.ansible.com/automation-controller/4.3.0/html/administration/backup_restore.html#ag-backup-restore

Automation Controller Administration Guide, Release Automation Controller 4.3.0

15.2.2 External Access

automation controller is accessed via standard HTTP/HTTPS on standard ports, provided by nginx. A self-signed
cert/key is installed by default; the customer can provide a locally appropriate certificate and key. SSL/TLS algorithm
support is configured in the /etc/nginx/nginx.conf configuration file. An “intermediate” profile is used by default, and
can be configured by the customer. Customer changes must be reapplied on each update.

15.2.3 Managed Nodes

automation controller also connects to managed machines and services as part of automation. All connections to
managed machines are done via standard secure mechanism as specified such as SSH, WinRM, SSL/TLS, and so on
- each of these inherits configuration from the system configuration for the feature in question (such as the system
OpenSSL configuration).

15.2. Connection Security 73

CHAPTER

SIXTEEN

SECURITY BEST PRACTICES

automation controller out-of-the-box is deployed in a secure fashion for use to automate typical environments. How-
ever, managing certain operating system environments, automation, and automation platforms, may require some
additional best practices to ensure security. This document describes best practices for automation in a secure manner.

16.1 General best practices

An application is only as secure as the underlying system. To secure Red Hat Enterprise Linux, start with the release-
appropriate security guide:

• For Red Hat Enterprise Linux 7: https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/
7/html/Security_Guide/

• For Red Hat Enterprise Linux 8: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/
html/security_hardening/index

16.2 Understand the architecture of Ansible and the controller

Ansible and automation controller comprise a general purpose, declarative, automation platform. That means that
once an Ansible playbook is launched (via the controller, or directly on the command line), the playbook, inventory,
and credentials provided to Ansible are considered to be the source of truth. If policies are desired around external
verification of specific playbook content, job definition, or inventory contents, these processes must be undertaken
before the automation is launched (whether via the controller web UI, or the controller API).

These can take many forms. The use of source control, branching, and mandatory code review is best practice for
Ansible automation. There are many tools that can help create process flow around using source control in this
manner.

At a higher level, many tools exist that allow for creation of approvals and policy-based actions around arbitrary
workflows, including automation; these tools can then use Ansible via the controller’s API to perform automation.

We recommend all customers of automation controller select a secure default administrator password at time of instal-
lation. See Changing the Controller Admin Password for more information.

automation controller exposes services on certain well-known ports, such as port 80 for HTTP traffic and port 443
for HTTPS traffic. We recommend that you do not expose automation controller on the open internet, significantly
reducing the threat surface of your installation.

74

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/index

Automation Controller Administration Guide, Release Automation Controller 4.3.0

16.3 Granting access

Granting access to certain parts of the system exposes security risks. Apply the following practices to help secure
access:

• Minimize administrative accounts

• Minimize local system access

• Remove access to credentials from users

• Enforce separation of duties

16.3.1 Minimize administrative accounts

Minimizing the access to system administrative accounts is crucial for maintaining a secure system. A system ad-
ministrator/root user can access, edit, and disrupt any system application. Keep the number of people/accounts with
root access to as small of a group as possible. Do not give out sudo to root or awx (the controller user) to untrusted
users. Know that when restricting administrative access via mechanisms like sudo, that restricting to a certain set of
commands may still give a wide range of access. Any command that allows for execution of a shell or arbitrary shell
commands, or any command that can change files on the system, is fundamentally equivalent to full root access.

In a controller context, any controller ‘system administrator’ or ‘superuser’ account can edit, change, and update any
inventory or automation definition in the controller. Restrict this to the minimum set of users possible for low-level
controller configuration and disaster recovery only.

16.3.2 Minimize local system access

automation controller, when used with best practices, should not require local user access except for administrative
purposes. Non-administrator users should not have access to the controller system.

16.3.3 Remove access to credentials from users

If an automation credential is only stored in the controller, it can be further secured. Services such as OpenSSH can be
configured to only allow credentials on connections from specific addresses. Credentials used by automation can be
different than credentials used by system administrators for disaster-recovery or other ad-hoc management, allowing
for easier auditing.

16.3.4 Enforce separation of duties

Different pieces of automation may need to access a system at different levels. For example, you may have low-
level system automation that applies patches and performs security baseline checking, while a higher-level piece of
automation deploys applications. By using different keys or credentials for each piece of automation, the effect of any
one key vulnerability is minimized, while also allowing for easy baseline auditing.

16.3. Granting access 75

Automation Controller Administration Guide, Release Automation Controller 4.3.0

16.4 Available resources

Several resources exist in the controller and elsewhere to ensure a secure platform. Consider utilizing the following
functionality:

• Audit and logging functionality

• Existing security functionality

• External account stores

• Django password policies

16.4.1 Audit and logging functionality

For any administrative access, it is key to audit and watch for actions. For the system overall, this can be done via the
built in audit support (https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_
Guide/chap-system_auditing.html) and via the built-in logging support.

For automation controller, this is done via the built-in Activity Stream support that logs all changes within the con-
troller, as well as via the automation logs.

Best practices dictate collecting logging and auditing centrally, rather than reviewing it on the local system. It is recom-
mended that automation controller be configured to use whatever IDS and/or logging/auditing (Splunk) is standard in
your environment. automation controller includes built-in logging integrations for Elastic Stack, Splunk, Sumologic,
Loggly, and more. See Logging and Aggregation for more information.

16.4.2 Existing security functionality

Do not disable SELinux, and do not disable the controller’s existing multi-tenant containment. Use the controller’s
role-based access control (RBAC) to delegate the minimum level of privileges required to run automation. Use Teams
in the controller to assign permissions to groups of users rather than to users individually. See Role-Based Access
Controls in the Automation Controller User Guide.

16.4.3 External account stores

Maintaining a full set of users just in the controller can be a time-consuming task in a large organization, prone to
error. Automation controller supports connecting to external account sources via LDAP, SAML 2.0, and certain OAuth
providers. Using this eliminates a source of error when working with permissions.

16.4.4 Django password policies

Controller admins can leverage Django to set password policies at creation time via
AUTH_PASSWORD_VALIDATORS to validate controller user passwords. In the custom.py file located at
/etc/tower/conf.d of your controller instance, add the following code block example:

AUTH_PASSWORD_VALIDATORS = [
{

'NAME': 'django.contrib.auth.password_validation.
↪→UserAttributeSimilarityValidator',

(continues on next page)

16.4. Available resources 76

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/security.html#rbac-ug
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/security.html#rbac-ug

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

},
{

'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
'OPTIONS': {

'min_length': 9,
}

},
{

'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{

'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},

]

For more information, see Password management in Django in addition to the example posted above.

Be sure to restart your controller instance for the change to take effect. See Starting, Stopping, and Restarting the
Controller for detail.

16.4. Available resources 77

https://docs.djangoproject.com/en/3.2/topics/auth/passwords/#module-django.contrib.auth.password_validation

CHAPTER

SEVENTEEN

THE AWX-MANAGE UTILITY

The awx-manage utility is used to access detailed internal information of the controller. Commands for
awx-manage should run as the awx or root user.

Warning: Running awx-manage commands via playbook is not recommended or supported.

17.1 Inventory Import

awx-manage is a mechanism by which a controller administrator can import inventory directly into the controller,
for those who cannot use Custom Inventory Scripts.

To use awx-manage properly, you must first create an inventory in the controller to use as the destination for the
import.

For help with awx-manage, run the following command: awx-manage inventory_import [--help]

The inventory_import command synchronizes a controller inventory object with a text-based inventory file,
dynamic inventory script, or a directory of one or more of the above as supported by core Ansible.

When running this command, specify either an --inventory-id or --inventory-name, and the path to the
Ansible inventory source (--source).

awx-manage inventory_import --source=/ansible/inventory/ --inventory-id=1

By default, inventory data already stored in the controller blends with data from the external source. To use only
the external data, specify --overwrite. To specify that any existing hosts get variable data exclusively from the
--source, specify --overwrite_vars. The default behavior adds any new variables from the external source,
overwriting keys that already exist, but preserves any variables that were not sourced from the external data source.

awx-manage inventory_import --source=/ansible/inventory/ --inventory-id=1 --overwrite

Note: Edits and additions to Inventory host variables persist beyond an inventory sync as long as
--overwrite_vars is not set.

78

Automation Controller Administration Guide, Release Automation Controller 4.3.0

17.2 Cleanup of old data

awx-manage has a variety of commands used to clean old data from the controller. The controller administrators
can use the controller Management Jobs interface for access or use the command line.

• awx-manage cleanup_jobs [--help]

This permanently deletes the job details and job output for jobs older than a specified number of days.

• awx-manage cleanup_activitystream [--help]

This permanently deletes any Activity Streams data older than a specific number of days.

17.3 Cluster management

Refer to the Clustering section for details on the awx-manage provision_instance and awx-manage
deprovision_instance commands.

Note: Do not run other awx-manage commands unless instructed by Ansible Support.

17.4 Token and session management

automation controller supports the following commands for OAuth2 token management:

• create_oauth2_token

• revoke_oauth2_tokens

• cleartokens

• expire_sessions

• clearsessions

17.4.1 create_oauth2_token

Use this command to create OAuth2 tokens (specify actual username for example_user below):

$ awx-manage create_oauth2_token --user example_user

New OAuth2 token for example_user: j89ia8OO79te6IAZ97L7E8bMgXCON2

Make sure you provide a valid user when creating tokens. Otherwise, you will get an error message that you tried to
issue the command without specifying a user, or supplying a username that does not exist.

17.2. Cleanup of old data 79

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/main_menu.html#ug-activitystreams

Automation Controller Administration Guide, Release Automation Controller 4.3.0

17.4.2 revoke_oauth2_tokens

Use this command to revoke OAuth2 tokens (both application tokens and personal access tokens (PAT)). By default,
it revokes all application tokens (but not their associated refresh tokens), and revokes all personal access tokens.
However, you can also specify a user for whom to revoke all tokens.

To revoke all existing OAuth2 tokens:

$ awx-manage revoke_oauth2_tokens

To revoke all OAuth2 tokens & their refresh tokens:

$ awx-manage revoke_oauth2_tokens --revoke_refresh

To revoke all OAuth2 tokens for the user with id=example_user (specify actual username for example_user
below):

$ awx-manage revoke_oauth2_tokens --user example_user

To revoke all OAuth2 tokens and refresh token for the user with id=example_user:

$ awx-manage revoke_oauth2_tokens --user example_user --revoke_refresh

17.4.3 cleartokens

Use this command to clear tokens which have already been revoked. Refer to Django’s Oauth Toolkit documentation
on cleartokens for more detail.

17.4.4 expire_sessions

Use this command to terminate all sessions or all sessions for a specific user. Consider using this command when
a user changes role in an organization, is removed from assorted groups in LDAP/AD, or the administrator wants to
ensure the user can no longer execute jobs due to membership in these groups.

$ awx-manage expire_sessions

This command terminates all sessions by default. The users associated with those sessions will be consequently logged
out. To only expire the sessions of a specific user, you can pass their username using the --user flag (specify actual
username for example_user below):

$ awx-manage expire_sessions --user example_user

17.4. Token and session management 80

https://django-oauth-toolkit.readthedocs.io/en/latest/management_commands.html
https://django-oauth-toolkit.readthedocs.io/en/latest/management_commands.html

Automation Controller Administration Guide, Release Automation Controller 4.3.0

17.4.5 clearsessions

Use this command to delete all sessions that have expired. Refer to Django’s documentation on clearsessions for more
detail.

For more information on OAuth2 token management in the controller user interface, see the Applications section of
the Automation Controller User Guide.

17.5 Analytics gathering

Use this command to gather analytics on-demand outside of the predefined window (default is 4 hours):

$ awx-manage gather_analytics --ship

For customers with disconnected environments who want to collect usage information about unique hosts automated
across a time period, use this command:

awx-manage host_metric --since YYYY-MM-DD --until YYYY-MM-DD --json

The parameters --since and --until specify date ranges and are optional, but one of them has to be present. The
--json flag specifies the output format and is optional.

17.5. Analytics gathering 81

https://docs.djangoproject.com/en/2.1/topics/http/sessions/#clearing-the-session-store
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/applications_auth.html#ug-applications-auth

CHAPTER

EIGHTEEN

CONTROLLER CONFIGURATION

You can configure various controller settings within the Settings screen in the following tabs:

Each tab contains fields with a Reset button, allowing you to revert any value entered back to the default value. Reset
All allows you to revert all the values to their factory default values.

Save applies changes you make, but it does not exit the edit dialog. To return to the Settings screen, click Settings
from the left navigation bar or use the breadcrumbs at the top of the current view.

18.1 Authentication

Through the controller user interface, you can set up a simplified login through various authentication types: GitHub,
Google, LDAP, RADIUS, and SAML. After you create and register your developer application with the appropriate
service, you can set up authorizations for them.

1. From the left navigation bar, click Settings.

2. The left side of the Settings window is a set of configurable Authentication settings. Select from the following
options:

• Azure AD settings

• GitHub settings

• Google OAuth2 settings

• LDAP settings

82

Automation Controller Administration Guide, Release Automation Controller 4.3.0

• RADIUS settings

• SAML settings

• TACACS+ settings

Different authentication types require you to enter different information. Be sure to include all the information as
required.

3. Click Save to apply the settings or Cancel to abandon the changes.

18.2 Jobs

The Jobs tab allows you to configure the types of modules that are allowed to be used by the controller’s Ad Hoc
Commands feature, set limits on the number of jobs that can be scheduled, define their output size, and other details
pertaining to working with Jobs in the controller.

1. From the left navigation bar, click Settings from the left navigation bar and select Jobs settings from the Settings
screen.

2. Set the configurable options from the fields provided. Click the tooltip icon next to the field that you need
additional information or details about. Refer to the Ansible Galaxy Support section for details about configuring
Galaxy settings.

Note: The values for all the timeouts are in seconds.

18.2. Jobs 83

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/projects.html#ug-galaxy

Automation Controller Administration Guide, Release Automation Controller 4.3.0

3. Click Save to apply the settings or Cancel to abandon the changes.

18.3 System

The System tab allows you to define the base URL for the controller host, configure alerts, enable activity capturing,
control visibility of users, enable certain controller features and functionality through a license file, and configure
logging aggregation options.

1. From the left navigation bar, click Settings.

2. The right side of the Settings window is a set of configurable System settings. Select from the following options:

• Miscellaneous System settings: define the base URL for the controller host, enable controller administration
alerts, and allow all users to be visible to organization administrators.

• Activity Stream settings: enable or disable activity stream.

• Logging settings: configure logging options based on the type you choose:

For more information about each of the logging aggregation types, refer to the Controller Logging and Aggre-
gation section of the Automation Controller Administration Guide.

3. Set the configurable options from the fields provided. Click the tooltip icon next to the field that you need
additional information or details about.

18.3. System 84

http://docs.ansible.com/automation-controller/4.3.0/html/administration/logging.html#ag-logging
http://docs.ansible.com/automation-controller/4.3.0/html/administration/logging.html#ag-logging

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Note: The Allow External Users to Create Oauth2 Tokens setting is disabled by default. This ensures external
users cannot create their own tokens. If you enable then disable it, any tokens created by external users in the meantime
will still exist, and are not automatically revoked.

4. Click Save to apply the settings or Cancel to abandon the changes.

18.4 User Interface

The User Interface tab allows you to set controller analytics settings, as well as configure custom logos and login
messages.

Access the User Interface settings by clicking Settings from the left navigation bar and select User Interface settings
from the Settings screen.

18.4.1 Usability Analytics and Data Collection

Usability data collection is included with automation controller to collect data to better understand how controller
users specifically interact with it, to help enhance future releases, and to continue streamlining your user experience.

Only users installing a trial of Red Hat Ansible Automation Platform or a fresh installation of automation controller
are opted-in for this data collection.

Automation controller collects user data automatically to help improve the product. You can opt out or control the way
the controller collects data by setting your participation level in the User Interface settings in the Settings menu.

1. Click Settings from the left navigation bar and select User Interface settings.

2. Click Edit.

18.4. User Interface 85

Automation Controller Administration Guide, Release Automation Controller 4.3.0

3. Select the desired level of data collection from the User Analytics Tracking State drop-down list:

• Off: Prevents any data collection.

• Anonymous: Enables data collection without your specific user data.

• Detailed: Enables data collection including your specific user data.

4. Click Save to apply the settings or Cancel to abandon the changes.

For more information, see the Red Hat privacy policy at https://www.redhat.com/en/about/privacy-policy.

18.4.2 Custom Logos and Images

automation controller supports the use of a custom logo. You can add a custom logo by uploading an image; and
supply a custom login message from the User Interface settings of the Settings menu.

For the custom logo to look its best, use a .png file with a transparent background. GIF, PNG, and JPEG formats are
supported.

If needed, you can add specific information (such as a legal notice or a disclaimer) to a text box in the login modal by
adding it to the Custom Login Info text field.

For example, if you uploaded a specific logo, and added the following text:

18.4. User Interface 86

https://www.redhat.com/en/about/privacy-policy

Automation Controller Administration Guide, Release Automation Controller 4.3.0

The Tower login dialog would look like this:

Selecting Revert will result in the appearance of the standard automation controller logo.

18.4. User Interface 87

Automation Controller Administration Guide, Release Automation Controller 4.3.0

18.5 License

Available subscriptions or a subscription manifest authorize the use of the automation controller. To obtain your
automation controller subscription, you can either:

1. Provide your Red Hat or Satellite username and password on the license page.

2. Obtain a subscriptions manifest from your Subscription Allocations page on the customer portal. See Obtaining
a subscriptions manifest in the Automation Controller User Guide for more detail.

If you have a Red Hat Ansible Automation Platform subscription, use your Red Hat customer credentials when you
launch the controller to access your subscription information (see instructions below).

If you do not have a Red Hat Ansible Automation Platform subscription, you can request a trial subscription here or
click Request Subscription and follow the instructions to request one.

Disconnected environments with Satellite will be able to use the login flow on vm-based installations if they
have configured subscription manager on the controller instance to connect to their Satellite instance. Recom-
mended workarounds for disconnected environments without Satellite include [1] downloading a manifest from
access.redhat.com in a connected environment, then uploading it to the disconnected controller instance, or [2] con-
necting to the Internet through a proxy server.

Note: In order to use a disconnected environment, it is necessary to have a valid automation controller entitlement
attached to your Satellite organization’s manifest. This can be confirmed by using hammer subscription list
\--organization <org_name>.

To understand what is supported with your subscription, see Red Hat Ansible Automation Platform Controller Li-
censing, Updates, and Support for more information. If you have issues with the subscription you have received,
please contact your Sales Account Manager or Red Hat Customer Service at https://access.redhat.com/support/contact/
customerService/.

When the controller launches for the first time, the Subscription screen automatically displays.

1. By default, the option to retrieve and import your subscription is to upload a subscription manifest you generate
from https://access.redhat.com/management/subscription_allocations. See Obtaining a subscriptions manifest
for more detail. Once you have a subscription manifest, you can upload it by browsing to the location where the
file is saved (the subscription manifest is the complete .zip file, not its component parts).

Note: If the Browse button in the subscription manifest option is grayed-out, clear the username and password fields
to enable the Browse button.

18.5. License 88

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/import_license.html#obtain-sub-manifest
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/import_license.html#obtain-sub-manifest
https://www.redhat.com/en/technologies/management/ansible/try-it
https://access.redhat.com/support/contact/customerService/
https://access.redhat.com/support/contact/customerService/
https://access.redhat.com/management/subscription_allocations
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/import_license.html#obtain-sub-manifest

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Alternatively, you can choose the option to enter your Red Hat customer credentials using your username and pass-
word. Use your Satellite username/password if your controller cluster nodes are registered to Satellite via Subscription
Manager. Once you entered your credentials, click Get Subscriptions.

2. The subscription metadata is then retrieved from the RHSM/Satellite API, or from the manifest provided.

• If it is a subscription manifest, and multiple subscription counts were applied in a single installation, the con-
troller will combine the counts but use the earliest expiration date as the expiry (at which point you will need to
refresh your subscription).

• If you entered your credential information (username/password), the controller retrieves your configured sub-
scription service. Then it prompts you to choose the subscription you want to run (the example below shows
multiple subscriptions) and entitles the controller with that metadata. You can log in over time and retrieve new
subscriptions if you have renewed.

Note: When your subscription expires (you can check this in the Subscription details of the Subscription settings
window), you will need to renew it in the controller by one of these two methods.

If you encounter the following error message, you will need the proper permissions required for the Satellite user with
which the controller admin uses to apply a subscription.

18.5. License 89

Automation Controller Administration Guide, Release Automation Controller 4.3.0

The Satellite username/password is used to query the Satellite API for existing subscriptions. From the Satellite
API, the automation controller gets back some metadata about those subscriptions, then filter through to find valid
subscriptions that you could apply, which are then displayed as valid subscription options in the UI.

The following Satellite roles grant proper access:

• Custom with view_subscriptions and view_organizations filter

• Viewer

• Administrator

• Organization Admin

• Manager

As the Custom role is the most restrictive of these, this is the recommend role to use for your controller integration.
Refer to the Satellite documentation on managing users and roles for more detail.

Note: The System Administrator role is not equivalent to the Administrator user checkbox, and will not provide
sufficient permissions to access the subscriptions API page.

3. Click Next to proceed to Tracking and Insights. Tracking and insights collect data to help Red Hat improve
the product by delivering you a much better user experience. For more information about data collection, refer
to Usability Analytics and Data Collection. This option is checked by default, but you may opt out of any of the
following:

• User analytics collects data from the controller User Interface.

• Insights Analytics provides a high level analysis of your automation with automation controller, which is used
to help you identify trends and anomalous use of the controller. For opt-in of Automation Analytics to have any
effect, your instance of automation controller must be running on Red Hat Enterprise Linux. See instructions
described in the Automation Analytics section. If you select to opt-in for this option, the screen expands and
prompts for a username and password to enable Insights, if applicable.

Note: You may change your analytics data collection preferences at any time, as described in the Usability Analytics
and Data Collection section.

4. After you have specified your tracking and insights preferences, click Next to proceed to the End User Agree-
ment.

18.5. License 90

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.8/html/administering_red_hat_satellite/chap-Red_Hat_Satellite-Administering_Red_Hat_Satellite-Users_and_Roles#sect-Red_Hat_Satellite-Administering_Red_Hat_Satellite-Users_and_Roles-Creating_and_Managing_Roles

Automation Controller Administration Guide, Release Automation Controller 4.3.0

5. Review and check the I agree to the End User License Agreement checkbox and click Submit.

Once your subscription has been accepted, the controller briefly displays the subscription details and navigates you
to the Dashboard of the automation controller interface. For later reference, you can return to this screen by clicking
Settings from the left navigation bar and select Subscription settings from the Subscription option.

A status of Compliant indicates your subscription is in compliance with the number of hosts you have automated
within your subscription count. Otherwise, your status will show an Out of Compliance status, indicating you have
exceeded the number of hosts in your subscription.

Other important information displayed are:

• Hosts automated: Host count automated by the job, which consumes the license count

• Hosts imported: Host count considering all inventory sources (does not impact hosts remaining)

• Hosts remaining: Total host count minus hosts automated

18.5. License 91

CHAPTER

NINETEEN

ISOLATION FUNCTIONALITY AND VARIABLES

Automation controller uses container technology to isolate jobs from each other. By default, only the current project
is exposed to the container running a job template.

You may find that you need to customize your playbook runs to expose additional directories. To fine tune your usage
of job isolation, there are certain variables that can be set.

By default, automation controller will use the system’s tmp directory (/tmp by default) as its staging area. This can be
changed in the Job Execution Path field of the Jobs settings screen, or in the REST API at /api/v2/settings/
jobs:

AWX_ISOLATION_BASE_PATH = "/opt/tmp"

If there are any additional directories that should specifically be exposed from the host to the container that playbooks
run in, you can specify those in the Paths to Expose to Isolated Jobs field of the Jobs setting scren, or in the REST
API at /api/v2/settings/jobs:

AWX_ISOLATION_SHOW_PATHS = ['/list/of/', '/paths']

Note: The primary file you may want to add to AWX_ISOLATION_SHOW_PATHS is /var/lib/
awx/.ssh, if your playbooks need to use keys or settings defined there.

The above fields can be found in the Jobs Settings window:

92

Automation Controller Administration Guide, Release Automation Controller 4.3.0

93

CHAPTER

TWENTY

TOKEN-BASED AUTHENTICATION

OAuth 2 is used for token-based authentication. You can manage OAuth tokens as well as applications, a server-side
representation of API clients used to generate tokens. By including an OAuth token as part of the HTTP authentication
header, you can authenticate yourself and adjust the degree of restrictive permissions in addition to the base RBAC
permissions. Refer to RFC 6749 for more details of OAuth 2 specification.

For details on using the manage utility to create tokens, refer to the Token and session management section.

20.1 Managing OAuth 2 Applications and Tokens

Applications and tokens can be managed as a top-level resource at /api/<version>/applications and /
api/<version>/tokens. These resources can also be accessed respective to the user at /api/<version>/
users/N/<resource>. Applications can be created by making a POST to either api/<version>/
applications or /api/<version>/users/N/applications.

Each OAuth 2 application represents a specific API client on the server side. For an API client to use the API via an
application token, it must first have an application and issue an access token. Individual applications are accessible via
their primary keys: /api/<version>/applications/<pk>/. Here is a typical application:

{
"id": 1,
"type": "o_auth2_application",
"url": "/api/v2/applications/2/",
"related": {

"tokens": "/api/v2/applications/2/tokens/"
},
"summary_fields": {

"organization": {
"id": 1,
"name": "Default",
"description": ""

},
"user_capabilities": {

"edit": true,
"delete": true

},
"tokens": {

"count": 0,
"results": []

}
},

(continues on next page)

94

https://tools.ietf.org/html/rfc6749

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

"created": "2018-07-02T21:16:45.824400Z",
"modified": "2018-07-02T21:16:45.824514Z",
"name": "My Application",
"description": "",
"client_id": "Ecmc6RjjhKUOWJzDYEP8TZ35P3dvsKt0AKdIjgHV",
"client_secret":

↪→"7Ft7ym8MpE54yWGUNvxxg6KqGwPFsyhYn9QQfYHlgBxai74Qp1GE4zsvJduOfSFkTfWFnPzYpxqcRsy1KacD0HH0vOAQUDJDCidByMiUIH4YQKtGFM1zE1dACYbpN44E
↪→",

"client_type": "confidential",
"redirect_uris": "",
"authorization_grant_type": "password",
"skip_authorization": false,
"organization": 1

}

As shown in the example above, name is the human-readable identifier of the application. The rest of the fields,
like client_id and redirect_uris, are mainly used for OAuth2 authorization, which is covered later in Using
OAuth 2 Token System for Personal Access Tokens (PAT).

The values for the client_id and client_secret fields are generated during creation and are non-editable
identifiers of applications, while organization and authorization_grant_type are required upon creation
and become non-editable.

20.1.1 Access Rules for Applications

Access rules for applications are as follows:

• System administrators can view and manipulate all applications in the system

• Organization administrators can view and manipulate all applications belonging to Organization members

• Other users can only view, update, and delete their own applications, but cannot create any new applications

Tokens, on the other hand, are resources used to actually authenticate incoming requests and mask the permissions of
the underlying user. There are two ways to create a token:

• POST to the /api/v2/tokens/ endpoint with application and scope fields to point to the related
application and specify token scope

• POST to the /api/v2/applications/<pk>/tokens/ endpoint with the scope field (the parent appli-
cation will be automatically linked)

Individual tokens are accessible via their primary keys: /api/<version>/tokens/<pk>/. Here is an example
of a typical token:

{
"id": 4,
"type": "o_auth2_access_token",
"url": "/api/v2/tokens/4/",
"related": {

"user": "/api/v2/users/1/",
"application": "/api/v2/applications/1/",
"activity_stream": "/api/v2/tokens/4/activity_stream/"

},
"summary_fields": {

"application": {
"id": 1,

(continues on next page)

20.1. Managing OAuth 2 Applications and Tokens 95

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

"name": "Default application for root",
"client_id": "mcU5J5uGQcEQMgAZyr5JUnM3BqBJpgbgL9fLOVch"

},
"user": {

"id": 1,
"username": "root",
"first_name": "",
"last_name": ""

}
},
"created": "2018-02-23T14:39:32.618932Z",
"modified": "2018-02-23T14:39:32.643626Z",
"description": "App Token Test",
"user": 1,
"token": "*************",
"refresh_token": "*************",
"application": 1,
"expires": "2018-02-24T00:39:32.618279Z",
"scope": "read"

},

For an OAuth 2 token, the only fully editable fields are scope and description. The application field
is non-editable on update, and all other fields are entirely non-editable, and are auto-populated during creation, as
follows:

• user field corresponds to the user the token is created for, and in this case, is also the user creating the token

• expires is generated according to the controller configuration setting OAUTH2_PROVIDER

• token and refresh_token are auto-generated to be non-clashing random strings

Both application tokens and personal access tokens are shown at the /api/v2/tokens/ endpoint. The
application field in the personal access tokens is always null. This is a good way to differentiate the two types of
tokens.

20.1.2 Access rules for tokens

Access rules for tokens are as follows:

• Users can create a token if they are able to view the related application; and are also able to create a personal
token for themselves

• System administrators are able to view and manipulate every token in the system

• Organization administrators are able to view and manipulate all tokens belonging to Organization members

• System Auditors can view all tokens and applications

• Other normal users are only able to view and manipulate their own tokens

Note: Users can only view the token or refresh the token value at the time of creation only.

20.1. Managing OAuth 2 Applications and Tokens 96

Automation Controller Administration Guide, Release Automation Controller 4.3.0

20.2 Using OAuth 2 Token System for Personal Access Tokens (PAT)

The easiest and most common way to obtain an OAuth 2 token is to create a personal access token at the /api/v2/
users/<userid>/personal_tokens/ endpoint, as shown in this example below:

curl -XPOST -k -H "Content-type: application/json" -d '{"description":"Personal
↪→controller CLI token", "application":null, "scope":"write"}' https://<USERNAME>:
↪→<PASSWORD>@<CONTROLLER_SERVER>/api/v2/users/<USER_ID>/personal_tokens/ | python -m
↪→json.tool

You could also pipe the JSON output through jq, if installed.

Following is an example of using the personal token to access an API endpoint using curl:

curl -k -H "Authorization: Bearer <token>" -H "Content-Type: application/json" -X
↪→POST -d '{}' https://controller/api/v2/job_templates/5/launch/

In automation controller, the OAuth 2 system is built on top of the Django Oauth Toolkit, which provides dedicated
endpoints for authorizing, revoking, and refreshing tokens. These endpoints can be found under the /api/v2/
users/<USER_ID>/personal_tokens/ endpoint, which also provides detailed examples on some typical
usage of those endpoints. These special OAuth 2 endpoints only support using the x-www-form-urlencoded
Content-type, so none of the api/o/* endpoints accept application/json.

Note: You can also request tokens using the /api/o/token endpoint by specifying null for the application type.

Alternatively, you can add tokens for users through the controller user interface, as well as configure the expiration of
an access token and its associated refresh token (if applicable).

20.2. Using OAuth 2 Token System for Personal Access Tokens (PAT) 97

https://django-oauth-toolkit.readthedocs.io/en/latest/
http://docs.ansible.com/automation-controller/4.3.0/html/userguide/applications_auth.html#ug-tokens-auth-create

Automation Controller Administration Guide, Release Automation Controller 4.3.0

20.2.1 Token scope mask over RBAC system

The scope of an OAuth 2 token is a space-separated string composed of valid scope keywords, ‘read’ and ‘write’.
These keywords are configurable and used to specify permission level of the authenticated API client. Read and write
scopes provide a mask layer over the Role-Based Access Control (RBAC) permission system of automation controller.
Specifically, a ‘write’ scope gives the authenticated user the full permissions the RBAC system provides, while a ‘read’
scope gives the authenticated user only read permissions the RBAC system provides. Note that ‘write’ implies ‘read’
as well.

For example, if you have administrative permissions to a job template, you can view, modify, launch, and delete the
job template if authenticated via session or basic authentication. In contrast, if you are authenticated using OAuth 2
token, and the related token scope is ‘read’, you can only view, but not manipulate or launch the job template, despite
being an administrator. If the token scope is ‘write’ or ‘read write’, you can take full advantage of the job template as
its administrator.

To acquire and use a token, first create an application token:

1. Make an application with authorization_grant_type set to password. HTTP POST the following to
the /api/v2/applications/ endpoint (supplying your own organization ID):

{
"name": "Admin Internal Application",
"description": "For use by secure services & clients. ",
"client_type": "confidential",
"redirect_uris": "",
"authorization_grant_type": "password",
"skip_authorization": false,
"organization": <organization-id>

}

2. Make a token and POST to the /api/v2/tokens/ endpoint:

{
"description": "My Access Token",
"application": <application-id>,
"scope": "write"

}

This returns a <token-value> that you can use to authenticate with for future requests (this will not be shown again).

3. Use the token to access a resource. The following uses curl as an example:

curl -H "Authorization: Bearer <token-value>" -H "Content-Type: application/json" -X
↪→GET https://<controller>/api/v2/users/

The -k flag may be needed if you have not set up a CA yet and are using SSL.

To revoke a token, you can make a DELETE on the detail page for that token, using that token’s ID. For example:

curl -ku <user>:<password> -X DELETE https://<controller>/api/v2/tokens/<pk>/

Similarly, using a token:

curl -H "Authorization: Bearer <token-value>" -X DELETE https://<controller>/api/v2/
↪→tokens/<pk>/ -k

20.2. Using OAuth 2 Token System for Personal Access Tokens (PAT) 98

Automation Controller Administration Guide, Release Automation Controller 4.3.0

20.3 Application Functions

This page lists OAuth 2 utility endpoints used for authorization, token refresh, and revoke. The /api/o/ endpoints
are not meant to be used in browsers and do not support HTTP GET. The endpoints prescribed here strictly follow
RFC specifications for OAuth 2, so use that for detailed reference. The following is an example of the typical usage
of these endpoints in the controller, in particular, when creating an application using various grant types:

• Authorization Code

• Password

Note: You can perform any of the application functions described here using the controller user interface. Refer to
the Applications section of the Automation Controller User Guide for more detail.

20.3.1 Application using authorization code grant type

The application authorization code grant type should be used when access tokens need to be issued directly to
an external application or service.

Note:

You can only use the authorization code type to acquire an access token when using an applica-
tion. When integrating an external webapp with automation controller, that webapp may need to create
OAuth2 Tokens on behalf of users in that other webapp. Creating an application in the controller with the
authorization code grant type is the preferred way to do this because:

• this allows an external application to obtain a token from the controller for a user, using their cre-
dentials.

• compartmentalized tokens issued for a particular application allows those tokens to be easily man-
aged (revoke all tokens associated with that application without having to revoke all tokens in the
system, for example)

To create an application named AuthCodeApp with the authorization-code grant type, perform a POST to the
/api/v2/applications/ endpoint:

{
"name": "AuthCodeApp",
"user": 1,
"client_type": "confidential",
"redirect_uris": "http://<controller>/api/v2",
"authorization_grant_type": "authorization-code",
"skip_authorization": false

}

.. _`Django-oauth-toolkit simple test application`: http://django-oauth-toolkit.
↪→herokuapp.com/consumer/

The workflow that occurs when you issue a GET to the authorize endpoint from the client application with the
response_type, client_id, redirect_uris, and scope:

1. The controller responds with the authorization code and status to the redirect_uri specified in the applica-
tion.

20.3. Application Functions 99

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/applications_auth.html#ug-applications-auth

Automation Controller Administration Guide, Release Automation Controller 4.3.0

2. The client application then makes a POST to the api/o/token/ endpoint on the controller with the code,
client_id, client_secret, grant_type, and redirect_uri.

3. The controller responds with the access_token, token_type, refresh_token, and expires_in.

Refer to Django’s Test Your Authorization Server toolkit to test this flow.

You may specify the number of seconds an authorization code remains valid in the System settings screen:

Requesting an access token after this duration will fail. The duration defaults to 600 seconds (10 minutes), based on
the RFC6749 recommendation.

The best way to set up app integrations with automation controller using the Authorization Code grant type is to
whitelist the origins for those cross-site requests. More generally, you need to whitelist the service or application you
are integrating with the controller, for which you want to provide access tokens. To do this, have your Administrator
add this whitelist to their local controller settings:

CORS_ALLOWED_ORIGIN_REGEXES = [
r"http://django-oauth-toolkit.herokuapp.com*",
r"http://www.example.com*"

]

Where http://django-oauth-toolkit.herokuapp.com and http://www.example.com are appli-
cations needing tokens with which to access the controller.

20.3.2 Application using password grant type

The password grant type or Resource owner password-based grant type is ideal for users who have na-
tive access to the web app and should be used when the client is the Resource owner. The following supposes an
application, ‘Default Application’ with grant type password:

{
"id": 6,
"type": "application",
...
"name": "Default Application",

(continues on next page)

20.3. Application Functions 100

http://django-oauth-toolkit.readthedocs.io/en/latest/tutorial/tutorial_01.html#test-your-authorization-server
https://tools.ietf.org/html/rfc6749

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

"user": 1,
"client_id": "gwSPoasWSdNkMDtBN3Hu2WYQpPWCO9SwUEsKK22l",
"client_secret":

↪→"fI6ZpfocHYBGfm1tP92r0yIgCyfRdDQt0Tos9L8a4fNsJjQQMwp9569eIaUBsaVDgt2eiwOGe0bg5m5vCSstClZmtdy359RVx2rQK5YlIWyPlrolpt2LEpVeKXWaiybo
↪→",

"client_type": "confidential",
"redirect_uris": "",
"authorization_grant_type": "password",
"skip_authorization": false

}

Logging in is not required for password grant type, so you can simply use curl to acquire a personal access token
through the /api/v2/tokens/ endpoint:

curl -k --user <user>:<password> -H "Content-type: application/json" \
-X POST \
--data '{

"description": "Token for Nagios Monitoring app",
"application": 1,
"scope": "write"

}' \
https://<controller>/api/v2/tokens/

Note: The special OAuth 2 endpoints only support using the x-www-form-urlencoded Content-type, so as a
result, none of the api/o/* endpoints accept application/json.

Upon success, a response displays in JSON format containing the access token, refresh token and other information:

HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Tue, 05 Dec 2017 16:48:09 GMT
Content-Type: application/json
Content-Length: 163
Connection: keep-alive
Content-Language: en
Vary: Accept-Language, Cookie
Pragma: no-cache
Cache-Control: no-store
Strict-Transport-Security: max-age=15768000

{"access_token": "9epHOqHhnXUcgYK8QanOmUQPSgX92g", "token_type": "Bearer", "expires_in
↪→": 315360000000, "refresh_token": "jMRX6QvzOTf046KHee3TU5mT3nyXsz", "scope": "read"}

20.4 Application Token Functions

This section describes the refresh and revoke functions associated with tokens. Everything that follows (Refreshing
and revoking tokens at the /api/o/ endpoints) can currently only be done with application tokens.

20.4. Application Token Functions 101

Automation Controller Administration Guide, Release Automation Controller 4.3.0

20.4.1 Refresh an existing access token

The following example shows an existing access token with a refresh token provided:

{
"id": 35,
"type": "access_token",
...
"user": 1,
"token": "omMFLk7UKpB36WN2Qma9H3gbwEBSOc",
"refresh_token": "AL0NK9TTpv0qp54dGbC4VUZtsZ9r8z",
"application": 6,
"expires": "2017-12-06T03:46:17.087022Z",
"scope": "read write"

}

The /api/o/token/ endpoint is used for refreshing the access token:

curl -X POST \
-d "grant_type=refresh_token&refresh_token=AL0NK9TTpv0qp54dGbC4VUZtsZ9r8z" \
-u

↪→"gwSPoasWSdNkMDtBN3Hu2WYQpPWCO9SwUEsKK22l:fI6ZpfocHYBGfm1tP92r0yIgCyfRdDQt0Tos9L8a4fNsJjQQMwp9569eIaUBsaVDgt2eiwOGe0bg5m5vCSstClZmtdy359RVx2rQK5YlIWyPlrolpt2LEpVeKXWaiybo
↪→" \

http://<controller>/api/o/token/ -i

In the above POST request, refresh_token is provided by refresh_token field of the access token above
that. The authentication information is of format <client_id>:<client_secret>, where client_id and
client_secret are the corresponding fields of the underlying related application of the access token.

Note: The special OAuth 2 endpoints only support using the x-www-form-urlencoded Content-type, so as a
result, none of the api/o/* endpoints accept application/json.

Upon success, a response displays in JSON format containing the new (refreshed) access token with the same scope
information as the previous one:

HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Tue, 05 Dec 2017 17:54:06 GMT
Content-Type: application/json
Content-Length: 169
Connection: keep-alive
Content-Language: en
Vary: Accept-Language, Cookie
Pragma: no-cache
Cache-Control: no-store
Strict-Transport-Security: max-age=15768000

{"access_token": "NDInWxGJI4iZgqpsreujjbvzCfJqgR", "token_type": "Bearer", "expires_in
↪→": 315360000000, "refresh_token": "DqOrmz8bx3srlHkZNKmDpqA86bnQkT", "scope": "read
↪→write"}

Essentially, the refresh operation replaces the existing token by deleting the original and then immediately creating a
new token with the same scope and related application as the original one. Verify that new token is present and the old
one is deleted in the /api/v2/tokens/ endpoint.

20.4. Application Token Functions 102

Automation Controller Administration Guide, Release Automation Controller 4.3.0

20.4.2 Revoke an access token

Similarly, you can revoke an access token by using the /api/o/revoke-token/ endpoint.

Revoking an access token by this method is the same as deleting the token resource object, but it allows you to delete
a token by providing its token value, and the associated client_id (and client_secret if the application is
confidential). For example:

curl -X POST -d "token=rQONsve372fQwuc2pn76k3IHDCYpi7" \
-u
↪→"gwSPoasWSdNkMDtBN3Hu2WYQpPWCO9SwUEsKK22l:fI6ZpfocHYBGfm1tP92r0yIgCyfRdDQt0Tos9L8a4fNsJjQQMwp9569eIaUBsaVDgt2eiwOGe0bg5m5vCSstClZmtdy359RVx2rQK5YlIWyPlrolpt2LEpVeKXWaiybo
↪→" \
http://<controller>/api/o/revoke_token/ -i

Note: The special OAuth 2 endpoints only support using the x-www-form-urlencoded Content-type, so as a
result, none of the api/o/* endpoints accept application/json.

Note: The Allow External Users to Create Oauth2 Tokens (ALLOW_OAUTH2_FOR_EXTERNAL_USERS in the
API) setting is disabled by default. External users refer to users authenticated externally with a service like LDAP, or
any of the other SSO services. This setting ensures external users cannot create their own tokens. If you enable then
disable it, any tokens created by external users in the meantime will still exist, and are not automatically revoked.

Alternatively, you can use the manage utility, revoke_oauth2_tokens, to revoke tokens as described in the the Token
and session management section.

This setting can be configured at the system-level in the automation controller User Interface:

Upon success, a response of 200 OK displays. Verify the deletion by checking whether the token is present in the
/api/v2/tokens/ endpoint.

20.4. Application Token Functions 103

CHAPTER

TWENTYONE

SETTING UP SOCIAL AUTHENTICATION

Authentication methods help simplify logins for end users–offering single sign-ons using existing login information
to sign into a third party website rather than creating a new login account specifically for that website.

Account authentication can be configured in the automation controller User Interface and saved to the PostgreSQL
database. For instructions, refer to the Controller Configuration section.

Account authentication in automation controller can be configured to centrally use OAuth2, while enterprise-level ac-
count authentication can be configured for SAML, RADIUS, or even LDAP as a source for authentication information.
See Setting up Enterprise Authentication.

For websites, such as Microsoft Azure, Google or GitHub, that provide account information, account information is
often implemented using the OAuth standard. OAuth is a secure authorization protocol which is commonly used in
conjunction with account authentication to grant 3rd party applications a “session token” allowing them to make API
calls to providers on the user’s behalf.

SAML (Security Assertion Markup Language) is an XML-based, open-standard data format for exchanging account
authentication and authorization data between an identity provider and a service provider.

The RADIUS distributed client/server system allows you to secure networks against unauthorized access and can be
implemented in network environments requiring high levels of security while maintaining network access for remote
users.

21.1 GitHub settings

To set up social authentication for GitHub, you will need to obtain an OAuth2 key and secret for a web application.
To do this, you must first register the new application with GitHub at https://github.com/settings/developers. In order
to register the application, you must supply it with your homepage URL, which is the Callback URL shown in the
Details tab for the GitHub default settings page. The OAuth2 key (Client ID) and secret (Client Secret) will be used
to supply the required fields in the automation controller User Interface.

1. Click Settings from the left navigation bar.

2. On the left side of the Settings window, click GitHub settings from the list of Authentication options.

3. Click the GitHub Default tab if not already selected.

The GitHub OAuth2 Callback URL field is already pre-populated and non-editable. Once the application is regis-
tered, GitHub displays the Client ID and Client Secret.

4. Click Edit and copy and paste GitHub’s Client ID into the GitHub OAuth2 Key field.

5. Copy and paste GitHub’s Client Secret into the GitHub OAuth2 Secret field.

6. For details on completing the mapping fields, see Organization and Team Mapping.

7. Click Save when done.

104

https://github.com/settings/developers

Automation Controller Administration Guide, Release Automation Controller 4.3.0

8. To verify that the authentication was configured correctly, logout of automation controller and the login screen
will now display the GitHub logo to allow logging in with those credentials.

21.1.1 GitHub Organization settings

When defining account authentication with either an organization or a team within an organization, you should use the
specific organization and team settings. Account authentication can be limited by an organization as well as by a team
within an organization.

You can also choose to allow all by specifying non-organization or non-team based settings (as shown above).

You can limit users who can login to the controller by limiting only those in an organization or on a team within an
organization.

To set up social authentication for a GitHub Organization, you will need to obtain an OAuth2 key and secret for a
web application. To do this, you must first register your organization-owned application at https://github.
com/organizations/<yourorg>/settings/applications. In order to register the application, you
must supply it with your Authorization callback URL, which is the Callback URL shown in the Details page. Each
key and secret must belong to a unique application and cannot be shared or reused between different authentication
backends. The OAuth2 key (Client ID) and secret (Client Secret) will be used to supply the required fields in the
automation controller User Interface.

1. Click Settings from the left navigation bar.

2. On the left side of the Settings window, click GitHub settings from the list of Authentication options.

3. Click the GitHub Organization tab.

The GitHub Organization OAuth2 Callback URL field is already pre-populated and non-editable.

Once the application is registered, GitHub displays the Client ID and Client Secret.

4. Click Edit and copy and paste GitHub’s Client ID into the GitHub Organization OAuth2 Key field.

5. Copy and paste GitHub’s Client Secret into the GitHub Organization OAuth2 Secret field.

6. Enter the name of your GitHub organization, as used in your organization’s URL (e.g., https://github.
com/<yourorg>/) in the GitHub Organization Name field.

21.1. GitHub settings 105

https://github.com
https://github.com

Automation Controller Administration Guide, Release Automation Controller 4.3.0

7. For details on completing the mapping fields, see Organization and Team Mapping.

8. Click Save when done.

9. To verify that the authentication was configured correctly, logout of automation controller and the login screen
will now display the GitHub Organization logo to allow logging in with those credentials.

21.1.2 GitHub Team settings

To set up social authentication for a GitHub Team, you will need to obtain an OAuth2 key and secret for a
web application. To do this, you must first register your team-owned application at https://github.com/
organizations/<yourorg>/settings/applications. In order to register the application, you must
supply it with your Authorization callback URL, which is the Callback URL shown in the Details page. Each key and
secret must belong to a unique application and cannot be shared or reused between different authentication backends.
The OAuth2 key (Client ID) and secret (Client Secret) will be used to supply the required fields in the automation
controller User Interface.

1. Find the numeric team ID using the GitHub API: http://fabian-kostadinov.github.io/2015/01/16/
how-to-find-a-github-team-id/. The Team ID will be used to supply a required field in the automation
controller User Interface.

2. Click Settings from the left navigation bar.

3. On the left side of the Settings window, click GitHub settings from the list of Authentication options.

4. Click the GitHub Team tab.

The GitHub Team OAuth2 Callback URL field is already pre-populated and non-editable. Once the application is
registered, GitHub displays the Client ID and Client Secret.

5. Click Edit and copy and paste GitHub’s Client ID into the GitHub Team OAuth2 Key field.

6. Copy and paste GitHub’s Client Secret into the GitHub Team OAuth2 Secret field.

7. Copy and paste GitHub’s team ID in the GitHub Team ID field.

8. For details on completing the mapping fields, see Organization and Team Mapping.

21.1. GitHub settings 106

http://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/
http://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/

Automation Controller Administration Guide, Release Automation Controller 4.3.0

9. Click Save when done.

10. To verify that the authentication was configured correctly, logout of automation controller and the login screen
will now display the GitHub Team logo to allow logging in with those credentials.

21.1.3 GitHub Enterprise settings

To set up social authentication for a GitHub Enterprise, you will need to obtain a GitHub Enterprise URL, an API
URL, OAuth2 key and secret for a web application. To obtain the URLs, refer to the GitHub documentation on GitHub
Enterprise administration . To obtain the key and secret, you must first register your enterprise-owned application at
https://github.com/organizations/<yourorg>/settings/applications. In order to register
the application, you must supply it with your Authorization callback URL, which is the Callback URL shown in the
Details page. Because its hosted on site and not github.com, you must specify which auth adapter it will talk to.

Each key and secret must belong to a unique application and cannot be shared or reused between different authentica-
tion backends. The OAuth2 key (Client ID) and secret (Client Secret) will be used to supply the required fields in the
automation controller User Interface.

1. Click Settings from the left navigation bar.

2. On the left side of the Settings window, click GitHub settings from the list of Authentication options.

3. Click the GitHub Enterprise tab.

The GitHub Enterprise OAuth2 Callback URL field is already pre-populated and non-editable. Once the application
is registered, GitHub displays the Client ID and Client Secret.

4. Click Edit to configure GitHub Enterprise settings.

5. In the GitHub Enterprise URL field, enter the hostname of the GitHub Enterprise instance (e.g., https://github.
example.com).

6. In the GitHub Enterprise API URL field, enter the API URL of the GitHub Enterprise instance (e.g., https:
//github.example.com/api/v3)

7. Copy and paste GitHub’s Client ID into the GitHub Enterprise OAuth2 Key field.

8. Copy and paste GitHub’s Client Secret into the GitHub Enterprise OAuth2 Secret field.

21.1. GitHub settings 107

https://docs.github.com/en/enterprise-server@3.1/rest/reference/enterprise-admin
https://docs.github.com/en/enterprise-server@3.1/rest/reference/enterprise-admin
https://github.example.com
https://github.example.com
https://github.example.com/api/v3
https://github.example.com/api/v3

Automation Controller Administration Guide, Release Automation Controller 4.3.0

9. For details on completing the mapping fields, see Organization and Team Mapping.

10. Click Save when done.

11. To verify that the authentication was configured correctly, logout of automation controller and the login screen
will now display the GitHub Enterprise logo to allow logging in with those credentials.

21.1.4 GitHub Enterprise Organization settings

To set up social authentication for a GitHub Enterprise Org, you will need to obtain a GitHub Enterprise Org
URL, an Org API URL, an Org OAuth2 key and secret for a web application. To obtain the URLs, refer to the
GitHub documentation on GitHub Enterprise administration . To obtain the key and secret, you must first regis-
ter your enterprise organization-owned application at https://github.com/organizations/<yourorg>/
settings/applications. In order to register the application, you must supply it with your Authorization call-
back URL, which is the Callback URL shown in the Details page. Because its hosted on site and not github.com, you
must specify which auth adapter it will talk to.

Each key and secret must belong to a unique application and cannot be shared or reused between different authentica-
tion backends. The OAuth2 key (Client ID) and secret (Client Secret) will be used to supply the required fields in the
automation controller User Interface.

1. Click Settings from the left navigation bar.

2. On the left side of the Settings window, click GitHub settings from the list of Authentication options.

3. Click the GitHub Enterprise Organization tab.

The GitHub Enterprise Organization OAuth2 Callback URL field is already pre-populated and non-editable. Once
the application is registered, GitHub displays the Client ID and Client Secret.

4. Click Edit to configure GitHub Enterprise Organization settings.

5. In the GitHub Enterprise Organization URL field, enter the hostname of the GitHub Enterprise Org instance
(e.g., https://github.orgexample.com).

6. In the GitHub Enterprise Organization API URL field, enter the API URL of the GitHub Enterprise Org
instance (e.g., https://github.orgexample.com/api/v3)

21.1. GitHub settings 108

https://docs.github.com/en/enterprise-server@3.1/rest/reference/enterprise-admin
https://github.orgexample.com
https://github.orgexample.com/api/v3

Automation Controller Administration Guide, Release Automation Controller 4.3.0

7. Copy and paste GitHub’s Client ID into the GitHub Enterprise Organization OAuth2 Key field.

8. Copy and paste GitHub’s Client Secret into the GitHub Enterprise Organization OAuth2 Secret field.

9. Enter the name of your GitHub Enterprise organization, as used in your organization’s URL (e.g., https://github.
com/<yourorg>/) in the GitHub Enterprise Organization Name field.

10. For details on completing the mapping fields, see Organization and Team Mapping.

11. Click Save when done.

12. To verify that the authentication was configured correctly, logout of automation controller and the login screen
will now display the GitHub Enterprise Organization logo to allow logging in with those credentials.

21.1.5 GitHub Enterprise Team settings

To set up social authentication for a GitHub Enterprise teams, you will need to obtain a GitHub Enterprise Org URL,
an Org API URL, an Org OAuth2 key and secret for a web application. To obtain the URLs, refer to the GitHub
documentation on GitHub Enterprise administration . To obtain the key and secret, you must first register your
enterprise team-owned application at https://github.com/organizations/<yourorg>/settings/
applications. In order to register the application, you must supply it with your Authorization callback URL,
which is the Callback URL shown in the Details page. Because its hosted on site and not github.com, you must
specify which auth adapter it will talk to.

Each key and secret must belong to a unique application and cannot be shared or reused between different authentica-
tion backends. The OAuth2 key (Client ID) and secret (Client Secret) will be used to supply the required fields in the
automation controller User Interface.

1. Find the numeric team ID using the GitHub API: http://fabian-kostadinov.github.io/2015/01/16/
how-to-find-a-github-team-id/. The Team ID will be used to supply a required field in the automation
controller User Interface.

2. Click Settings from the left navigation bar.

3. On the left side of the Settings window, click GitHub settings from the list of Authentication options.

4. Click the GitHub Enterprise Team tab.

21.1. GitHub settings 109

https://github.com
https://github.com
https://docs.github.com/en/enterprise-server@3.1/rest/reference/enterprise-admin
http://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/
http://fabian-kostadinov.github.io/2015/01/16/how-to-find-a-github-team-id/

Automation Controller Administration Guide, Release Automation Controller 4.3.0

The GitHub Enterprise Team OAuth2 Callback URL field is already pre-populated and non-editable. Once the
application is registered, GitHub displays the Client ID and Client Secret.

5. Click Edit to configure GitHub Enterprise Team settings.

6. In the GitHub Enterprise Team URL field, enter the hostname of the GitHub Enterprise team instance (e.g.,
https://github.teamexample.com).

7. In the GitHub Enterprise Team API URL field, enter the API URL of the GitHub Enterprise team instance
(e.g., https://github.teamexample.com/api/v3)

8. Copy and paste GitHub’s Client ID into the GitHub Enterprise Team OAuth2 Key field.

9. Copy and paste GitHub’s Client Secret into the GitHub Enterprise Team OAuth2 Secret field.

10. Copy and paste GitHub’s team ID in the GitHub Enterprise Team ID field.

11. For details on completing the mapping fields, see Organization and Team Mapping.

12. Click Save when done.

13. To verify that the authentication was configured correctly, logout of automation controller and the login screen
will now display the GitHub Enterprise Teams logo to allow logging in with those credentials.

21.2 Google OAuth2 settings

To set up social authentication for Google, you will need to obtain an OAuth2 key and secret for a web application.
To do this, you must first create a project and set it up with Google. Refer to https://support.google.com/googleapi/
answer/6158849 for instructions. If you already completed the setup process, you can access those credentials by
going to the Credentials section of the Google API Manager Console. The OAuth2 key (Client ID) and secret (Client
secret) will be used to supply the required fields in the automation controller User Interface.

1. Click Settings from the left navigation bar.

2. On the left side of the Settings window, click Google OAuth 2 settings from the list of Authentication options.

The Google OAuth2 Callback URL field is already pre-populated and non-editable.

21.2. Google OAuth2 settings 110

https://github.teamexample.com
https://github.teamexample.com/api/v3
https://support.google.com/googleapi/answer/6158849
https://support.google.com/googleapi/answer/6158849
https://console.developers.google.com/

Automation Controller Administration Guide, Release Automation Controller 4.3.0

3. The following fields are also pre-populated. If not, use the credentials Google supplied during the web applica-
tion setup process, and look for the values with the same format as the ones shown in the example below:

• Click Edit and copy and paste Google’s Client ID into the Google OAuth2 Key field.

• Copy and paste Google’s Client secret into the Google OAuth2 Secret field.

4. To complete the remaining optional fields, refer to the tooltips in each of the fields for instructions and required
format.

5. For details on completing the mapping fields, see Organization and Team Mapping.

6. Click Save when done.

7. To verify that the authentication was configured correctly, logout of automation controller and the login screen
will now display the Google logo to indicate it as a alternate method of logging into automation controller.

21.2. Google OAuth2 settings 111

Automation Controller Administration Guide, Release Automation Controller 4.3.0

21.3 Organization and Team Mapping

21.3.1 Organization mapping

You will need to control which users are placed into which controller organizations based on their username and email
address (mapping out your organization admins/users from social or enterprise-level authentication accounts).

Dictionary keys are organization names. Organizations will be created, if not already present and if the license allows
for multiple organizations. Otherwise, the single default organization is used regardless of the key.

Values are dictionaries defining the options for each organization’s membership. For each organization, it is possible to
specify which users are automatically users of the organization and also which users can administer the organization.

admins: None, True/False, string or list/tuple of strings.

• If None, organization admins will not be updated.

• If True, all users using account authentication will automatically be added as admins of the organization.

• If False, no account authentication users will be automatically added as admins of the organization.

• If a string or list of strings, specifies the usernames and emails for users who will be added to the organization.
Strings beginning and ending with / will be compiled into regular expressions; modifiers i (case-insensitive)
and m (multi-line) may be specified after the ending /.

remove_admins: True/False. Defaults to True.

• When True, a user who does not match is removed from the organization’s administrative list.

users: None, True/False, string or list/tuple of strings. Same rules apply as for admins.

remove_users: True/False. Defaults to True. Same rules apply as for remove_admins.

{
"Default": {

"users": true
},
"Test Org": {

"admins": ["admin@example.com"],
"users": true

},
"Test Org 2": {

"admins": ["admin@example.com", "/^controller-[^@]+?@.*$/i"],
"users": "/^[^@].*?@example\\.com$/"

}
}

Organization mappings may be specified separately for each account authentication backend. If defined, these config-
urations will take precedence over the global configuration above.

SOCIAL_AUTH_GOOGLE_OAUTH2_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_ORG_ORGANIZATION_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_ORGANIZATION_MAP = {}
SOCIAL_AUTH_SAML_ORGANIZATION_MAP = {}

21.3. Organization and Team Mapping 112

Automation Controller Administration Guide, Release Automation Controller 4.3.0

21.3.2 Team mapping

Team mapping is the mapping of team members (users) from social auth accounts. Keys are team names (will be
created if not present). Values are dictionaries of options for each team’s membership, where each can contain the
following parameters:

organization: string. The name of the organization to which the team belongs. The team will be created if the com-
bination of organization and team name does not exist. The organization will first be created if it does not exist. If the
license does not allow for multiple organizations, the team will always be assigned to the single default organization.

users: None, True/False, string or list/tuple of strings.

• If None, team members will not be updated.

• If True/False, all social auth users will be added/removed as team members.

• If a string or list of strings, specifies expressions used to match users. User will be added as a team member if
the username or email matches. Strings beginning and ending with / will be compiled into regular expressions;
modifiers i (case-insensitive) and m (multi-line) may be specified after the ending /.

remove: True/False. Defaults to True. When True, a user who does not match the rules above is removed from the
team.

{
"My Team": {

"organization": "Test Org",
"users": ["/^[^@]+?@test\\.example\\.com$/"],
"remove": true

},
"Other Team": {

"organization": "Test Org 2",
"users": ["/^[^@]+?@test\\.example\\.com$/"],
"remove": false

}
}

Team mappings may be specified separately for each account authentication backend, based on which of these you
setup. When defined, these configurations take precedence over the the global configuration above.

SOCIAL_AUTH_GOOGLE_OAUTH2_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_ORG_TEAM_MAP = {}
SOCIAL_AUTH_GITHUB_TEAM_TEAM_MAP = {}
SOCIAL_AUTH_SAML_TEAM_MAP = {}

Uncomment the line below (i.e. set SOCIAL_AUTH_USER_FIELDS to an empty list) to prevent new user accounts
from being created. Only users who have previously logged in to the controller using social or enterprise-level authen-
tication or have a user account with a matching email address will be able to login.

SOCIAL_AUTH_USER_FIELDS = []

21.3. Organization and Team Mapping 113

CHAPTER

TWENTYTWO

SETTING UP ENTERPRISE AUTHENTICATION

This section describes setting up authentication for the following enterprise systems:

• Azure AD settings

• LDAP Authentication

• RADIUS settings

• SAML settings

– Transparent SAML Logins

– Enabling Logging for SAML

• TACACS+ settings

Note: For LDAP authentication, see Setting up LDAP Authentication.

SAML, RADIUS, and TACACS+ users are categorized as ‘Enterprise’ users. The following rules apply to Enterprise
users:

• Enterprise users can only be created via the first successful login attempt from remote authentication backend.

• Enterprise users cannot be created/authenticated if non-enterprise users with the same name has already been
created in the controller.

• The controller passwords of enterprise users should always be empty and cannot be set by any user if there are
enterprise backend-enabled.

• If enterprise backends are disabled, an enterprise user can be converted to a normal controller user by setting the
password field. However, this operation is irreversible, as the converted controller user can no longer be treated
as enterprise user.

114

Automation Controller Administration Guide, Release Automation Controller 4.3.0

22.1 Azure AD settings

To set up enterprise authentication for Microsoft Azure Active Directory (AD), you will need to obtain an OAuth2 key
and secret by registering your organization-owned application from Azure at https://docs.microsoft.com/en-us/azure/
active-directory/develop/quickstart-register-app. Each key and secret must belong to a unique application and cannot
be shared or reused between different authentication backends. In order to register the application, you must supply it
with your webpage URL, which is the Callback URL shown in the Settings Authentication screen.

1. Click Settings from the left navigation bar.

2. On the left side of the Settings window, click Azure AD settings from the list of Authentication options.

3. The Azure AD OAuth2 Callback URL field is already pre-populated and non-editable. Once the application
is registered, Azure displays the Application ID and Object ID.

4. Click Edit and copy and paste Azure’s Application ID to the Azure AD OAuth2 Key field.

Following Azure AD’s documentation for connecting your app to Microsoft Azure Active Directory, supply the
key (shown at one time only) to the client for authentication.

5. Copy and paste the actual secret key created for your Azure AD application to the Azure AD OAuth2 Secret
field of the Settings - Authentication screen.

6. For details on completing the mapping fields, see Organization and Team Mapping.

7. Click Save when done.

8. To verify that the authentication was configured correctly, logout of automation controller and the login screen
will now display the Microsoft Azure logo to allow logging in with those credentials.

For application registering basics in Azure AD, refer to the Azure AD Identity Platform (v2) overview.

22.1. Azure AD settings 115

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview

Automation Controller Administration Guide, Release Automation Controller 4.3.0

22.2 LDAP Authentication

Refer to the Setting up LDAP Authentication section.

22.3 RADIUS settings

automation controller can be configured to centrally use RADIUS as a source for authentication information.

1. Click Settings from the left navigation bar.

2. On the left side of the Settings window, click RADIUS settings from the list of Authentication options.

3. Click Edit and enter the Host or IP of the Radius server in the Radius Server field. If this field is left blank,
Radius authentication is disabled.

4. Enter the port and secret information in the next two fields.

5. Click Save when done.

22.4 SAML settings

SAML allows the exchange of authentication and authorization data between an Identity Provider (IdP - a system of
servers that provide the Single Sign On service) and a Service Provider (in this case, automation controller). automa-
tion controller can be configured to talk with SAML in order to authenticate (create/login/logout) controller users.
User Team and Organization membership can be embedded in the SAML response to the controller.

22.2. LDAP Authentication 116

Automation Controller Administration Guide, Release Automation Controller 4.3.0

The following instructions describe automation controller as the service provider. To authenticate users through
RHSSO (keycloak), refer to the Red Hat Single Sign On Integration with the Automation Controller blog.

To setup SAML authentication:

1. Click Settings from the left navigation bar.

2. On the left side of the Settings window, click SAML settings from the list of Authentication options.

3. The SAML Assertion Consume Service (ACS) URL and SAML Service Provider Metadata URL fields are
pre-populated and are non-editable. Contact the Identity Provider administrator and provide the information
contained in these fields.

4. Click Edit and set the SAML Service Provider Entity ID to be the same as the Base URL of the con-
troller host field that can be found in the Miscellaneous System settings screen by clicking Settings from
the left navigation bar. Through the API, it can be viewed in the /api/v2/settings/system, under the
CONTROLLER_BASE_URL variable. The Entity ID can be set to any one of the individual controller cluster
nodes, but it is good practice to set it to the URL of the Service Provider. Ensure that the Base URL matches the
FQDN of the load balancer (if used).

Note: The Base URL is different for each node in a cluster. Commonly, a load balancer will sit in front of many
controller cluster nodes to provide a single entry point, the controller Cluster FQDN. The SAML Service Provider must
be able establish an outbound connection and route to the controller Cluster Node or the controller Cluster FQDN set
in the SAML Service Provider Entity ID.

In this example, the Service Provider is the controller cluster, and therefore, the ID is set to the controller Cluster
FQDN.

5. Create a server certificate for the Ansible cluster. Typically when an Ansible cluster is configured, the controller
nodes will be configured to handle HTTP traffic only and the load balancer will be an SSL Termination Point. In
this case, an SSL certificate is required for the load balancer, and not for the individual controller Cluster Nodes.
SSL can either be enabled or disabled per individual controller node, but should be disabled when using an SSL
terminated load balancer. It is recommended to use a non-expiring self signed certificate to avoid periodically
updating certificates. This way, authentication will not fail in case someone forgets to update the certificate.

Note: The SAML Service Provider Public Certificate field should contain the entire certificate, including the
“—–BEGIN CERTIFICATE—–” and “—–END CERTIFICATE—–”.

If you are using a CA bundle with your certificate, include the entire bundle in this field.

As an example for public certs:

22.4. SAML settings 117

https://www.ansible.com/blog/red-hat-single-sign-on-integration-with-ansible-tower

Automation Controller Administration Guide, Release Automation Controller 4.3.0

-----BEGIN CERTIFICATE----
... cert text ...
-----END CERTIFICATE----

6. Create an optional private key for the controller to use as a service provider (SP) and enter it in the SAML
Service Provider Private Key field.

As an example for private keys:

-----BEGIN PRIVATE KEY--
... key text ...
-----END PRIVATE KEY----

7. Provide the IdP with some details about the controller cluster during the SSO process in the SAML Service
Provider Organization Info field.

{
"en-US": {
"url": "http://www.example.com",
"displayname": "Example",
"name": "example"

}
}

For example:

Note: These fields are required in order to properly configure SAML within the controller.

8. Provide the IdP with the technical contact information in the SAML Service Provider Technical Contact field.
Do not remove the contents of this field.

{
"givenName": "Some User",
"emailAddress": "suser@example.com"
}

For example:

22.4. SAML settings 118

Automation Controller Administration Guide, Release Automation Controller 4.3.0

9. Provide the IdP with the support contact information in the SAML Service Provider Support Contact field.
Do not remove the contents of this field.

{
"givenName": "Some User",
"emailAddress": "suser@example.com"
}

For example:

10. In the SAML Enabled Identity Providers field, provide information on how to connect to each Identity
Provider listed. The controller expects the following SAML attributes in the example below:

Username(urn:oid:0.9.2342.19200300.100.1.1)
Email(urn:oid:0.9.2342.19200300.100.1.3)
FirstName(urn:oid:2.5.4.42)
LastName(urn:oid:2.5.4.4)

If these attributes are not known, map existing SAML attributes to lastname, firstname, email and username.

Configure the required keys for each IDp:

• attr_user_permanent_id - the unique identifier for the user. It can be configured to match
any of the attribute sent from the IdP. Usually, it is set to name_id if SAML:nameid attribute is
sent to the controller node or it can be the username attribute, or a custom unique identifier.

• entity_id - the Entity ID provided by the Identity Provider administrator. The admin creates a
SAML profile for the controller and it generates a unique URL.

• url - the Single Sign On (SSO) URL the controller redirects the user to, when SSO is activated.

• x509_cert - the certificate provided by the IdP admin generated from the SAML profile created on
the Identity Provider. Remove the --BEGIN CERTIFICATE-- and --END CERTIFICATE--
headers, then enter the cert as one non-breaking string.

Multiple SAML IdPs are supported. Some IdPs may provide user data using attribute names that
differ from the default OIDs (https://github.com/omab/python-social-auth/blob/master/social/backends/
saml.py). The SAML NameID is a special attribute used by some Identity Providers to tell the

22.4. SAML settings 119

https://github.com/omab/python-social-auth/blob/master/social/backends/saml.py
https://github.com/omab/python-social-auth/blob/master/social/backends/saml.py

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Service Provider (the controller cluster) what the unique user identifier is. If it is used, set the
attr_user_permanent_id to name_id as shown in the example. Other attribute names may be
overridden for each IdP as shown below.

{
"myidp": {

"entity_id": "https://idp.example.com",
"url": "https://myidp.example.com/sso",
"x509cert": ""

},
"onelogin": {

"entity_id": "https://app.onelogin.com/saml/metadata/123456",
"url": "https://example.onelogin.com/trust/saml2/http-post/sso/123456",
"x509cert": "",
"attr_user_permanent_id": "name_id",
"attr_first_name": "User.FirstName",
"attr_last_name": "User.LastName",
"attr_username": "User.email",
"attr_email": "User.email"
}

}

Warning: Do not create a SAML user that shares the same email with another user (including a non-SAML
user). Doing so will result in the accounts being merged. Be aware that this same behavior exists for System
Admin users, thus a SAML login with the same email address as the System Admin user will login with System
Admin privileges. For future reference, you can remove (or add) Admin Privileges based on SAML mappings, as
described in subsequent steps.

Note: The IdP provides the email, last name and firstname using the well known SAML urn. The IdP uses a custom
SAML attribute to identify a user, which is an attribute that the controller is unable to read. Instead, the controller can
understand the unique identifier name, which is the URN. Use the URN listed in the SAML “Name” attribute for the
user attributes as shown in the example below.

22.4. SAML settings 120

Automation Controller Administration Guide, Release Automation Controller 4.3.0

11. Optionally provide the SAML Organization Map. For further detail, see Organization and Team Mapping.

12. The controller can be configured to look for particular attributes that contain Team and Organization member-
ship to associate with users when they log into the controller. The attribute names are defined in the SAML
Organization Attribute Mapping and the SAML Team Attribute Mapping fields.

Example SAML Organization Attribute Mapping

Below is an example SAML attribute that embeds user organization membership in the attribute member-of.

<saml2:AttributeStatement>
<saml2:Attribute FriendlyName="member-of" Name="member-of"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue>Engineering</saml2:AttributeValue>
<saml2:AttributeValue>IT</saml2:AttributeValue>
<saml2:AttributeValue>HR</saml2:AttributeValue>
<saml2:AttributeValue>Sales</saml2:AttributeValue>

</saml2:Attribute>
<saml2:Attribute FriendlyName="admin-of" Name="admin-of"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue>Engineering</saml2:AttributeValue>

</saml2:Attribute>
</saml2:AttributeStatement>

Below is the corresponding controller configuration.

{
"saml_attr": "member-of",
"saml_admin_attr": "admin-of",
"remove": true,
"remove_admins": false

}

saml_attr: is the SAML attribute name where the organization array can be found and remove is set to True to
remove a user from all organizations before adding the user to the list of Organizations. To keep the user in whatever
Organization(s) they are in while adding the user to the Organization(s) in the SAML attribute, set remove to False.

saml_admin_attr: Similar to the saml_attr attribute, but instead of conveying organization membership, this
attribute conveys admin organization permissions.

Example SAML Team Attribute Mapping

Below is another example of a SAML attribute that contains a Team membership in a list.

<saml:AttributeStatement>
<saml:Attribute

xmlns:x500="urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"
x500:Encoding="LDAP"

(continues on next page)

22.4. SAML settings 121

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"
Name="urn:oid:1.3.6.1.4.1.5923.1.1.1.1"
FriendlyName="eduPersonAffiliation">
<saml:AttributeValue

xsi:type="xs:string">member</saml:AttributeValue>
<saml:AttributeValue

xsi:type="xs:string">staff</saml:AttributeValue>
</saml:Attribute>

</saml:AttributeStatement>

{
"saml_attr": "eduPersonAffiliation",
"remove": true,
"team_org_map": [
{

"team": "member",
"organization": "Default1"

},
{

"team": "staff",
"organization": "Default2"

}
]

}

• saml_attr: The SAML attribute name where the team array can be found.

• remove: Set remove to True to remove user from all Teams before adding the user to the list of Teams. To
keep the user in whatever Team(s) they are in while adding the user to the Team(s) in the SAML attribute, set
remove to False.

• team_org_map: An array of dictionaries of the form { "team": "<AWX Team Name>",
"organization": "<AWX Org Name>" } that defines mapping from controller Team -> controller
Organization. This is needed because the same named Team can exist in multiple Organizations in the con-
troller. The organization to which a team listed in a SAML attribute belongs to, would be ambiguous without
this mapping.

You could create an alias to override both Teams and Orgs in the SAML Team Attribute Mapping. This option
becomes very handy in cases when the SAML backend sends out complex group names, like in the example below:

{
"remove": false,
"team_org_map": [
{
"team": "internal:unix:domain:admins",
"organization": "Default",
"team_alias": "Administrators"
},
{
"team": "Domain Users",
"organization_alias": "OrgAlias",
"organization": "Default"
}

],
"saml_attr": "member-of"

}

22.4. SAML settings 122

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Once the user authenticates, the controller creates organization and team aliases, as expected.

13. Optionally provide team membership mapping in the SAML Team Map field. For further detail, see Organiza-
tion and Team Mapping.

14. Optionally provide security settings in the SAML Security Config field. This field is the equivalent to the
SOCIAL_AUTH_SAML_SECURITY_CONFIG field in the API. Refer to the OneLogin’s SAML Python Toolkit
for further detail.

The controller uses the python-social-auth library when users log in through SAML. This library relies on the
python-saml library to make available the settings for the next two optional fields, SAML Service Provider Extra
Configuration Data and SAML IDP to EXTRA_DATA Attribute Mapping.

15. The SAML Service Provider Extra Configuration Data field is equivalent to the
SOCIAL_AUTH_SAML_SP_EXTRA in the API. Refer to the python-saml library documentation to learn about
the valid service provider extra (SP_EXTRA) parameters.

16. The SAML IDP to EXTRA_DATA Attribute Mapping field is equivalent to the
SOCIAL_AUTH_SAML_EXTRA_DATA in the API. See Python’s SAML Advanced Settings documenta-
tion for more information.

17. The SAML User Flags Attribute Mapping field allows you to map SAML roles and attributes to special user
flags. The following attributes are valid in this field:

• is_superuser_role: Specifies one or more SAML roles which will grant a user the superuser flag

• is_superuser_attr: Specifies a SAML attribute which will grant a user the superuser flag

• is_superuser_value: Specifies one or more values required for is_superuser_attr that is required
for the user to be a superuser

• remove_superusers: Boolean indicating if the superuser flag should be removed for users or not. Defaults
to true. (See below for more details)

• is_system_auditor_role: Specifies one or more SAML roles which will grant a user the system auditor
flag

• is_system_auditor_attr: Specifies a SAML attribute which will grant a user the system auditor flag

• is_system_auditor_value: Specifies one or more values required for is_system_auditor_attr
that is required for the user to be a system auditor

• remove_system_auditors: Boolean indicating if the system_auditor flag should be removed for users or
not. Defaults to true. (See below for more details)

The role and value fields are lists and are or logic. So if you specify two roles: [“Role 1”, “Role 2”] and the
SAML user has either role the logic will consider them to have the required role for the flag. This is the same with the
value field, if you specify: [“Value 1”, “Value 2”] and the SAML user has either value for their attribute the logic
will consider their attribute value to have matched.

If role and attr are both specified for either superuser or system_auditor, the settings for attr will take
precedence over a role. System Admin and System Auditor roles are evaluated at login for a SAML user. If you
grant a SAML user one of these roles through the UI and not through the SAML settings, the roles will be removed on
the user’s next login unless the remove flag is set to false. The remove flag, if false, will never allow the SAML
adapter to remove the corresponding flag from a user. The following table describes how the logic works.

Has one or more roles Has Attr Has one or more Attr Values Remove Flag Previous Flag Is Flagged
No No N/A True False No
No No N/A False False No
No No N/A True True No

continues on next page

22.4. SAML settings 123

https://github.com/onelogin/python-saml#settings
https://github.com/onelogin/python-saml#settings
http://python-social-auth-docs.readthedocs.io/en/latest/backends/saml.html#advanced-settings

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Table 1 – continued from previous page
Has one or more roles Has Attr Has one or more Attr Values Remove Flag Previous Flag Is Flagged
No No N/A False True Yes
Yes No N/A True False Yes
Yes No N/A False False Yes
Yes No N/A True True Yes
Yes No N/A False True Yes
No Yes Yes True False Yes
No Yes Yes False False Yes
No Yes Yes True True Yes
No Yes Yes False True Yes
No Yes No True False No
No Yes No False False No
No Yes No True True No
No Yes No False True Yes
No Yes Unset True False Yes
No Yes Unset False False Yes
No Yes Unset True True Yes
No Yes Unset False True Yes
Yes Yes Yes True False Yes
Yes Yes Yes False False Yes
Yes Yes Yes True True Yes
Yes Yes Yes False True Yes
Yes Yes No True False No
Yes Yes No False False No
Yes Yes No True True No
Yes Yes No False True Yes
Yes Yes Unset True False Yes
Yes Yes Unset False False Yes
Yes Yes Unset True True Yes
Yes Yes Unset False True Yes

Each time a SAML user authenticates to automation controller, these checks will be performed and the user flags will
be altered as needed. If System Administrator or System Auditor is set for a SAML user within the UI,
the SAML adapter will override the UI setting based on the rules above. If you would prefer that the user flags for
SAML users do not get removed when a SAML user logs in, you can set the remove_ flag to false. With the
remove flag set to false, a user flag set to true through either the UI, API or SAML adapter will not be removed.
However, if a user does not have the flag, and the above rules determine the flag should be added, it will be added,
even if the flag is false.

Example:

{
"is_superuser_attr": "blueGroups",
"is_superuser_role": "is_superuser",
"is_superuser_value": "cn=My-Sys-Admins,ou=memberlist,ou=mygroups,o=myco.com",
"is_system_auditor_attr": "blueGroups",
"is_system_auditor_role": "is_system_auditor",
"is_system_auditor_value": "cn=My-Auditors,ou=memberlist,ou=mygroups,o=myco.com"

}

18. Click Save when done.

19. To verify that the authentication was configured correctly, load the auto-generated URL found in the SAML
Service Provider Metadata URL into a browser. It should output XML output, otherwise, it is not configured

22.4. SAML settings 124

Automation Controller Administration Guide, Release Automation Controller 4.3.0

correctly.

Alternatively, logout of automation controller and the login screen will now display the SAML logo to indicate
it as a alternate method of logging into automation controller.

22.4.1 Transparent SAML Logins

For transparent logins to work, you must first get IdP-initiated logins to work. To achieve this:

1. Set the RelayState on the IdP to the key of the IdP definition in the SAML Enabled Identity
Providers field as previously described. In the example given above, RelayState would need to be
either myidp or onelogin.

2. Once this is working, specify the redirect URL for non-logged-in users to somewhere other than the default
controller login page by using the Login redirect override URL field in the Miscellaneous Authentication
settings window of the Settings menu, accessible from the left navigation bar. This should be set to /sso/
login/saml/?idp=<name-of-your-idp> for transparent SAML login, as shown in the example.

22.4. SAML settings 125

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Note: The above is a sample of a typical IdP format, but may not be the correct format for your particular case. You
may need to reach out to your IdP for the correct transparent redirect URL as that URL is not the same for all IdPs.

3. After transparent SAML login is configured, to log in using local credentials or a different SSO, go directly to
https://<your-tower-server>/login. This provides the standard controller login page, including
SSO authentication buttons, and allows you to log in with any configured method.

22.4.2 Enabling Logging for SAML

You can enable logging messages for the SAML adapter the same way you can enable logging for LDAP. Refer to the
Enabling Logging for LDAP section.

22.5 TACACS+ settings

Terminal Access Controller Access-Control System Plus (TACACS+) is a protocol that handles remote authentication
and related services for networked access control through a centralized server. In particular, TACACS+ provides
authentication, authorization and accounting (AAA) services, in which you can configure automation controller to use
as a source for authentication.

Note: This feature is deprecated and will be removed in a future release.

1. Click Settings from the left navigation bar.

2. On the left side of the Settings window, click TACACs+ settings from the list of Authentication options.

3. Click Edit and enter information in the following fields:

• TACACS+ Server: Provide the hostname or IP address of the TACACS+ server with which to authenticate. If
this field is left blank, TACACS+ authentication is disabled.

• TACACS+ Port: TACACS+ uses port 49 by default, which is already pre-populated.

• TACACS+ Secret: Secret key for TACACS+ authentication server.

• TACACS+ Auth Session Timeout: Session timeout value in seconds. The default is 5 seconds.

• TACACS+ Authentication Protocol: The protocol used by TACACS+ client. Options are ascii or pap.

4. Click Save when done.

22.5. TACACS+ settings 126

CHAPTER

TWENTYTHREE

SETTING UP LDAP AUTHENTICATION

Note: If the LDAP server you want to connect to has a certificate that is self-signed or signed by a corporate internal
certificate authority (CA), the CA certificate must be added to the system’s trusted CAs. Otherwise, connection to the
LDAP server will result in an error that the certificate issuer is not recognized.

Administrators use LDAP as a source for account authentication information for the controller users. User authentica-
tion is provided, but not the synchronization of user permissions and credentials. Organization membership (as well
as the organization admin) and team memberships can be synchronized.

When so configured, a user who logs in with an LDAP username and password automatically gets a controller ac-
count created for them and they can be automatically placed into organizations as either regular users or organization
administrators.

Users created via an LDAP login cannot change their username, first name, last name, or set a local password for
themselves. This is also tunable to restrict editing of other field names.

To configure LDAP integration for the controller:

1. First, create a user in LDAP that has access to read the entire LDAP structure.

2. Test if you can make successful queries to the LDAP server, use the ldapsearch command, which is a
command line tool that can be installed on the controller system’s command line as well as on other Linux and
OSX systems. Use the following command to query the ldap server, where josie and Josie4Cloud are replaced
by attributes that work for your setup:

ldapsearch -x -H ldap://win -D "CN=josie,CN=Users,DC=website,DC=com" -b "dc=website,
↪→dc=com" -w Josie4Cloud

Here CN=josie,CN=users,DC=website,DC=com is the Distinguished Name of the connecting user.

Note: The ldapsearch utility is not automatically pre-installed with automation controller, however, you can
install it from the openldap-clients package.

3. In the automation controller User Interface, click Settings from the left navigation and click to select LDAP
settings from the list of Authentication options.

Note: You can configure multiple LDAP servers by specifying the server to configure (otherwise, leave the server at
Default):

127

Automation Controller Administration Guide, Release Automation Controller 4.3.0

The equivalent API endpoints will show AUTH_LDAP_* repeated: AUTH_LDAP_1_*, AUTH_LDAP_2_*, . . . ,
AUTH_LDAP_5_* to denote server designations.

4. Click Edit and enter the LDAP server address to connect to in the LDAP Server URI field using the same
format as the one shown in the text field. Below is an example:

5. Enter the Distinguished Name in the LDAP Bind DN text field to specify the user that the controller uses
to connect (Bind) to the LDAP server. Below uses the example, CN=josie,CN=users,DC=website,
DC=com:

6. Enter the password to use for the Binding user in the LDAP Bind Password text field. In this example, the
password is ‘passme’:

7. If that name is stored in key sAMAccountName, the LDAP User DN Template populates with
(sAMAccountName=%(user)s). Active Directory stores the username to sAMAccountName. Similarly,
for OpenLDAP, the key is uid–hence the line becomes (uid=%(user)s).

128

Automation Controller Administration Guide, Release Automation Controller 4.3.0

8. Click to select a group type from the LDAP Group Type drop-down menu list.

LDAP Group Types include:

• PosixGroupType

• GroupOfNamesType

• GroupOfUniqueNamesType

• ActiveDirectoryGroupType

• OrganizationalRoleGroupType

• MemberDNGroupType

• NISGroupType

• NestedGroupOfNamesType

• NestedGroupOfUniqueNamesType

• NestedActiveDirectoryGroupType

• NestedOrganizationalRoleGroupType

• NestedMemberDNGroupType

• PosixUIDGroupType

The LDAP Group Types that are supported by the controller leverage the underlying django-auth-ldap
library.

Each LDAP Group Type can potentially take different parameters. The controller exposes
LDAP_GROUP_TYPE_PARAMS to account for this. LDAP_GROUP_TYPE_PARAMS is a dictionary,
which will be converted by the controller to kwargs and passed to the LDAP Group Type class se-
lected. There are two common parameters used by any of the LDAP Group Type; name_attr and
member_attr. Where name_attr defaults to cn and member_attr defaults to member:

{"name_attr": "cn", "member_attr": "member"}

To determine what parameters a specific LDAP Group Type expects. refer to the django_auth_ldap docu-
mentation around the classes init parameters.

9. Enter the group distinguish name to allow users within that group to access the controller in the LDAP Require
Group field, using the same format as the one shown in the text field. In this example, use: CN=controller
Users,OU=Users,DC=website,DC=com

10. Enter the group distinguish name to prevent users within that group to access the controller in the LDAP Deny
Group field, using the same format as the one shown in the text field. In this example, leave the field blank.

11. The LDAP Start TLS is disabled by default. To enable TLS when the LDAP connection is not using SSL, click
the toggle to ON.

129

https://django-auth-ldap.readthedocs.io/en/latest/groups.html#types-of-groups
https://django-auth-ldap.readthedocs.io/en/latest/groups.html#types-of-groups
https://django-auth-ldap.readthedocs.io/en/latest/reference.html#django_auth_ldap.config.LDAPGroupType

Automation Controller Administration Guide, Release Automation Controller 4.3.0

12. Enter where to search for users while authenticating in the LDAP USER SEARCH field using the same format
as the one shown in the text field. In this example, use:

[
"OU=Users,DC=website,DC=com",
"SCOPE_SUBTREE",
"(cn=%(user)s)"
]

The first line specifies where to search for users in the LDAP tree. In the above example, the users are searched
recursively starting from DC=website,DC=com.

The second line specifies the scope where the users should be searched:

• SCOPE_BASE: This value is used to indicate searching only the entry at the base DN, resulting in only that
entry being returned

• SCOPE_ONELEVEL: This value is used to indicate searching all entries one level under the base DN - but not
including the base DN and not including any entries under that one level under the base DN.

• SCOPE_SUBTREE: This value is used to indicate searching of all entries at all levels under and including the
specified base DN.

The third line specifies the key name where the user name is stored.

Note: For multiple search queries, the proper syntax is:

[
[
"OU=Users,DC=northamerica,DC=acme,DC=com",
"SCOPE_SUBTREE",
"(sAMAccountName=%(user)s)"
],

(continues on next page)

130

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

[
"OU=Users,DC=apac,DC=corp,DC=com",
"SCOPE_SUBTREE",
"(sAMAccountName=%(user)s)"
],
[
"OU=Users,DC=emea,DC=corp,DC=com",
"SCOPE_SUBTREE",
"(sAMAccountName=%(user)s)"
]

]

13. In the LDAP Group Search text field, specify which groups should be searched and how to search them. In
this example, use:

[
"dc=example,dc=com",
"SCOPE_SUBTREE",
"(objectClass=group)"
]

• The first line specifies the BASE DN where the groups should be searched.

• The second lines specifies the scope and is the same as that for the user directive.

• The third line specifies what the objectclass of a group object is in the LDAP you are using.

14. Enter the user attributes in the LDAP User Attribute Map the text field. In this example, use:

{
"first_name": "givenName",
"last_name": "sn",
"email": "mail"
}

The above example retrieves users by last name from the key sn. You can use the same LDAP query for the user to
figure out what keys they are stored under.

131

Automation Controller Administration Guide, Release Automation Controller 4.3.0

15. Enter the user profile flags in the LDAP User Flags by Group the text field. In this example, use the following
syntax to set LDAP users as “Superusers” and “Auditors”:

{
"is_superuser": "cn=superusers,ou=groups,dc=website,dc=com",
"is_system_auditor": "cn=auditors,ou=groups,dc=website,dc=com"
}

The above example retrieves users who are flagged as superusers or as auditor in their profile.

16. For details on completing the mapping fields, see LDAP Organization and Team Mapping.

17. Click Save when done.

With these values entered on this form, you can now make a successful authentication with LDAP.

Note: The controller does not actively sync users, but they are created during their initial login. To improve perfor-
mance associated with LDAP authentication, see LDAP authentication performance tips in the Automation Controller
User Guide.

23.1 Referrals

Active Directory uses “referrals” in case the queried object is not available in its database. It has been noted that this
does not work properly with the django LDAP client and, most of the time, it helps to disable referrals. Disable LDAP
referrals by adding the following lines to your /etc/tower/conf.d/custom.py file:

AUTH_LDAP_GLOBAL_OPTIONS = {
ldap.OPT_REFERRALS: False,

}

Note: “Referrals” are disabled by default in automation controller version 2.4.3 and above. If you are running an
earlier version of the controller, you should consider adding this parameter to your configuration file.

For details on completing the mapping fields, see LDAP Organization and Team Mapping.

23.1. Referrals 132

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/best_practices.html#ug-ldap-auth-perf-tips

Automation Controller Administration Guide, Release Automation Controller 4.3.0

23.2 Enabling Logging for LDAP

To enable logging for LDAP, you must set the level to DEBUG in the Settings configuration window:

1. Click Settings from the left navigation pane and click to select Logging settings from the System list of options.

2. Click Edit.

3. Set the Logging Aggregator Level Threshold field to Debug.

4. Click Save to save your changes.

23.3 LDAP Organization and Team Mapping

Next, you will need to control which users are placed into which controller organizations based on LDAP attributes
(mapping out between your organization admins/users and LDAP groups).

Keys are organization names. Organizations will be created if not present. Values are dictionaries defining the options
for each organization’s membership. For each organization, it is possible to specify what groups are automatically
users of the organization and also what groups can administer the organization.

admins: None, True/False, string or list/tuple of strings.

• If None, organization admins will not be updated based on LDAP values.

• If True, all users in LDAP will automatically be added as admins of the organization.

• If False, no LDAP users will be automatically added as admins of the organiation.

• If a string or list of strings, specifies the group DN(s) that will be added of the organization if they match
any of the specified groups.

remove_admins: True/False. Defaults to False.

• When True, a user who is not an member of the given groups will be removed from the organization’s
administrative list.

users: None, True/False, string or list/tuple of strings. Same rules apply as for admins.

remove_users: True/False. Defaults to False. Same rules apply as remove_admins.

23.2. Enabling Logging for LDAP 133

Automation Controller Administration Guide, Release Automation Controller 4.3.0

{
"LDAP Organization": {

"admins": "cn=engineering_admins,ou=groups,dc=example,dc=com",
"remove_admins": false,
"users": [
"cn=engineering,ou=groups,dc=example,dc=com",
"cn=sales,ou=groups,dc=example,dc=com",
"cn=it,ou=groups,dc=example,dc=com"

],
"remove_users": false

},
"LDAP Organization 2": {

"admins": [
"cn=Administrators,cn=Builtin,dc=example,dc=com"

],
"remove_admins": false,
"users": true,
"remove_users": false

}
}

Mapping between team members (users) and LDAP groups. Keys are team names (will be created if not present).
Values are dictionaries of options for each team’s membership, where each can contain the following parameters:

organization: string. The name of the organization to which the team belongs. The team will be created if the
combination of organization and team name does not exist. The organization will first be created if it does not
exist.

users: None, True/False, string or list/tuple of strings.

• If None, team members will not be updated.

• If True/False, all LDAP users will be added/removed as team members.

• If a string or list of strings, specifies the group DN(s). User will be added as a team member if the user is a
member of ANY of these groups.

remove: True/False. Defaults to False. When True, a user who is not a member of the given groups will be removed
from the team.

{
"LDAP Engineering": {

"organization": "LDAP Organization",
"users": "cn=engineering,ou=groups,dc=example,dc=com",
"remove": true

},
"LDAP IT": {

"organization": "LDAP Organization",
"users": "cn=it,ou=groups,dc=example,dc=com",
"remove": true

},
"LDAP Sales": {

"organization": "LDAP Organization",
"users": "cn=sales,ou=groups,dc=example,dc=com",
"remove": true

}
}

23.3. LDAP Organization and Team Mapping 134

CHAPTER

TWENTYFOUR

CHANGING THE DEFAULT TIMEOUT FOR AUTHENTICATION

The default length of time, in seconds, that your supplied token is valid can be changed in the System Settings screen
of the controller user interface:

1. From the Settings () Menu screen, click System.

2. Select the Misc. System tab, if not already the default view.

3. Enter the timeout period in seconds in the Idle Time Force Log Out text field.

4. Click Save to apply your changes.

Note: If you are accessing the controller directly and are having trouble getting your authentication to stay, in that
you have to keep logging in over and over, try clearing your web browser’s cache. In situations like this, it is often
found that the authentication token has been cached in the browser session and must be cleared.

135

CHAPTER

TWENTYFIVE

USER AUTHENTICATION WITH KERBEROS

User authentication via Active Directory (AD), also referred to as authentication through Kerberos, is supported
through the automation controller.

To get started, first set up the Kerberos packages in the controller system so that you can successfully generate a
Kerberos ticket. To install the packages, use the following steps:

yum install krb5-workstation
yum install krb5-devel
yum install krb5-libs

Once installed, edit the /etc/krb5.conf file, as follows, to provide the address of the AD, the domain, etc.:

[logging]
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log

[libdefaults]
default_realm = WEBSITE.COM
dns_lookup_realm = false
dns_lookup_kdc = false
ticket_lifetime = 24h
renew_lifetime = 7d
forwardable = true

[realms]
WEBSITE.COM = {
kdc = WIN-SA2TXZOTVMV.website.com
admin_server = WIN-SA2TXZOTVMV.website.com

}

[domain_realm]
.website.com = WEBSITE.COM
website.com = WEBSITE.COM

After the configuration file has been updated, you should be able to successfully authenticate and get a valid token.
The following steps show how to authenticate and get a token:

[root@ip-172-31-26-180 ~]# kinit username
Password for username@WEBSITE.COM:
[root@ip-172-31-26-180 ~]#

Check if we got a valid ticket.

(continues on next page)

136

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

[root@ip-172-31-26-180 ~]# klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: username@WEBSITE.COM

Valid starting Expires Service principal
01/25/16 11:42:56 01/25/16 21:42:53 krbtgt/WEBSITE.COM@WEBSITE.COM
renew until 02/01/16 11:42:56

[root@ip-172-31-26-180 ~]#

Once you have a valid ticket, you can check to ensure that everything is working as expected from command line. To
test this, make sure that your inventory looks like the following:

[windows]
win01.WEBSITE.COM

[windows:vars]
ansible_user = username@WEBSITE.COM
ansible_connection = winrm
ansible_port = 5986

You should also:

• Ensure that the hostname is the proper client hostname matching the entry in AD and is not the IP address.

• In the username declaration, ensure that the domain name (the text after @) is properly entered with regard to
upper- and lower-case letters, as Kerberos is case sensitive. For the controller, you should also ensure that the
inventory looks the same.

Note: If you encounter a Server not found in Kerberos database error message, and your inventory is
configured using FQDNs (not IP addresses), ensure that the service principal name is not missing or mis-configured.

Now, running a playbook should run as expected. You can test this by running the playbook as the awx user.

Once you have verified that playbooks work properly, integration with the controller is easy. Generate the Kerberos
ticket as the awx user and the controller should automatically pick up the generated ticket for authentication.

Note: The python kerberos package must be installed. Ansible is designed to check if kerberos package is
installed and, if so, it uses kerberos authentication.

25.1 AD and Kerberos Credentials

Active Directory only:

• If you are only planning to run playbooks against Windows machines with AD usernames and passwords as
machine credentials, you can use “user@<domain>” format for the username and an associated password.

With Kerberos:

• If Kerberos is installed, you can create a machine credential with the username and password, using the
“user@<domain>” format for the username.

25.1. AD and Kerberos Credentials 137

Automation Controller Administration Guide, Release Automation Controller 4.3.0

25.2 Working with Kerberos Tickets

Ansible defaults to automatically managing Kerberos tickets when both the username and password are specified in
the machine credential for a host that is configured for kerberos. A new ticket is created in a temporary credential
cache for each host, before each task executes (to minimize the chance of ticket expiration). The temporary credential
caches are deleted after each task, and will not interfere with the default credential cache.

To disable automatic ticket management (e.g., to use an existing SSO ticket or call kinit manually to populate the
default credential cache), set ansible_winrm_kinit_mode=manual via the inventory.

Automatic ticket management requires a standard kinit binary on the control host system path. To specify a different
location or binary name, set the ansible_winrm_kinit_cmd inventory variable to the fully-qualified path to an
MIT krbv5 kinit-compatible binary.

25.2. Working with Kerberos Tickets 138

CHAPTER

TWENTYSIX

WORKING WITH SESSION LIMITS

Setting a session limit allows administrators to limit the number of simultaneous sessions per user or per IP address.

In automation controller, a session is created for each browser that a user uses to log in, which forces the user to log
out any extra sessions after they exceed the administrator-defined maximum.

Session limits may be important, depending on your particular setup. For example, perhaps you only want a single
user on your system with a single login per device (where the user could log in on his work laptop, phone, or home
computer). In such a case, you would want to create a session limit equal to 1 (one). If the user logs in on his laptop, for
example, then logs in using his phone, his laptop session expires (times out) and only the login on the phone persists.

While session counts can be very limited, they can also be expanded to cover as many session logins as are needed by
your organization.

When a user logs in and their login results in other users being logged out, the session limit has been reached and those
users who are logged out are notified as to why the logout occurred.

To make changes to your session limits, navigate to the Miscellaneous System settings of the Settings menu and
edit the Maximum Number Of Simultaneous Logged In Sessions setting or use the Browsable API if you are
comfortable with making REST requests.

Note: To make the best use of session limits, disable AUTH_BASIC_ENABLED by changing the value to False,
as it falls outside of the scope of session limit enforcement. Alternatively, in the System Settings of the controller UI,
toggle the Enable HTTP Basic Auth to off.

139

http://docs.ansible.com/automation-controller/4.3.0/html/controllerapi/browseable.html#api-browsable-api

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Caution: Proactive session limits will kick the user out when the session is idle. It is strongly recommended that
you do not set the session limit to anything less than 1 minute, as doing so will break your automation controller
instance.

140

CHAPTER

TWENTYSEVEN

BACKING UP AND RESTORING

The ability to backup and restore your system(s) is integrated into the platform setup playbook. Refer to Backup and
Restore for Clustered Environments for additional considerations.

Note: When restoring, be sure to restore to the same version from which it was backed up. However, you should
always use the most recent minor version of a release to backup and/or restore your platform installation version. For
example, if the current platform version you are on is 2.0.x, use only the latest 2.0 installer.

Also, backup and restore will only work on PostgreSQL versions supported by your current platform version. For
more information, see System Requirements.

The platform setup playbook is invoked as setup.sh from the path where you unpacked the platform installer tarball.
It uses the same inventory file used by the install playbook. The setup script takes the following arguments for backing
up and restoring:

• -b Perform a database backup rather than an installation.

• -r Perform a database restore rather than an installation.

As the root user, call setup.sh with the appropriate parameters and the platform backup or restored as configured.

root@localhost:~# ./setup.sh -b

root@localhost:~# ./setup.sh -r

Backup files will be created on the same path that setup.sh script exists. It can be changed by specifying the following
EXTRA_VARS :

root@localhost:~# ./setup.sh -e 'backup_dest=/path/to/backup_dir/' -b

A default restore path is used unless EXTRA_VARS are provided with a non-default path, as shown in the example
below:

root@localhost:~# ./setup.sh -e 'restore_backup_file=/path/to/nondefault/backup.tar.gz
↪→' -r

Optionally, you can override the inventory file used by passing it as an argument to the setup script:

setup.sh -i <inventory file>

141

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.0-ea/html-single/red_hat_ansible_automation_platform_installation_guide/index?lb_target=production#red_hat_ansible_automation_platform_system_requirements

Automation Controller Administration Guide, Release Automation Controller 4.3.0

27.1 Backup/Restore Playbooks

In addition to the install.yml file included with your setup.sh setup playbook, there are also backup.yml
and restore.yml files for your backup and restoration needs.

These playbooks serve two functions–backup and restore.

• The overall backup will backup:

1. the database

2. the SECRET_KEY file

• The per-system backups include:

1. custom user config files

2. manual projects

• The restore will restore the backed up files and data to a freshly installed and working second instance of the
controller.

When restoring your system, the installer checks to see that the backup file exists before beginning the restoration. If
the backup file is not available, your restoration will fail.

Note: Ensure your controller host(s) are properly set up with SSH keys or user/pass variables in the hosts file, and
that the user has sudo access.

27.2 Backup and Restoration Considerations

• Disk Space: Review your disk space requirements to ensure you have enough room to backup configuration
files, keys, and other relevant files, plus the database of the platform installation.

• System Credentials: Confirm you have the system credentials you need when working with a local database or
a remote database. On local systems, you may need root or sudo access, depending on how credentials were
setup. On remote systems, you may need different credentials to grant you access to the remote system you are
trying to backup or restore.

• You should always use the most recent minor version of a release to backup and/or restore your platform instal-
lation version. For example, if the current platform version you are on is 2.0.x, use only the latest 2.0 installer.

• When using setup.sh to do a restore from the default restore file path, /var/lib/awx, -r is still
required in order to do the restore, but it no longer accepts an argument. If a non-default restore file
path is needed, the user must provide this as an extra var (root@localhost:~# ./setup.sh -e
'restore_backup_file=/path/to/nondefault/backup.tar.gz' -r).

• If the backup file is placed in the same directory as the setup.sh installer, the restore playbook will automat-
ically locate the restore files. In this case, you do not need to use the restore_backup_file extra var to
specify the location of the backup file.

27.1. Backup/Restore Playbooks 142

Automation Controller Administration Guide, Release Automation Controller 4.3.0

27.3 Backup and Restore for Clustered Environments

The procedure for backup and restore for a clustered environment is similar to a single install, except with some
considerations described in this section.

• If restoring to a new cluster, make sure the old cluster is shut down before proceeding because they could conflict
with each other when accessing the database.

• Per-node backups will only be restored to nodes bearing the same hostname as the backup.

When restoring to an existing cluster, the restore contains:

• Dump of the PostgreSQL database

• UI artifacts (included in database dump)

• Controller configuration (retrieved from /etc/tower)

• Controller secret key

• Manual projects

27.3.1 Restoring to a different cluster

When restoring a backup to a separate instance or cluster, manual projects and custom settings under /etc/tower are
retained. Job output and job events are stored in the database, and therefore, not affected.

The restore process will not alter instance groups present before the restore (neither will it introduce any new instance
groups). Restored controller resources that were associated to instance groups will likely need to be reassigned to
instance groups present on the new controller cluster.

27.3. Backup and Restore for Clustered Environments 143

CHAPTER

TWENTYEIGHT

USING CUSTOM LOGOS IN AUTOMATION CONTROLLER

automation controller supports the use of a custom logo. You can add a custom logo by uploading an image; and
supply a custom login message from the User Interface settings of the Settings menu.

For the custom logo to look its best, use a .png file with a transparent background. GIF, PNG, and JPEG formats are
supported.

If needed, you can add specific information (such as a legal notice or a disclaimer) to a text box in the login modal by
adding it to the Custom Login Info text field.

For example, if you uploaded a specific logo, and added the following text:

The Tower login dialog would look like this:

144

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Selecting Revert will result in the appearance of the standard automation controller logo.

145

CHAPTER

TWENTYNINE

USABILITY ANALYTICS AND DATA COLLECTION

Usability data collection is included with automation controller to collect data to better understand how controller
users specifically interact with it, to help enhance future releases, and to continue streamlining your user experience.

Only users installing a trial of Red Hat Ansible Automation Platform or a fresh installation of automation controller
are opted-in for this data collection.

Automation controller collects user data automatically to help improve the product. You can opt out or control the way
the controller collects data by setting your participation level in the User Interface settings in the Settings menu.

1. Click Settings from the left navigation bar and select User Interface settings.

2. Click Edit.

3. Select the desired level of data collection from the User Analytics Tracking State drop-down list:

• Off: Prevents any data collection.

• Anonymous: Enables data collection without your specific user data.

• Detailed: Enables data collection including your specific user data.

4. Click Save to apply the settings or Cancel to abandon the changes.

For more information, see the Red Hat privacy policy at https://www.redhat.com/en/about/privacy-policy.

146

https://www.redhat.com/en/about/privacy-policy

Automation Controller Administration Guide, Release Automation Controller 4.3.0

29.1 Automation Analytics

When you imported your license for the first time, you were given options related to the collection of data that powers
Automation Analytics, a cloud service that is part of the Ansible Automation Platform subscription. For opt-in of Au-
tomation Analytics to have any effect, your instance of automation controller must be running on Red Hat Enterprise
Linux.

Much like Red Hat Insights, Automation Analytics is built to only collect the minimum amount of data needed. No
credential secrets, personal data, automation variables, or task output is gathered. For more information, see Details
of data collection below.

In order to enable this feature, turn on data collection for Automation Analytics and enter your Red Hat customer
credentials in the Miscellaneous System settings of the System configuration list of options located in the Settings
menu.

You can view the location to which the collection of insights data will be uploaded in the Automation Analytics
upload URL field in the Details view.

By default, the Automation Analytics data is collected every 4 hours and upon enabling the feature, data will be
collected up to a month back (or until the previous collection). You may turn off this data collection at any time in the
Miscellaneous System settings of the System configuration window.

This setting can also be enabled via the API by specifying INSIGHTS_TRACKING_STATE = True in either of
these endpoints:

• api/v2/settings/all

29.1. Automation Analytics 147

Automation Controller Administration Guide, Release Automation Controller 4.3.0

• api/v2/settings/system

The Automation Analytics generated from this data collection will be found on the Red Hat Cloud Services portal.

The Clusters data is the default view. This graph represents the number of job runs across all controller clusters over a
period of time. The example above shows a span of a week in a stacked bar-style chart that is organized by the number
of jobs that ran successfully (in green) and jobs that failed (in red).

Alternatively, you can select a single cluster to view its job status information.

This multi-line chart represents the number of job runs for a single controller cluster for a specified period of time.
The example here shows a span of a week, organized by the number of successfully running jobs (in green) and jobs
that failed (in red). You can specify the number of successful and failed job runs for a selected cluster over a span of
one week, two weeks, and monthly increments.

Click Organization Statistics from the left navigation pane to view information for the following:

29.1. Automation Analytics 148

https://cloud.redhat.com

Automation Controller Administration Guide, Release Automation Controller 4.3.0

• Usage by organization

• Job runs by organization

• Organization status

29.1.1 Usage by organization

This pie chart represents the number of tasks ran inside all jobs by a particular organization.

29.1.2 Job runs by organization

This pie chart represents the controller usage across all controller clusters by organization, which is calculated by the
number of jobs run by that organization.

29.1. Automation Analytics 149

Automation Controller Administration Guide, Release Automation Controller 4.3.0

29.1.3 Organization status

This bar chart represents the controller usage by organization and date, which is calculated by the number of jobs run
by that organization on a particular date. Alternatively, you can specify to show the number of job runs per organization
in one week, two weeks, and monthly increments.

29.1. Automation Analytics 150

Automation Controller Administration Guide, Release Automation Controller 4.3.0

29.2 Details of data collection

Automation Analytics collects certain classes of data from automation controller:

• Basic configuration, like which features are enabled, and what operating system is being used

• Topology and status of the controller environment and hosts, including capacity and health

• Counts of automation resources:

– organizations, teams, and users

– inventories and hosts

– credentials (indexed by type)

– projects (indexed by type)

– templates

– schedules

– active sessions

– running and pending jobs

• Job execution details (start time, finish time, launch type, and success)

• Automation task details (success, host id, playbook/role, task name, and module used)

You can use awx-manage gather_analytics (without --ship) to inspect the data that the controller sends
so you can satisfy your data collection concerns. This will create a tarball that contains the analytics data that would
be sent to Red Hat.

This file contains a number of JSON and CSV files. Each file contains a different set of analytics data.

• manifest.json

• config.json

• instance_info.json

• counts.json

• org_counts.json

• cred_type_counts.json

• inventory_counts.json

• projects_by_scm_type.json

• query_info.json

• job_counts.json

• job_instance_counts.json

• unified_job_template_table.csv

• unified_jobs_table.csv

• workflow_job_template_node_table.csv

• workflow_job_node_table.csv

29.2. Details of data collection 151

Automation Controller Administration Guide, Release Automation Controller 4.3.0

• events_table.csv

29.2.1 manifest.json

manifest.json is the manifest of the analytics data. It describes each file included in the collection, and what version of
the schema for that file is included. An example manifest is:

{
"config.json": "1.1",
"counts.json": "1.0",
"cred_type_counts.json": "1.0",
"events_table.csv": "1.1",
"instance_info.json": "1.0",
"inventory_counts.json": "1.2",
"job_counts.json": "1.0",
"job_instance_counts.json": "1.0",
"org_counts.json": "1.0",
"projects_by_scm_type.json": "1.0",
"query_info.json": "1.0",
"unified_job_template_table.csv": "1.0",
"unified_jobs_table.csv": "1.0",
"workflow_job_node_table.csv": "1.0",
"workflow_job_template_node_table.csv": "1.0"

}

29.2.2 config.json

The config.json file contains a subset of the configuration endpoint /api/v2/config from the cluster. An example
config.json is:

{
"ansible_version": "2.9.1",
"authentication_backends": [

"social_core.backends.azuread.AzureADOAuth2",
"django.contrib.auth.backends.ModelBackend"

],
"external_logger_enabled": true,
"external_logger_type": "splunk",
"free_instances": 1234,
"install_uuid": "d3d497f7-9d07-43ab-b8de-9d5cc9752b7c",
"instance_uuid": "bed08c6b-19cc-4a49-bc9e-82c33936e91b",
"license_expiry": 34937373,
"license_type": "enterprise",
"logging_aggregators": [

"awx",
"activity_stream",
"job_events",
"system_tracking"

],
"pendo_tracking": "detailed",
"platform": {

"dist": [
"redhat",
"7.4",

(continues on next page)

29.2. Details of data collection 152

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

"Maipo"
],
"release": "3.10.0-693.el7.x86_64",
"system": "Linux",
"type": "traditional"

},
"total_licensed_instances": 2500,
"controller_url_base": "https://ansible.rhdemo.io",
"controller_version": "3.6.3"

}

A reference of fields collected:

ansible_version The system Ansible version on the host

authentication_backends What user authentication backends are available. For more information, refer to Setting
up Social Authentication or see Setting up LDAP Authentication.

external_logger_enabled Whether external logging is enaled

external_logger_type What logging backend is in use if enabled. See Logging and Aggregation for details

logging_aggregators What logging categories are sent to external logging. See Logging and Aggregation for details

free_instances How many hosts are available in the license. A value of zero means the cluster is fully consuming its
license.

install_uuid A UUID for the installation (identical for all cluster nodes)

instance_uuid A UUID for the instance (different for each cluster node)

license_expiry Time to expiry of the license, in seconds

license_type Type of the license (should be ‘enterprise’ for most cases)

pendo_tracking State of Usability Analytics and Data Collection

platform The operating system the cluster is running on

total_licensed_instances The total number of hosts in the license

controller_url_base The base URL for the cluster used by clients (shown in Automation Analytics)

controller_version Version of the software on the cluster

29.2.3 instance_info.json

The instance_info.json file contains detailed information on the instances that make up the cluster, organized by in-
stance UUID. An example instance_info.json is:

{
"bed08c6b-19cc-4a49-bc9e-82c33936e91b": {

"capacity": 57,
"cpu": 2,
"enabled": true,
"last_isolated_check": "2019-08-15T14:48:58.553005+00:00",
"managed_by_policy": true,
"memory": 8201400320,
"uuid": "bed08c6b-19cc-4a49-bc9e-82c33936e91b",
"version": "3.6.3"

(continues on next page)

29.2. Details of data collection 153

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

}
"c0a2a215-0e33-419a-92f5-e3a0f59bfaee": {

"capacity": 57,
"cpu": 2,
"enabled": true,
"last_isolated_check": "2019-08-15T14:48:58.553005+00:00",
"managed_by_policy": true,
"memory": 8201400320,
"uuid": "c0a2a215-0e33-419a-92f5-e3a0f59bfaee",
"version": "3.6.3"

}
}

A reference of fields collected:

capacity The capacity of the instance for executing tasks. See <link> for details on how this is calculated.

cpu CPU cores for the instance

memory Memory for the instance

enabled Whether the instance is enabled and accepting tasks

managed_by_policy Whether the instance’s membership in instance groups is managed by policy, or manually man-
aged

version Version of the software on the instance

29.2.4 counts.json

The counts.json file contains the total number of objects for each relevant category in a cluster. An example counts.json
is:

{
"active_anonymous_sessions": 1,
"active_host_count": 682,
"active_sessions": 2,
"active_user_sessions": 1,
"credential": 38,
"custom_inventory_script": 2,
"custom_virtualenvs": 4,
"host": 697,
"inventories": {

"normal": 20,
"smart": 1

},
"inventory": 21,
"job_template": 78,
"notification_template": 5,
"organization": 10,
"pending_jobs": 0,
"project": 20,
"running_jobs": 0,
"schedule": 16,
"team": 5,
"unified_job": 7073,
"user": 28,

(continues on next page)

29.2. Details of data collection 154

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

"workflow_job_template": 15
}

Each entry in this file is for the corresponding API objects in /api/v2, with the exception of the active session
counts.

29.2.5 org_counts.json

The org_counts.json file contains information on each organization in the cluster, and the number of users and teams
associated with that organization. An example org_counts.json is:

{
"1": {

"name": "Operations",
"teams": 5,
"users": 17

},
"2": {

"name": "Development",
"teams": 27,
"users": 154

},
"3": {

"name": "Networking",
"teams": 3,
"users": 28

}
}

29.2.6 cred_type_counts.json

The cred_type_counts.json file contains information on the different credential types in the cluster, and how many
credentials exist for each type. An example cred_type_counts.json is:

{
"1": {

"credential_count": 15,
"managed_by_controller": true,
"name": "Machine"

},
"2": {

"credential_count": 2,
"managed_by_controller": true,
"name": "Source Control"

},
"3": {

"credential_count": 3,
"managed_by_controller": true,
"name": "Vault"

},
"4": {

"credential_count": 0,
"managed_by_controller": true,

(continues on next page)

29.2. Details of data collection 155

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

"name": "Network"
},
"5": {

"credential_count": 6,
"managed_by_controller": true,
"name": "Amazon Web Services"

},
"6": {

"credential_count": 0,
"managed_by_controller": true,
"name": "OpenStack"

},
...

29.2.7 inventory_counts.json

The inventory_counts.json file contains information on the different inventories in the cluster. An example inven-
tory_counts.json is:

{
"1": {

"hosts": 211,
"kind": "",
"name": "AWS Inventory",
"source_list": [

{
"name": "AWS",
"num_hosts": 211,
"source": "ec2"

}
],
"sources": 1

},
"2": {

"hosts": 15,
"kind": "",
"name": "Manual inventory",
"source_list": [],
"sources": 0

},
"3": {

"hosts": 25,
"kind": "",
"name": "SCM inventory - test repo",
"source_list": [

{
"name": "Git source",
"num_hosts": 25,
"source": "scm"

}
],
"sources": 1

}
"4": {

"num_hosts": 5,

(continues on next page)

29.2. Details of data collection 156

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

"kind": "smart",
"name": "Filtered AWS inventory",
"source_list": [],
"sources": 0

}
}

29.2.8 projects_by_scm_type.json

The projects_by_scm_type.json file provides a breakdown of all projects in the cluster, by source control type. An
example projects_by_scm_type.json is:

{
"git": 27,
"hg": 0,
"insights": 1,
"manual": 0,
"svn": 0

}

29.2.9 query_info.json

The query_info.json file provides details on when and how the data collection happened. An example query_info.json
is:

{
"collection_type": "manual",
"current_time": "2019-11-22 20:10:27.751267+00:00",
"last_run": "2019-11-22 20:03:40.361225+00:00"

}

collection_type is one of “manual” or “automatic”.

29.2.10 job_counts.json

The job_counts.json file provides details on the job history of the cluster, describing both how jobs were launched, and
what their finishing status is. An example job_counts.json is:

{
"launch_type": {

"dependency": 3628,
"manual": 799,
"relaunch": 6,
"scheduled": 1286,
"scm": 6,
"workflow": 1348

},
"status": {

"canceled": 7,
"failed": 108,
"successful": 6958

},

(continues on next page)

29.2. Details of data collection 157

Automation Controller Administration Guide, Release Automation Controller 4.3.0

(continued from previous page)

"total_jobs": 7073
}

29.2.11 job_instance_counts.json

The job_instance_counts.json file provides the same detail as job_counts.json, broken down by instance. An example
job_instance_counts.json is:

{
"localhost": {

"launch_type": {
"dependency": 3628,
"manual": 770,
"relaunch": 3,
"scheduled": 1009,
"scm": 6,
"workflow": 1336

},
"status": {

"canceled": 2,
"failed": 60,
"successful": 6690

}
}

}

Note that instances in this file are by hostname, not by UUID as they are in instance_info.

29.2.12 unified_job_template_table.csv

The unified_job_template_table.csv file provides information on job templates in the system. Each line contains the
following fields for the job template:

id Job template id

name Job template name

polymorphic_ctype_id The id of the type of template it is

model The name of the polymorphic_ctype_id for the template. Examples include ‘project’, ‘systemjobtemplate’,
‘jobtemplate’, ‘inventorysource’, and ‘workflowjobtemplate’

created When the template was created

modified When the template was last updated

created_by_id The userid that created the template. Blank if done by the system.

modified_by_id The userid that last modified the template. Blank if done by the system.

current_job_id Currently executing job id for the template, if any

last_job_id Last execution of the job

last_job_run Time of last execution of the job

last_job_failed Whether the last_job_id failed

status Status of last_job_id

29.2. Details of data collection 158

Automation Controller Administration Guide, Release Automation Controller 4.3.0

next_job_run Next scheduled execution of the template, if any

next_schedule_id Schedule id for next_job_run, if any

29.2.13 unified_jobs_table.csv

The unified_jobs_table.csv file provides information on jobs run by the system. Each line contains the following fields
for a job:

id Job id

name Job name (from the template)

polymorphic_ctype_id The id of the type of job it is

model The name of the polymorphic_ctype_id for the job. Examples include ‘job’, ‘worfklow’, and more.

organization_id The organization ID for the job

organization_name Name for the organization_id

created When the job record was created

started When the job started executing

finished When the job finished

elapsed Elapsed time for the job in seconds

unified_job_template_id The template for this job

launch_type One of “manual”, “scheduled”, “relaunched”, “scm”, “workflow”, or “dependnecy”

schedule_id The id of the schedule that launched the job, if any

instance_group_id The instance group that executed the job

execution_node The node that executed the job (hostname, not UUID)

controller_node The controller node for the job, if run as an isolated job, or in a container group

cancel_flag Whether the job was cancelled

status Status of the job

failed Whether the job failed

job_explanation Any additional detail for jobs that failed to execute properly

forks Number of forks executed for this job

29.2.14 workflow_job_template_node_table.csv

The workflow_job_template_node_table.csv provides information on the nodes defined in workflow job templates on
the system.

Each line contains the following fields for a worfklow job template node:

id Node id

created When the node was created

modified When the node was last updated

unified_job_template_id The id of the job template, project, inventory, or other parent resource for this node

29.2. Details of data collection 159

Automation Controller Administration Guide, Release Automation Controller 4.3.0

workflow_job_template_id The workflow job template that contains this node

inventory_id The inventory used by this node

success_nodes Nodes that are triggered after this node succeeds

failure_nodes Nodes that are triggered after this node fails

always_nodes Nodes that always are triggered after this node finishes

all_parents_must_converge Whether this node requires all its parent conditions satisfied to start

29.2.15 workflow_job_node_table.csv

The workflow_job_node_table.csv provides information on the jobs that have been executed as part of a workflow on
the system.

Each line contains the following fields for a job run as part of a workflow:

id Node id

created When the node record was created

modified When the node record was last updated

job_id The job id for the job run for this node

unified_job_tempalte_id The id of the job template, project, inventory, or other parent resource for this job run

workflow_job_id The parent workflow job for this job run

inventory_id The inventory used by this job

success_nodes Nodes that were/would be triggered after this node succeded

failure_nodes Nodes that were/would be triggered after this node failed

always_nodes Nodes that were/would be triggered after this node finished

do_not_run Nodes that were not run in the workflow due to their start conditions not being triggered

all_parents_must_converge Whether this node required all its parent conditions satisfied to start

29.2.16 events_table.csv

The events_table.csv file provides information on all job events from all job runs in the system. Each line contains the
following fields for a job event:

id Event id

uuid Event UUID

created When the event was created

parent_uuid The parent UUID for this event, if any

event The Ansible event type (such as runner_on_failed

task_action The module associated with this event, if any (such as ‘command’ or ‘yum’)

failed Whether the event returned “failed”

changed Whether the event returned “changed”

playbook Playbook associated with the event

29.2. Details of data collection 160

Automation Controller Administration Guide, Release Automation Controller 4.3.0

play Play name from playbook

task Task name from playbook

role Role name from playbook

job_id Id of the job this event is from

host_id Id of the host this event is associated with, if any

host_name Name of the host this event is associated with, if any

start Start time of the task

end End time of the task

duration Duration of the task

warnings Any warnings from the task/module

deprecations Any deprecation warnings from the task/module

29.2. Details of data collection 161

CHAPTER

THIRTY

TROUBLESHOOTING THE CONTROLLER

30.1 Error logs

The controller server errors are logged in /var/log/tower. Supervisors logs can be found in /var/log/
supervisor/. Nginx web server errors are logged in the httpd error log. Configure other controller logging needs
in /etc/tower/conf.d/.

Explore client-side issues using the JavaScript console built into most browsers and report any errors to Ansible via
the Red Hat Customer portal at https://access.redhat.com/.

30.2 sosreport

The sosreport is a utility that collects diagnostic information for Support to be able to use to analyze and investigate
the issues you report. To properly provide Technical Support this information, refer to the Knowledgebase article for
sosreport from the Red Hat Customer portal to perform the following procedures:

1. Install the sosreport utility.

2. Generate an sosreport.

3. Provide the sosreport to Red Hat Support.

30.3 Problems connecting to your host

If you are unable to run the helloworld.yml example playbook from the Quick Start Guide or other playbooks
due to host connection errors, try the following:

• Can you ssh to your host? Ansible depends on SSH access to the servers you are managing.

• Are your hostnames and IPs correctly added in your inventory file? (Check for typos.)

162

https://access.redhat.com/
https://access.redhat.com/solutions/3592
https://access.redhat.com/solutions/3592
https://access.redhat.com/solutions/3592#install
https://access.redhat.com/solutions/3592#command

Automation Controller Administration Guide, Release Automation Controller 4.3.0

30.4 Unable to login to the controller via HTTP

Access to the controller is intentionally restricted through a secure protocol (HTTPS). In cases where your configura-
tion is set up to run a controller node behind a load balancer or proxy as “HTTP only”, and you only want to access it
without SSL (for troubleshooting, for example), you must add the following settings in the custom.py file located
at /etc/tower/conf.d of your controller instance:

SESSION_COOKIE_SECURE = False
CSRF_COOKIE_SECURE = False

Changing these settings to False will allow the controller to manage cookies and login sessions when using the
HTTP protocol. This must be done on every node of a cluster installation to properly take effect.

To apply the changes, run:

automation-controller-service restart

30.5 WebSockets port for live events not working

automation controller uses port 80/443 on the controller server to stream live updates of playbook activity and other
events to the client browser. These ports are configured for 80/443 by default, but if they are blocked by firewalls,
close any firewall rules that opened up or added for the previous websocket ports, this will ensure your firewall allows
traffic through this port.

30.6 Problems running a playbook

If you are unable to run the helloworld.yml example playbook from the Quick Start Guide or other playbooks
due to playbook errors, try the following:

• Are you authenticating with the user currently running the commands? If not, check how the username has been
setup or pass the --user=username or -u username commands to specify a user.

• Is your YAML file correctly indented? You may need to line up your whitespace correctly. Indentation level is
significant in YAML. You can use yamlint to check your playbook. For more information, refer to the YAML
primer at: http://docs.ansible.com/YAMLSyntax.html

• Items beginning with a - are considered list items or plays. Items with the format of key: value operate
as hashes or dictionaries. Ensure you don’t have extra or missing - plays.

30.7 Problems when running a job

If you are having trouble running a job from a playbook, you should review the playbook YAML file. When importing
a playbook, either manually or via a source control mechanism, keep in mind that the host definition is controlled by
the controller and should be set to hosts: all.

30.4. Unable to login to the controller via HTTP 163

http://docs.ansible.com/YAMLSyntax.html

Automation Controller Administration Guide, Release Automation Controller 4.3.0

30.8 Playbooks aren’t showing up in the “Job Template” drop-down

If your playbooks are not showing up in the Job Template drop-down list, here are a few things you can check:

• Make sure that the playbook is valid YML and can be parsed by Ansible.

• Make sure the permissions and ownership of the project path (/var/lib/awx/projects) is set up so that the “awx”
system user can view the files. You can run this command to change the ownership:

chown awx -R /var/lib/awx/projects/

30.9 Playbook stays in pending

If you are attempting to run a playbook Job and it stays in the “Pending” state indefinitely, try the following:

• Ensure all supervisor services are running via supervisorctl status.

• Check to ensure that the /var/ partition has more than 1 GB of space available. Jobs will not complete with
insufficient space on the /var/ partition.

• Run automation-controller-service restart on the controller server.

If you continue to have problems, run sosreport as root on the controller server, then file a support request with
the result.

30.10 Cancel a controller job

When issuing a cancel request on a currently running controller job, the controller issues a SIGINT to the
ansible-playbook process. While this causes Ansible to stop dispatching new tasks and exit, in many cases,
module tasks that were already dispatched to remote hosts will run to completion. This behavior is similar to pressing
Ctrl-C during a command-line Ansible run.

With respect to software dependencies, if a running job is canceled, the job is essentially removed but the dependencies
will remain.

30.11 Reusing an external database causes installations to fail

Instances have been reported where reusing the external DB during subsequent installation of nodes causes installation
failures.

For example, say that you performed a clustered installation. Next, say that you needed to do this again and performed
a second clustered installation reusing the same external database, only this subsequent installation failed.

When setting up an external database which has been used in a prior installation, the database used for the clustered
node must be manually cleared before any additional installations can succeed.

Automation controller uses container technology to isolate jobs from each other. By default, only the current project
is exposed to the container running a job template.

You may find that you need to customize your playbook runs to expose additional directories. To fine tune your usage
of job isolation, there are certain variables that can be set.

30.8. Playbooks aren’t showing up in the “Job Template” drop-down 164

http://support.ansible.com/

Automation Controller Administration Guide, Release Automation Controller 4.3.0

By default, automation controller will use the system’s tmp directory (/tmp by default) as its staging area. This can be
changed in the Job Execution Path field of the Jobs settings screen, or in the REST API at /api/v2/settings/
jobs:

AWX_ISOLATION_BASE_PATH = "/opt/tmp"

If there are any additional directories that should specifically be exposed from the host to the container that playbooks
run in, you can specify those in the Paths to Expose to Isolated Jobs field of the Jobs setting scren, or in the REST
API at /api/v2/settings/jobs:

AWX_ISOLATION_SHOW_PATHS = ['/list/of/', '/paths']

Note: The primary file you may want to add to AWX_ISOLATION_SHOW_PATHS is /var/lib/
awx/.ssh, if your playbooks need to use keys or settings defined there.

The above fields can be found in the Jobs Settings window:

30.11. Reusing an external database causes installations to fail 165

Automation Controller Administration Guide, Release Automation Controller 4.3.0

30.12 Private EC2 VPC Instances in the controller Inventory

By default, the controller only shows instances in a VPC that have an Elastic IP (EIP) associated with them. To see all
of your VPC instances, perform the following steps:

1. In the controller interface, select your inventory.

2. Click on the group that has the Source set to AWS, and click on the Source tab.

3. In the Source Variables box, enter:

vpc_destination_variable: private_ip_address

Next, save and then trigger an update of the group. Once this is done, you should be able to see all of your VPC
instances.

30.12. Private EC2 VPC Instances in the controller Inventory 166

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Note: The controller must be running inside the VPC with access to those instances if you want to configure them.

30.13 Troubleshooting “Error: provided hosts list is empty”

If you receive the message “Skipping: No Hosts Matched” when you are trying to run a playbook through the con-
troller, here are a few things to check:

• Make sure that your hosts declaration line in your playbook matches the name of your group/host in inventory
exactly (these are case sensitive).

• If it does match and you are using Ansible Core 2.0 or later, check your group names for spaces and modify
them to use underscores or no spaces to ensure that the groups can be recognized.

• Make sure that if you have specified a Limit in the Job Template that it is a valid limit value and still matches
something in your inventory. The Limit field takes a pattern argument, described here: http://docs.ansible.com/
intro_patterns.html

Please file a support ticket if you still run into issues after checking these options.

30.13. Troubleshooting “Error: provided hosts list is empty” 167

http://docs.ansible.com/intro_patterns.html
http://docs.ansible.com/intro_patterns.html

CHAPTER

THIRTYONE

CONTROLLER TIPS AND TRICKS

• Using the Controller CLI Tool

• Changing the Controller Admin Password

• Creating a controller Admin from the commandline

• Setting up a jump host to use with the controller

• View Ansible outputs for JSON commands when using the controller

• Locate and configure the Ansible configuration file

• View a listing of all ansible_ variables

• The ALLOW_JINJA_IN_EXTRA_VARS variable

• Using execution environments

• Configuring the controllerhost hostname for notifications

• Launching Jobs with curl

• Dynamic Inventory and private IP addresses

• Filtering instances returned by the dynamic inventory sources in the controller

• Using an unreleased module from Ansible source with the controller

• Using callback plugins with the controller

• Connecting to Windows with winrm

• Importing existing inventory files and host/group vars into the controller

31.1 Using the Controller CLI Tool

Automation controller has a full-featured command line interface. Refer to AWX Command Line Interface documen-
tation for configuration and usage instructions.

168

https://docs.ansible.com/automation-controller/latest/html/controllercli/usage.html

Automation Controller Administration Guide, Release Automation Controller 4.3.0

31.2 Changing the Controller Admin Password

During the installation process, you are prompted to enter an administrator password which is used for the admin
superuser/first user created in the controller. If you log into the instance via SSH, it will tell you the default admin
password in the prompt. If you need to change this password at any point, run the following command as root on the
controller server:

awx-manage changepassword admin

Next, enter a new password. After that, the password you have entered will work as the admin password in the web
UI.

To set policies at creation time for password validation using Django, see Django password policies for detail.

31.3 Creating a controller Admin from the commandline

Once in a while you may find it helpful to create an admin (superuser) account from the commandline. To create an
admin, run the following command as root on the controller server and enter in the admin information as prompted:

awx-manage createsuperuser

31.4 Setting up a jump host to use with the controller

Credentials supplied by the controller will not flow to the jump host via ProxyCommand. They are only used for the
end-node once the tunneled connection is set up.

To make this work, configure a fixed user/keyfile in the AWX user’s SSH config in the ProxyCommand definition that
sets up the connection through the jump host. For example:

Host tampa
Hostname 10.100.100.11
IdentityFile [privatekeyfile]

Host 10.100..
Proxycommand ssh -W [jumphostuser]@%h:%p tampa

You can also add a jump host to your controller instance through Inventory variables. These variables can be set at
either the inventory, group, or host level. To add this, navigate to your inventory and in the variables field of
whichever level you choose, add the following variables:

ansible_user: <user_name>
ansible_connection: ssh
ansible_ssh_common_args: '-o ProxyCommand="ssh -W %h:%p -q <user_name>@<jump_server_
↪→name>"'

31.2. Changing the Controller Admin Password 169

Automation Controller Administration Guide, Release Automation Controller 4.3.0

31.5 View Ansible outputs for JSON commands when using the con-
troller

When working with automation controller, you can use the API to obtain the Ansible outputs for commands in JSON
format.

To view the Ansible outputs, browse to:

https://<controller server name>/api/v2/jobs/<job_id>/job_events/

31.6 Locate and configure the Ansible configuration file

While Ansible does not require a configuration file, OS packages often include a default one in /etc/ansible/
ansible.cfg for possible customization. In order to use a custom ansible.cfg file, place it at the root of your
project. Automation controller runs ansible-playbook from the root of the project directory, where it will then
find the custom ansible.cfg file. An ansible.cfg anywhere else in the project will be ignored.

To learn which values you can use in this file, refer to the configuration file on github.

Using the defaults are acceptable for starting out, but know that you can configure the default module path or connec-
tion type here, as well as other things.

The controller overrides some ansible.cfg options. For example, the controller stores the SSH ControlMaster sockets,
the SSH agent socket, and any other per-job run items in a per-job temporary directory that is passed to the container
used for job execution.

31.7 View a listing of all ansible_ variables

Ansible by default gathers “facts” about the machines under its management, accessible in Playbooks and in templates.
To view all facts available about a machine, run the setup module as an ad hoc action:

ansible -m setup hostname

This prints out a dictionary of all facts available for that particular host. For more information, refer to: https://docs.
ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts

31.8 The ALLOW_JINJA_IN_EXTRA_VARS variable

Setting ALLOW_JINJA_IN_EXTRA_VARS = template only works for saved job template extra variables.
Prompted variables and survey variables are excluded from the ‘template’. This parameter has three values:
template to allow usage of Jinja saved directly on a job template definition (the default), never to disable all
Jinja usage (recommended), and always to always allow Jinja (strongly discouraged, but an option for prior compat-
ibility).

This parameter is configurable in the Jobs Settings screen of the controller UI:

31.5. View Ansible outputs for JSON commands when using the controller 170

https://github.com/ansible/ansible/blob/devel/examples/ansible.cfg
https://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
https://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts

Automation Controller Administration Guide, Release Automation Controller 4.3.0

31.9 Using execution environments

See Execution Environments in the Automation Controller User Guide.

31.10 Configuring the controllerhost hostname for notifications

In the System Settings, you can replace https://controller.example.com in the Base URL of The Con-
troller Host field with your preferred hostname to change the notification hostname.

Refreshing your controller license also changes the notification hostname. New installations of automation controller
should not have to set the hostname for notifications.

31.9. Using execution environments 171

http://docs.ansible.com/automation-controller/4.3.0/html/userguide/execution_environments.html#ug-execution-environments

Automation Controller Administration Guide, Release Automation Controller 4.3.0

31.11 Launching Jobs with curl

Launching jobs with the controller API is simple. Here are some easy to follow examples using the curl tool.

Assuming that your Job Template ID is ‘1’, your controller IP is 192.168.42.100, and that admin and awxsecret
are valid login credentials, you can create a new job this way:

curl -f -k -H 'Content-Type: application/json' -XPOST \
--user admin:awxsecret \
http://192.168.42.100/api/v2/job_templates/1/launch/

This returns a JSON object that you can parse and use to extract the ‘id’ field, which is the ID of the newly created job.

You can also pass extra variables to the Job Template call, such as is shown in the following example:

curl -f -k -H 'Content-Type: application/json' -XPOST \
-d '{"extra_vars": "{\"foo\": \"bar\"}"}' \
--user admin:awxsecret http://192.168.42.100/api/v2/job_templates/1/launch/

You can view the live API documentation by logging into http://192.168.42.100/api/ and browsing around to the
various objects available.

Note: The extra_vars parameter needs to be a string which contains JSON, not just a JSON dictionary, as you
might expect. Use caution when escaping the quotes, etc.

31.12 Dynamic Inventory and private IP addresses

By default, the controller only shows instances in a VPC that have an Elastic IP (EIP) address associated with them.
To view all of your VPC instances, perform the following steps:

• In the controller interface, select your inventory.

• Click on the group that has the Source set to AWS, and click on the Source tab.

• In the “Source Variables” box, enter: vpc_destination_variable: private_ip_address

Save and trigger an update of the group. You should now be able to see all of your VPC instances.

Note: The controller must be running inside the VPC with access to those instances in order to usefully configure
them.

31.13 Filtering instances returned by the dynamic inventory sources
in the controller

By default, the dynamic inventory sources in the controller (AWS, Google, etc) return all instances available to the
cloud credentials being used. They are automatically joined into groups based on various attributes. For example,
AWS instances are grouped by region, by tag name and value, by security groups, etc. To target specific instances in
your environment, write your playbooks so that they target the generated group names. For example:

31.11. Launching Jobs with curl 172

http://192.168.42.100/api/

Automation Controller Administration Guide, Release Automation Controller 4.3.0

- hosts: tag_Name_webserver

tasks:
...

You can also use the Limit field in the Job Template settings to limit a playbook run to a certain group, groups, hosts,
or a combination thereof. The syntax is the same as the --limit parameter on the ansible-playbook command
line.

You may also create your own groups by copying the auto-generated groups into your custom groups. Make sure
that the Overwrite option is disabled on your dynamic inventory source, otherwise subsequent synchronization
operations will delete and replace your custom groups.

31.14 Using an unreleased module from Ansible source with the con-
troller

If there is a feature that is available in the latest Ansible core branch that you would like to leverage with your controller
system, making use of it in the controller is fairly simple.

First, determine which is the updated module you want to use from the available Ansible Core Modules or Ansible
Extra Modules GitHub repositories.

Next, create a new directory, at the same directory level of your Ansible source playbooks, named /library.

Once this is created, copy the module you want to use and drop it into the /library directory–it will be consumed
first over your system modules and can be removed once you have updated the the stable version via your normal
package manager.

31.15 Using callback plugins with the controller

Ansible has a flexible method of handling actions during playbook runs, called callback plugins. You can use these
plugins with the controller to do things like notify services upon playbook runs or failures, send emails after every
playbook run, etc. For official documentation on the callback plugin architecture, refer to: http://docs.ansible.com/
developing_plugins.html#callbacks

Note: automation controller does not support the stdout callback plugin because Ansible only allows one, and it is
already being used by automation controller for streaming event data.

You may also want to review some example plugins, which should be modified for site-specific purposes, such as those
available at: https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/callback

To use these plugins, put the callback plugin .py file into a directory called /callback_plugins alongside your
playbook in your controller Project. Then, specify their paths (one path per line) in the Ansible Callback Plugins
field of the Job settings, located towards the bottom of the screen:

31.14. Using an unreleased module from Ansible source with the controller 173

http://docs.ansible.com/developing_plugins.html#callbacks
http://docs.ansible.com/developing_plugins.html#callbacks
https://github.com/ansible/ansible/tree/devel/lib/ansible/plugins/callback

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Note: To have most callbacks shipped with Ansible applied globally, you must add them to the
callback_whitelist section of your ansible.cfg. If you have a custom callbacks, refer to the Ansible
documentation for Enabling callback plugins.

31.16 Connecting to Windows with winrm

By default controller attempts to ssh to hosts. You must add the winrm connection info to the group variables to
which the Windows hosts belong. To get started, edit the Windows group in which the hosts reside and place the
variables in the source/edit screen for the group.

To add winrm connection info:

Edit the properties for the selected group by clicking on the button to the right of the group name that contains the
Windows servers. In the “variables” section, add your connection information as such: ansible_connection:
winrm

Once done, save your edits. If Ansible was previously attempting an SSH connection and failed, you should re-run the
job template.

31.17 Importing existing inventory files and host/group vars into the
controller

To import an existing static inventory and the accompanying host and group vars into the controller, your inventory
should be in a structure that looks similar to the following:

inventory/
|-- group_vars
| `-- mygroup
|-- host_vars
| `-- myhost
`-- hosts

To import these hosts and vars, run the awx-manage command:

31.16. Connecting to Windows with winrm 174

https://docs.ansible.com/ansible/latest/plugins/callback.html#enabling-callback-plugins

Automation Controller Administration Guide, Release Automation Controller 4.3.0

awx-manage inventory_import --source=inventory/ \
--inventory-name="My Controller Inventory"

If you only have a single flat file of inventory, a file called ansible-hosts, for example, import it like the following:

awx-manage inventory_import --source=./ansible-hosts \
--inventory-name="My Controller Inventory"

In case of conflicts or to overwrite an inventory named “My Controller Inventory”, run:

awx-manage inventory_import --source=inventory/ \
--inventory-name="My Controller Inventory" \
--overwrite --overwrite-vars

If you receive an error, such as:

ValueError: need more than 1 value to unpack

Create a directory to hold the hosts file, as well as the group_vars:

mkdir -p inventory-directory/group_vars

Then, for each of the groups that have :vars listed, create a file called inventory-directory/group_vars/
<groupname> and format the variables in YAML format.

Once broken out, the importer will handle the conversion correctly.

31.17. Importing existing inventory files and host/group vars into the controller 175

CHAPTER

THIRTYTWO

POSTFACE

Through community efforts, rigorous testing, dedicated engineers, enterprising sales teams, imaginative marketing,
and outstanding professional services and support teams, the growing but always impressive group of individuals that
make the Ansible-branded products can feel proud in saying:

Ansible, Automation controller, controller CLI, and Ansible Galaxy are all, as Doge would say, “much approved.”1

1 http://knowyourmeme.com/memes/doge

176

http://knowyourmeme.com/memes/doge

Automation Controller Administration Guide, Release Automation Controller 4.3.0

177

Automation Controller Administration Guide, Release Automation Controller 4.3.0

Josie Tested - Doge Approved.

178

CHAPTER

THIRTYTHREE

INDEX

• genindex

179

CHAPTER

THIRTYFOUR

COPYRIGHT © RED HAT, INC.

Ansible, Ansible Automation Platform, Red Hat, and Red Hat Enterprise Linux are trademarks of Red Hat, Inc.,
registered in the United States and other countries.

If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide
a link to the original version.

Third Party Rights

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

180

INDEX

A
Active Directory (AD)

Kerberos, 136
activity stream cleanup management

job, 14
add

capacity, 36
execution environment, 171

add execution environment
jobs, 171

admin creation
commandline, 169
tips, 169

admin password
changing password, 169

admin password change
tips, 169

admin utility script, 5
Analytics

Insights, 147
analytics collection, 85, 146
Ansible configuration file, 170
Ansible modules, unreleased

tips, 173
Ansible output for JSON commands, 170
ansible.cfg, 170

tips, 170
ansible_variables, viewing all

tips, 170
ansible-controller script replacement,

5
API

instance group, 26
assignment

credentials, 9
attaching

subscription, 3
AUTH_BASIC_ENABLED

session limits, 139
authentication, 82, 94, 104, 114

Azure AD, 115
configuration, 82

GitHub Enterprise, 107
GitHub Enterprise Org, 108
GitHub Enterprise Team, 109
GitHub OAuth2, 104
GitHub Org, 105
GitHub Team, 106
Google OAuth2, 110
LDAP, 127, 133
LDAP mapping, 133
LDAP team mapping, 133
organization mapping, 112, 133
RADIUS Authentication Settings, 116
SAML, 125
SAML Service Provider, 116
TACACS+ Authentication Settings, 126
team mapping, 112, 133

authentication expiring, 135
authentication timeout

changing the default, 135
troubleshooting, 135

authentication token, 135
Automation

Insights, 147
automationcontroller groups

policies, 25
awx-manage, 78

analytics gathering, 81
change password, 169
cluster management, 79
data collection, 81
inventory import, 78
session management, 79
super user creation, 169
token management, 79

awx-manage, data cleanup, 79
Azure AD

authentication, 115

B
backups, 141

considerations, 142
playbooks, 142

181

Automation Controller Administration Guide, Release Automation Controller 4.3.0

basic auth
improvements, 62

best practices, 168

C
callback plugins

tips, 173
callback receiver

settings, 69
capacity

add, 36
container groups, 35
mesh, 36
planning, 62
remove, 36
topology, 36

capacity planning
exercise, 63

Centos
clustering, 19

change password
awx-manage, 169

changing password
admin password, 169

changing the default
authentication timeout, 135

cleaning old data, 13
cleanup activity stream

management jobs, 14
cleanup expired OAuth2 tokens

management jobs, 17
cleanup expired sessions

management jobs, 17
cleanup job history

management jobs, 17
cluster

deprovisioning, 23
clustering

backup, 143
Centos, 19
instance group policies, 26
operating systems, 19
pinning, 27
PostgreSQL, 19
redundancy, 19
restore, 143
RHEL, 19
setup considerations, 19
Ubuntu, 19

command line interface
controller CLI, 168
tips, 168

commandline
admin creation, 169

components
licenses, 4

configuration
authentication, 82
custom login message, 85
custom logo, 85
data collection, 85
jobs, 83
system, 84
UI, 85

configuration file configuration
tips, 170

configuration file location
tips, 170

configure
instance group, 26

configure controller, 82
consume

subscription, 3
container

groups, 24
container groups, 30

capacity, 35
limits, 35

containers
instance groups, 30

controller
monitoring, 66
performance, 60
settings, 67

controller admin utility script, 5
controller CLI

command line interface, 168
tips, 168

credentials, 9
assignment, 9
multi, 9

curl
tips, 172

custom
login message, 85
logo, 85, 144

custom inventory scripts, 6
custom login message

configuration, 85
custom logo, 144

configuration, 85

D
data collection, 85, 146

configuration, 85
database

settings, 66
database usage

Index 182

Automation Controller Administration Guide, Release Automation Controller 4.3.0

improvements, 61
DEB files

licenses, 4
deployment

Operator, 66
VM, 62

deprovisioning
cluster, 23
groups, 29

dynamic inventory and instance
filtering

tips, 172
dynamic inventory and private IPs

tips, 172

E
EC2

VPC instances, 166
EC2 VPC instances

tips, 172
troubleshooting, 166

Elastic stack
logging, 49

ELK stack
logging, 49

enterprise authentication, 82, 114
error logs

troubleshooting, 162
evaluation, 2
execution environment, 171

add, 171
exercise

capacity planning, 63
expired OAuth2 tokens cleanup

management job, 17
expired sessions cleanup management

job, 17
external database

installation failure, 164

F
factors

node size, 65
features, 1
filtering instances

tips, 172
functionality

isolation, 92

G
general help

troubleshooting, 162
GitHub Enterprise

authentication, 107

GitHub Enterprise Org
authentication, 108

GitHub Enterprise Team
authentication, 109

GitHub OAuth2
authentication, 104

GitHub Org
authentication, 105

GitHub Team
authentication, 106

Google OAuth2
authentication, 110

groups
container, 24
deprovisioning, 29
instance, 24

H
handling

secret key, 71
help, 162, 168
host connections

troubleshooting, 162, 163
host/group vars import

tips, 174
hostname configuration

notifications, 171
hosts list

troubleshooting, 167
hosts lists (empty), 167

I
import

license, 88
importing host/group vars

importing inventory, 174
importing inventory

importing host/group vars, 174
improvements

basic auth, 62
database usage, 61
LDAP, 62
metrics, 62
process, 60
scaling, 60
scheduling, 61
stability, 61

init script replacement, 5
Insights

Analytics, 147
Automation, 147

installation bundle
licenses, 4

installation failure

Index 183

Automation Controller Administration Guide, Release Automation Controller 4.3.0

external database, 164
installation wizard

playbook backup/restore arguments,
141

instance
groups, 24

instance filtering
tips, 172

instance group
API, 26
configure, 26

instance group policies
clustering, 26

instance groups
containers, 30
pinning, 27
policies, 26
redundancy, 19

inventory file importing, 7
inventory import

tips, 174
inventory scripts

custom, 6, 7
isolation

functionality, 92
troubleshooting, 92
variables, 92

J
job cancellation

troubleshooting, 164
job does not run

troubleshooting, 163
job events

settings, 69
job history cleanup management job, 17
job scheduling

settings, 69
Job Template drop-down list

playbooks are not viewable, 164
jobs, 83

add execution environment, 171
configuration, 83

JSON commands, Ansible output, 170
jump host

ProxyCommand, 169
tips, 169

K
Kerberos

Active Directory (AD), 136
user authentication, 136

keys, 71

L
LDAP, 127, 133

authentication, 127, 133
improvements, 62
referrals, 132

LDAP mapping, 133
authentication, 133

LDAP referrals
troubleshooting, 132

LDAP team mapping
authentication, 133

license, 1, 2
import, 88
nodes, 3
trial, 2
types, 2
UI, 88

license features, 1
licenses

components, 4
DEB files, 4
installation bundle, 4
RPM files, 4

limits
container groups, 35

live events
port changes, 163
settings, 68
troubleshooting, 163

log, 135
logfiles, 47
logging, 49

Elastic stack, 49
ELK stack, 49
loggly, 49
logstash, 49
rsyslog, 49
schema, 49
splunk, 49
sumologic, 49

loggly
logging, 49

login message
custom, 85

login timeout, 135
logo

custom, 85, 144
logstash

logging, 49

M
management jobs, 13

cleanup activity stream, 14
cleanup expired OAuth2 tokens, 17

Index 184

Automation Controller Administration Guide, Release Automation Controller 4.3.0

cleanup expired sessions, 17
cleanup job history, 17

mesh
capacity, 36

metrics
improvements, 62
prometheus, 58

modules, using unreleased
tips, 173

monitoring
controller, 66

multi
credentials, 9

N
node size

factors, 65
node size choice, 65
notifications

hostname configuration, 171

O
Operator

deployment, 66
organization mapping, 112, 133

authentication, 112, 133

P
pending playbook

troubleshooting, 164
Pendo, 85, 146
performance

controller, 60
settings, 67

pinning
clustering, 27
instance groups, 27

planning
capacity, 62

playbook setup
backup/restore arguments, 141

playbooks are not viewable
Job Template drop-down list, 164

playbooks not appearing
troubleshooting, 164

plugins, callback
tips, 173

policies
automationcontroller groups, 25
instance groups, 26

port changes
live events, 163

postface, 176
PostgreSQL

clustering, 19
private IPs with dynamic inventory

tips, 172
process

improvements, 60
prometheus

metrics, 58
ProxyCommand

jump host, 169
tips, 169

R
RADIUS Authentication Settings

authentication, 116
rebranding, 144
redundancy

clustering, 19
instance groups, 19

referrals
LDAP, 132

regenerate
secret key, 71

remove
capacity, 36

removing old data, 13
restart controller, 5
restorations, 141

considerations, 142
playbooks, 142

restore
clustering, 143

RHEL
clustering, 19

RPM files
licenses, 4

rsyslog
logging, 49

S
SAML

authentication, 125
transparent, 125

SAML Service Provider
authentication, 116

scaling
improvements, 60

scheduling
improvements, 61

schema
logging, 49

scripts, admin utility, 5
secret key

handling, 71
regenerate, 71

Index 185

Automation Controller Administration Guide, Release Automation Controller 4.3.0

session
timeout, 135

session limits, 139
AUTH_BASIC_ENABLED, 139
SESSIONS_PER_USER, 139

session.py, 139
SESSIONS_PER_USER

session limits, 139
settings

callback receiver, 69
controller, 67
database, 66
job events, 69
job scheduling, 69
live events, 68
performance, 67
task manager, 69

social authentication, 82, 104
sosreport

troubleshooting, 162
splunk

logging, 49
stability

improvements, 61
start controller, 5
stop controller, 5
subscription

attaching, 3
consume, 3

sumologic
logging, 49

super user creation
awx-manage, 169

support, 1, 2
system

configuration, 84

T
TACACS+ Authentication Settings

authentication, 126
task manager

settings, 69
team mapping, 112, 133

authentication, 112, 133
timeout

session, 135
timeout login, 135
tips, 168

admin creation, 169
admin password change, 169
Ansible modules, unreleased, 173
ansible.cfg, 170
ansible_variables, viewing all, 170
callback plugins, 173

command line interface, 168
configuration file configuration,

170
configuration file location, 170
controller CLI, 168
curl, 172
dynamic inventory and instance

filtering, 172
dynamic inventory and private IPs,

172
EC2 VPC instances, 172
filtering instances, 172
host/group vars import, 174
instance filtering, 172
inventory import, 174
jump host, 169
modules, using unreleased, 173
plugins, callback, 173
private IPs with dynamic inventory,

172
ProxyCommand, 169
unreleased modules, 173
Windows connection, 174
winrm, 174

token-based authentication, 94
topology

capacity, 36
viewer, 43

transparent
SAML, 125

trial, 2
troubleshooting, 162

authentication timeout, 135
EC2 VPC instances, 166
error logs, 162
general help, 162
host connections, 162, 163
hosts list, 167
isolation, 92
job cancellation, 164
job does not run, 163
LDAP referrals, 132
live events, 163
pending playbook, 164
playbooks not appearing, 164
sosreport, 162
websockets, 163

U
Ubuntu

clustering, 19
UI

configuration, 85
license, 88

Index 186

Automation Controller Administration Guide, Release Automation Controller 4.3.0

unreleased modules
tips, 173

updates, 2
usability data collection, 85, 146
user authentication

Kerberos, 136
user data tracking, 85, 146
USER_ANALYTICS_TRACKING_STATE, 85, 146

V
variables

isolation, 92
viewer

topology, 43
VM

deployment, 62
VPC instances

EC2, 166

W
websockets

troubleshooting, 163
Windows connection

tips, 174
winrm

tips, 174

Index 187

	Red Hat Ansible Automation Platform Controller Licensing, Updates, and Support
	Support
	Trial / Evaluation
	Subscription Types
	Node Counting in Licenses
	Attaching Subscriptions
	Ansible Automation Platform Component Licenses

	Starting, Stopping, and Restarting the Controller
	Custom Inventory Scripts
	Inventory File Importing
	Custom Dynamic Inventory Scripts
	SCM Inventory Source Fields

	Multi-Credential Assignment
	Background
	Important Changes
	Launch Time Considerations
	Multi-Vault Credentials

	Management Jobs
	Removing Old Activity Stream Data
	Cleanup Expired OAuth2 Tokens
	Cleanup Expired Sessions
	Removing Old Job History

	Clustering
	Setup Considerations
	Install and Configure
	Status and Monitoring via Browser API
	Instance Services and Failure Behavior
	Job Runtime Behavior
	Deprovision Instances

	Container and Instance Groups
	Instance Groups
	Container Groups

	Managing Capacity With Instances
	Prerequisites
	Manage instances
	Add an instance

	Topology Viewer
	Controller Logfiles
	Logging and Aggregation
	Loggers
	Set Up Logging
	Troubleshoot Logging

	Metrics
	Set up Prometheus

	Improving Controller Performance
	Performance improvements
	Capacity Planning
	Monitoring Controller
	Database Settings
	Additional Resources

	Secret handling and connection security
	Secret Handling
	Connection Security

	Security Best Practices
	General best practices
	Understand the architecture of Ansible and the controller
	Granting access
	Available resources

	The awx-manage Utility
	Inventory Import
	Cleanup of old data
	Cluster management
	Token and session management
	Analytics gathering

	Controller Configuration
	Authentication
	Jobs
	System
	User Interface
	License

	Isolation functionality and variables
	Token-Based Authentication
	Managing OAuth 2 Applications and Tokens
	Using OAuth 2 Token System for Personal Access Tokens (PAT)
	Application Functions
	Application Token Functions

	Setting up Social Authentication
	GitHub settings
	Google OAuth2 settings
	Organization and Team Mapping

	Setting up Enterprise Authentication
	Azure AD settings
	LDAP Authentication
	RADIUS settings
	SAML settings
	TACACS+ settings

	Setting up LDAP Authentication
	Referrals
	Enabling Logging for LDAP
	LDAP Organization and Team Mapping

	Changing the Default Timeout for Authentication
	User Authentication with Kerberos
	AD and Kerberos Credentials
	Working with Kerberos Tickets

	Working with Session Limits
	Backing Up and Restoring
	Backup/Restore Playbooks
	Backup and Restoration Considerations
	Backup and Restore for Clustered Environments

	Using Custom Logos in automation controller
	Usability Analytics and Data Collection
	Automation Analytics
	Details of data collection

	Troubleshooting the controller
	Error logs
	sosreport
	Problems connecting to your host
	Unable to login to the controller via HTTP
	WebSockets port for live events not working
	Problems running a playbook
	Problems when running a job
	Playbooks aren’t showing up in the “Job Template” drop-down
	Playbook stays in pending
	Cancel a controller job
	Reusing an external database causes installations to fail
	Private EC2 VPC Instances in the controller Inventory
	Troubleshooting “Error: provided hosts list is empty”

	Controller Tips and Tricks
	Using the Controller CLI Tool
	Changing the Controller Admin Password
	Creating a controller Admin from the commandline
	Setting up a jump host to use with the controller
	View Ansible outputs for JSON commands when using the controller
	Locate and configure the Ansible configuration file
	View a listing of all ansible_ variables
	The ALLOW_JINJA_IN_EXTRA_VARS variable
	Using execution environments
	Configuring the controllerhost hostname for notifications
	Launching Jobs with curl
	Dynamic Inventory and private IP addresses
	Filtering instances returned by the dynamic inventory sources in the controller
	Using an unreleased module from Ansible source with the controller
	Using callback plugins with the controller
	Connecting to Windows with winrm
	Importing existing inventory files and host/group vars into the controller

	Postface
	Index
	Copyright © Red Hat, Inc.
	Index

