
Automation Controller User Guide
Release Automation Controller 4.3.0

Red Hat, Inc.

Dec 16, 2022

CONTENTS

1 Overview 2
1.1 Real-time Playbook Output and Exploration . 2
1.2 “Push Button” Automation . 2
1.3 Enhanced and Simplified Role-Based Access Control and Auditing 2
1.4 Cloud & Autoscaling Flexibility . 3
1.5 The Ideal RESTful API . 3
1.6 Backup and Restore . 3
1.7 Ansible Galaxy Integration . 3
1.8 Inventory Support for OpenStack . 4
1.9 Remote Command Execution . 4
1.10 System Tracking . 4
1.11 Integrated Notifications . 4
1.12 Satellite Integration . 5
1.13 Run-time Job Customization . 5
1.14 Red Hat Insights Integration . 5
1.15 Enhanced User Interface . 5
1.16 Custom Virtual Environments . 5
1.17 Authentication Enhancements . 5
1.18 Cluster Management . 6
1.19 Container Platform Support . 6
1.20 Workflow Enhancements . 6
1.21 Job Distribution . 6
1.22 Support for deployment in a FIPS-enabled environment . 6
1.23 Limit the number of hosts per organization . 7
1.24 Inventory Plugins . 7
1.25 Secret Management System . 7
1.26 Automation Hub Integration . 7

2 Red Hat Ansible Automation Platform Controller Licensing, Updates, and Support 8
2.1 Support . 8
2.2 Trial / Evaluation . 8
2.3 Subscription Types . 8
2.4 Node Counting in Licenses . 9
2.5 Attaching Subscriptions . 9
2.6 Ansible Automation Platform Component Licenses . 10

3 Logging In 11

4 Import a Subscription 12
4.1 Obtaining a subscriptions manifest . 16

i

4.2 Adding a subscription manually . 19

5 The User Interface 20
5.1 Activity Streams . 20
5.2 Views . 21
5.3 Resources and Access . 24
5.4 Administration Menu . 25
5.5 The Settings Menu . 25

6 Search 27
6.1 Searching Tips . 27
6.2 Sort . 29

7 Organizations 30
7.1 Creating a New Organization . 31
7.2 Work with Access . 33
7.3 Work with Notifications . 36

8 Users 38
8.1 Create a User . 38
8.2 Delete a User . 40
8.3 Users - Organizations . 41
8.4 Users - Teams . 41
8.5 Users - Permissions . 41
8.6 Users - Tokens . 45

9 Teams 47
9.1 Create a Team . 48

10 Credentials 55
10.1 Understanding How Credentials Work . 55
10.2 Getting Started with Credentials . 56
10.3 Add a New Credential . 58
10.4 Credential Types . 59

11 Custom Credential Types 81
11.1 Content sourcing from collections . 81
11.2 Backwards-Compatible API Considerations . 82
11.3 Content verification . 83
11.4 Getting Started with Credential Types . 83
11.5 Create a New Credential Type . 84

12 Secret Management System 89
12.1 Configure and link secret lookups . 89

13 Applications 101
13.1 Getting Started with Applications . 101
13.2 Create a new application . 102

14 Execution Environments 107
14.1 Building an Execution Environment . 107
14.2 Use an execution environment in jobs . 109
14.3 Execution environment mount options . 111

15 Execution Environment Setup Reference 113
15.1 Execution environment definition . 113

ii

15.2 ansible-builder build options . 114
15.3 Collection-level metadata . 116

16 Projects 117
16.1 Add a new project . 119
16.2 Updating projects from source control . 124
16.3 Work with Permissions . 125
16.4 Work with Notifications . 129
16.5 Work with Job Templates . 130
16.6 Work with Schedules . 130
16.7 Ansible Galaxy Support . 131
16.8 Collections Support . 133

17 Project Signing and Verification 139
17.1 Prerequisites . 140
17.2 Add a GPG key to Ansible Automation Controller . 141
17.3 Access the ansible-sign CLI utility . 142
17.4 Signing your project . 142
17.5 Verifying your project . 144
17.6 Automate signing . 144

18 Inventories 146
18.1 Smart Inventories . 148
18.2 Inventory Plugins . 153
18.3 Add a new inventory . 154
18.4 Running Ad Hoc Commands . 179

19 Supported Inventory Plugin Templates 183
19.1 Amazon Web Services EC2 . 183
19.2 Google Compute Engine . 185
19.3 Microsoft Azure Resource Manager . 186
19.4 VMware vCenter . 187
19.5 Red Hat Satellite 6 . 188
19.6 OpenStack . 189
19.7 Red Hat Virtualization . 189
19.8 Red Hat Ansible Automation Platform . 189

20 Job Templates 190
20.1 Create a Job Template . 191
20.2 Add Permissions . 195
20.3 Work with Notifications . 198
20.4 View Completed Jobs . 199
20.5 Scheduling . 200
20.6 Surveys . 200
20.7 Launch a Job Template . 203
20.8 Copy a Job Template . 206
20.9 Scan Job Templates . 206
20.10 Fact Caching . 209
20.11 Utilizing Cloud Credentials . 211
20.12 Provisioning Callbacks . 214
20.13 Extra Variables . 216

21 Job Slicing 218
21.1 Job slice considerations . 218
21.2 Job slice execution behavior . 219

iii

21.3 Search job slices . 220

22 Workflows 221
22.1 Workflow scenarios and considerations . 221
22.2 Extra Variables . 224
22.3 Workflow States . 225
22.4 Role-Based Access Controls . 226

23 Workflow Job Templates 227
23.1 Create a Workflow Template . 228
23.2 Work with Permissions . 231
23.3 Work with Notifications . 231
23.4 View Completed Jobs . 232
23.5 Work with Schedules . 232
23.6 Surveys . 233
23.7 Workflow Visualizer . 235
23.8 Launch a Workflow Template . 248
23.9 Copy a Workflow Template . 248
23.10 Extra Variables . 249

24 Instance Groups 251
24.1 Create an instance group . 251

25 Jobs 256
25.1 Inventory Sync Jobs . 258
25.2 SCM Inventory Jobs . 260
25.3 Playbook Run Jobs . 261
25.4 Automation Controller Capacity Determination and Job Impact . 266
25.5 Job branch overriding . 268

26 Working with Webhooks 271
26.1 GitHub webhook setup . 271
26.2 GitLab webhook setup . 277
26.3 Payload output . 283

27 Notifications 284
27.1 Notification Hierarchy . 284
27.2 Workflow . 285
27.3 Create a Notification Template . 285
27.4 Notification Types . 285
27.5 Create custom notifications . 294
27.6 Enable and Disable Notifications . 299
27.7 Configure the host hostname for notifications . 300
27.8 Notifications API . 301

28 Supported Attributes for Custom Notifications 302

29 Schedules 306
29.1 Add a new schedule . 307

30 Setting up Insights Remediations 310
30.1 Create Insights Credential . 310
30.2 Create an Insights Project . 312
30.3 Create Insights Inventory . 313
30.4 Remediate Insights Inventory . 313

iv

31 Best Practices 315
31.1 Use Source Control . 315
31.2 Ansible file and directory structure . 315
31.3 Use Dynamic Inventory Sources . 315
31.4 Variable Management for Inventory . 316
31.5 Autoscaling . 316
31.6 Larger Host Counts . 316
31.7 Continuous integration / Continuous Deployment . 316
31.8 LDAP authentication performance tips . 316

32 Security 317
32.1 Playbook Access and Information Sharing . 317
32.2 Role-Based Access Controls . 319
32.3 Function of roles: editing and creating . 326

33 Glossary 329

34 Index 333

35 Copyright © Red Hat, Inc. 334

Index 335

v

Automation Controller User Guide, Release Automation Controller 4.3.0

Thank you for your interest in Red Hat Ansible Automation Platform controller. Automation controller helps teams
manage complex multi-tier deployments by adding control, knowledge, and delegation to Ansible-powered environ-
ments.

The Automation Controller User Guide discusses all of the functionality available in automation controller and as-
sumes moderate familiarity with Ansible, including concepts such as Playbooks, Variables, and Tags. For more
information on these and other Ansible concepts, please see the Ansible documentation at http://docs.ansible.com/.
This document has been updated to include information for the latest release of Automation Controller v4.3.0.

We Need Feedback!

If you spot a typo in this documentation, or if you have thought of a way to make this manual better, we would love to
hear from you! Please send an email to: docs@ansible.com

If you have a suggestion, try to be as specific as possible when describing it. If you have found an error, please include
the manual’s title, chapter number/section number, and some of the surrounding text so we can find it easily. We may
not be able to respond to every message sent to us, but you can be sure that we will be reading them all!

Automation Controller Version 4.3.0; November 29, 2022; https://access.redhat.com/

CONTENTS 1

http://docs.ansible.com/
mailto:docs@ansible.com
https://access.redhat.com/

CHAPTER

ONE

OVERVIEW

Thank you for your interest in Red Hat Ansible Automation Platform. Ansible Automation Platform makes it possible
for users across an organization to share, vet, and manage automation content by means of a simple, powerful, and
agentless technical implementation. IT managers can provide guidelines on how automation is applied to individual
teams. Meanwhile, automation developers retain the freedom to write tasks that use existing knowledge, without the
operational overhead of conforming to complex tools and frameworks. It is a more secure and stable foundation for
deploying end-to-end automation solutions, from hybrid cloud to the edge.

Ansible Automation Platform includes automation controller, which allows users to define, operate, scale, and delegate
automation across their enterprise.

1.1 Real-time Playbook Output and Exploration

Watch playbooks run in real time, seeing each host as they check in. Easily go back and explore the results for specific
tasks and hosts in great detail. Search for specific plays or hosts and see just those results, or quickly zero in on errors
that need to be corrected.

1.2 “Push Button” Automation

Access your favorite projects and re-trigger execution from the web interface with a minimum of clicking. automation
controller will ask for input variables, prompt for your credentials, kick off and monitor the job, and display results
and host history over time.

1.3 Enhanced and Simplified Role-Based Access Control and Audit-
ing

Automation controller allows for the granting of permissions to perform a specific task (such as to view, create, or
modify a file) to different teams or explicit users through role-based access control (RBAC).

Keep some projects private, while allowing some users to edit inventory and others to run playbooks against only
certain systems–either in check (dry run) or live mode. You can also allow certain users to use credentials without
exposing the credentials to them. Regardless of what you do, automation controller records the history of operations
and who made them–including objects edited and jobs launched.

Based on user feedback, automation controller both expands and simplifies its role-based access control. No longer
is job template visibility configured via a combination of permissions on inventory, projects, and credentials. If you
want to give any user or team permissions to use a job template, just assign permissions directly on the job template.

2

Automation Controller User Guide, Release Automation Controller 4.3.0

Similarly, credentials are now full objects in automation controller’s RBAC system, and can be assigned to multiple
users and/or teams for use.

Automation controller includes an ‘Auditor’ type, who can see all aspects of the systems automation, but has no
permission to run or change automation, for those that need a system-level auditor. (This may also be useful for a
service account that scrapes automation information from the REST API.) Refer to Role-Based Access Controls for
more information.

Subsequent releases of automation controller provides more granular permissions, making it easier to delegate inside
your organizations and remove automation bottlenecks.

1.4 Cloud & Autoscaling Flexibility

Automation controller features a powerful provisioning callback feature that allows nodes to request configuration
on demand. While optional, this is an ideal solution for a cloud auto-scaling scenario, integrating with provisioning
servers like Cobbler, or when dealing with managed systems with unpredictable uptimes. Requiring no management
software to be installed on remote nodes, the callback solution can be triggered via a simple call to ‘curl’ or ‘wget’, and
is easily embeddable in init scripts, kickstarts, or preseeds. Access is controlled such that only machines in inventory
can request configuration.

1.5 The Ideal RESTful API

The automation controller REST API is the ideal RESTful API for a systems management application, with all re-
sources fully discoverable, paginated, searchable, and well modeled. A styled API browser allows API exploration
from the API root at http://<server name>/api/, showing off every resource and relation. Everything that
can be done in the user interface can be done in the API - and more.

1.6 Backup and Restore

The ability to backup and restore your system(s) has been integrated into the Ansible Automation Platform setup
playbook, making it easy for you to backup and replicate your instance as needed.

1.7 Ansible Galaxy Integration

When it comes to describing your automation, everyone repeats the DRY mantra–“Don’t Repeat Yourself.” Using
centralized copies of Ansible roles, such as in Ansible Galaxy, allows you to bring that philosophy to your playbooks.
By including an Ansible Galaxy requirements.yml file in your project directory, automation controller automatically
fetches the roles your playbook needs from Galaxy, GitHub, or your local source control. Refer to Ansible Galaxy
Support for more information.

1.4. Cloud & Autoscaling Flexibility 3

Automation Controller User Guide, Release Automation Controller 4.3.0

1.8 Inventory Support for OpenStack

Ansible is committed to making OpenStack simple for everyone to use. As part of that, dynamic inventory support has
been added for OpenStack. This allows you to easily target any of the virtual machines or images that you’re running
in your OpenStack cloud.

1.9 Remote Command Execution

Often times, you just need to do a simple task on a few hosts, whether it’s add a single user, update a single security
vulnerability, or restart a misbehaving service. Automation controller includes remote command execution–any task
that you can describe as a single Ansible play can be run on a host or group of hosts in your inventory, allowing you
to get managing your systems quickly and easily. Plus, it is all backed by an RBAC engine and detailed audit logging,
removing any questions regarding who has done what to what machines.

1.10 System Tracking

You can collect facts by using the fact caching feature. Refer to Fact Caching for more detail.

1.11 Integrated Notifications

automation controller allows you to easily keep track of the status of your automation. You can configure stackable
notifications for job templates, projects, or entire organizations, and configure different notifications for job start, job
success, job failure, and job approval (for workflow nodes). The following notification sources are supported:

• Email

• Grafana

• IRC

• Mattermost

• PagerDuty

• Rocket.Chat

• Slack

• Twilio

• Webhook (post to an arbitrary webhook, for integration into other tools)

Additionally, you can customize notification messages for each of the above notification types.

1.8. Inventory Support for OpenStack 4

Automation Controller User Guide, Release Automation Controller 4.3.0

1.12 Satellite Integration

Dynamic inventory sources for Red Hat Satellite 6 are supported.

1.13 Run-time Job Customization

Bringing the flexibility of the Ansible command line, you can now prompt for any of the following:

• inventory

• credential

• job tags

• limits

1.14 Red Hat Insights Integration

Automation controller supports integration with Red Hat Insights, which allows Insights playbooks to be used as a
Ansible Automation Platform Project.

1.15 Enhanced User Interface

The layout of the user interface is organized with intuitive navigational elements. With information displayed at-a-
glance, it is intuitive to find and use the automation you need. Compact and expanded viewing modes show and hide
information as needed, and various built-in attributes make it easy to sort.

1.16 Custom Virtual Environments

Custom Ansible environment support allows you to have different Ansible environments and specify custom paths for
different teams and jobs.

1.17 Authentication Enhancements

Automation controller supports LDAP, SAML, token-based authentication. Enhanced LDAP and SAML support
allows you to integrate your enterprise account information in a more flexible manner. Token-based Authentication
allows for easily authentication of third-party tools and services with automation controller via integrated OAuth 2
token support.

1.12. Satellite Integration 5

Automation Controller User Guide, Release Automation Controller 4.3.0

1.18 Cluster Management

Run-time management of cluster groups allows for easily configurable scaling.

1.19 Container Platform Support

Ansible Automation Platform is available as a containerized pod service for Red Hat OpenShift Container Platform
that can be scaled up and down easily as needed.

1.20 Workflow Enhancements

In order to better model your complex provisioning, deployment, and orchestration workflows, automation controller
expanded workflows in a number of ways:

• Inventory overrides for Workflows. You can now override an inventory across a workflow at workflow defini-
tion time, or even at launch time. Define your application deployment workflow, and then easily re-use them in
multiple environments.

• Convergence nodes for Workflows. When modeling complex processes, you sometimes need to wait for
multiple steps to finish before proceeding. Now automation controller workflows can easily replicate this;
workflow steps can now wait for any number of prior workflow steps to complete properly before proceeding.

• Workflow Nesting. Re-use individual workflows as components of a larger workflow. Examples include com-
bining provisioning and application deployment workflows into a single master workflow.

• Workflow Pause and Approval. You can build workflows containing approval nodes that require user inter-
vention. This makes it possible to pause workflows in between playbooks so that a user can give approval (or
denial) for continuing on to the next step in the workflow.

1.21 Job Distribution

As automation moves enterprise-wide, the need to automate at scale grows. Automation controller offer the ability to
take a fact gathering or configuration job running across thousands of machines and slice it into individual job slices
that can be distributed across your automation controller cluster for increased reliability, faster job completion, and
better cluster utilization. If you need to change a parameter across 15,000 switches at scale, or gather information
across your multi-thousand-node RHEL estate, you can now do so easily.

1.22 Support for deployment in a FIPS-enabled environment

If you require running your environment in restricted modes such as FIPS, automation controller deploys and runs in
such environments.

1.18. Cluster Management 6

Automation Controller User Guide, Release Automation Controller 4.3.0

1.23 Limit the number of hosts per organization

Lots of large organizations have instances shared among many organizations. They do not want any one organization
to be able to use all the licensed hosts, this feature allows superusers to set a specified upper limit on how many licensed
hosts may be allocated to each organization. The automation controller algorithm factors changes in the limit for an
organization and the number of total hosts across all organizations. Any inventory updates will fail if an inventory
sync brings an organization out of compliance with the policy. Additionally, superusers are able to ‘over-allocate’
their licenses, with a warning.

1.24 Inventory Plugins

Updated automation controller to use the following inventory plugins from upstream collections if inventory updates
are run with Ansible 2.9:

• amazon.aws.aws_ec2

• community.vmware.vmware_vm_inventory

• azure.azcollection.azure_rm

• google.cloud.gcp_compute

• theforeman.foreman.foreman

• openstack.cloud.openstack

• ovirt.ovirt.ovirt

• awx.awx.tower

1.25 Secret Management System

With a secret management system, external credentials are stored and supplied for use in automation controller so you
don’t have to provide them directly.

1.26 Automation Hub Integration

Automation Hub will act as a content provider for automation controller, which requires both an automation controller
deployment and an Automation Hub deployment running alongside each other.

1.23. Limit the number of hosts per organization 7

CHAPTER

TWO

RED HAT ANSIBLE AUTOMATION PLATFORM CONTROLLER
LICENSING, UPDATES, AND SUPPORT

Red Hat Ansible Automation Platform controller (“Automation Controller”) is a software product provided as part
of an annual Red Hat Ansible Automation Platform subscription entered into between you and Red Hat, Inc. (“Red
Hat”).

Ansible is an open source software project and is licensed under the GNU General Public License version 3, as detailed
in the Ansible source code: https://github.com/ansible/ansible/blob/devel/COPYING

You must have valid subscriptions attached before installing the Ansible Automation Platform. See Attaching Sub-
scriptions for detail.

2.1 Support

Red Hat offers support to paid Red Hat Ansible Automation Platform customers.

If you or your company has purchased a subscription for Ansible Automation Platform, you can contact the support
team at https://access.redhat.com. To better understand the levels of support which match your Ansible Automa-
tion Platform subscription, refer to Subscription Types. For details of what is covered under an Ansible Automa-
tion Platform subscription, please see the Scopes of Support at: https://access.redhat.com/support/policy/updates/
ansible-tower#scope-of-coverage-4 and https://access.redhat.com/support/policy/updates/ansible-engine.

2.2 Trial / Evaluation

While a license is required for automation controller to run, there is no fee for a trial license.

• Trial licenses for Red Hat Ansible Automation are available at: http://ansible.com/license

• Support is not included in a trial license or during an evaluation of the automation controller software.

2.3 Subscription Types

Red Hat Ansible Automation Platform is provided at various levels of support and number of machines as an annual
Subscription.

• Standard

– Manage any size environment

– Enterprise 8x5 support and SLA

8

https://github.com/ansible/ansible/blob/devel/COPYING
https://access.redhat.com
https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4
https://access.redhat.com/support/policy/updates/ansible-tower#scope-of-coverage-4
https://access.redhat.com/support/policy/updates/ansible-engine
http://ansible.com/license

Automation Controller User Guide, Release Automation Controller 4.3.0

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

• Premium

– Manage any size environment, including mission-critical environments

– Premium 24x7 support and SLA

– Maintenance and upgrades included

– Review the SLA at: https://access.redhat.com/support/offerings/production/sla

– Review the Red Hat Support Severity Level Definitions at: https://access.redhat.com/support/policy/
severity

All Subscription levels include regular updates and releases of automation controller, Ansible, and any other compo-
nents of the Platform.

For more information, contact Ansible via the Red Hat Customer portal at https://access.redhat.com/ or at http://www.
ansible.com/contact-us/.

2.4 Node Counting in Licenses

The Red Hat Ansible Automation Platform controller license defines the number of Managed Nodes that can be
managed as part of a Red Hat Ansible Automation Platform subscription. A typical license will say ‘License Count:
500’, which sets the maximum number of Managed Nodes at 500.

For more information on managed node requirements for licensing, please see https://access.redhat.com/articles/
3331481.

2.5 Attaching Subscriptions

You must have valid subscriptions attached before installing the Ansible Automation Platform. Attaching an Ansible
Automation Platform subscription enables Automation Hub repositories. A valid subscription needs to be attached
to the Automation Hub node only. Other nodes do not need to have a valid subscription/pool attached, even if the
[automationhub] group is blank, given this is done at the repos_el role level and that this role is run on both
[default] and [automationhub] hosts.

Note: Attaching subscriptions is unnecessary if your Red Hat account enabled Simple Content Access Mode. But
you still need to register to RHSM or Satellite before installing the Ansible Automation Platform.

To find out the pool_id of your Ansible Automation Platform subscription:

#subscription-manager list --available --all | grep "Ansible Automation Platform" -B
↪→3 -A 6

The command returns the following:

2.4. Node Counting in Licenses 9

https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/policy/severity
https://access.redhat.com/
http://www.ansible.com/contact-us/
http://www.ansible.com/contact-us/
https://access.redhat.com/articles/3331481
https://access.redhat.com/articles/3331481
https://access.redhat.com/articles/simple-content-access

Automation Controller User Guide, Release Automation Controller 4.3.0

Subscription Name: Red Hat Ansible Automation Platform, Premium (5000 Managed Nodes)
Provides: Red Hat Ansible Engine
Red Hat Single Sign-On
Red Hat Ansible Automation Platform
SKU: MCT3695
Contract: ********
Pool ID: ********************
Provides Management: No
Available: 4999
Suggested: 1

To attach this subscription:

#subscription-manager attach --pool=<pool_id>

If this is properly done, and all nodes have Red Hat Ansible Automation Platform attached, then it will find the
Automation Hub repositories correctly.

To check whether the subscription was successfully attached:

#subscription-manager list --consumed

To remove this subscription:

#subscription-manager remove --pool=<pool_id>

2.6 Ansible Automation Platform Component Licenses

To view the license information for the components included within automation controller, refer to /usr/share/
doc/automation-controller-<version>/README where <version> refers to the version of automa-
tion controller you have installed.

To view a specific license, refer to /usr/share/doc/automation-controller-<version>/*.txt,
where * is replaced by the license file name to which you are referring.

2.6. Ansible Automation Platform Component Licenses 10

CHAPTER

THREE

LOGGING IN

To log in, browse to the user interface at: http://<server name>/

Log in using a valid username and password.

The default username is ‘’admin”, and the default password is set during installation. To configure users and pass-
words, you can do so by accessing Users from the left navigation bar.

11

CHAPTER

FOUR

IMPORT A SUBSCRIPTION

Available subscriptions or a subscription manifest authorize the use of the automation controller. To obtain your
automation controller subscription, you can either:

1. Provide your Red Hat or Satellite username and password on the license page.

2. Obtain a subscriptions manifest from your Subscription Allocations page on the customer portal. See Obtaining
a subscriptions manifest in the Automation Controller User Guide for more detail.

If you have a Red Hat Ansible Automation Platform subscription, use your Red Hat customer credentials when you
launch the controller to access your subscription information (see instructions below).

If you do not have a Red Hat Ansible Automation Platform subscription, you can request a trial subscription here or
click Request Subscription and follow the instructions to request one.

Disconnected environments with Satellite will be able to use the login flow on vm-based installations if they
have configured subscription manager on the controller instance to connect to their Satellite instance. Recom-
mended workarounds for disconnected environments without Satellite include [1] downloading a manifest from
access.redhat.com in a connected environment, then uploading it to the disconnected controller instance, or [2] con-
necting to the Internet through a proxy server.

Note: In order to use a disconnected environment, it is necessary to have a valid automation controller entitlement
attached to your Satellite organization’s manifest. This can be confirmed by using hammer subscription list
\--organization <org_name>.

To understand what is supported with your subscription, see Red Hat Ansible Automation Platform Controller Li-
censing, Updates, and Support for more information. If you have issues with the subscription you have received,
please contact your Sales Account Manager or Red Hat Customer Service at https://access.redhat.com/support/contact/
customerService/.

When the controller launches for the first time, the Subscription screen automatically displays.

12

https://www.redhat.com/en/technologies/management/ansible/try-it
https://access.redhat.com/support/contact/customerService/
https://access.redhat.com/support/contact/customerService/

Automation Controller User Guide, Release Automation Controller 4.3.0

1. By default, the option to retrieve and import your subscription is to upload a subscription manifest you generate
from https://access.redhat.com/management/subscription_allocations. See Obtaining a subscriptions manifest
for more detail. Once you have a subscription manifest, you can upload it by browsing to the location where the
file is saved (the subscription manifest is the complete .zip file, not its component parts).

Note: If the Browse button in the subscription manifest option is grayed-out, clear the username and password fields
to enable the Browse button.

Alternatively, you can choose the option to enter your Red Hat customer credentials using your username and pass-
word. Use your Satellite username/password if your controller cluster nodes are registered to Satellite via Subscription
Manager. Once you entered your credentials, click Get Subscriptions.

2. The subscription metadata is then retrieved from the RHSM/Satellite API, or from the manifest provided.

• If it is a subscription manifest, and multiple subscription counts were applied in a single installation, the con-
troller will combine the counts but use the earliest expiration date as the expiry (at which point you will need to
refresh your subscription).

• If you entered your credential information (username/password), the controller retrieves your configured sub-
scription service. Then it prompts you to choose the subscription you want to run (the example below shows
multiple subscriptions) and entitles the controller with that metadata. You can log in over time and retrieve new
subscriptions if you have renewed.

Note: When your subscription expires (you can check this in the Subscription details of the Subscription settings
window), you will need to renew it in the controller by one of these two methods.

13

https://access.redhat.com/management/subscription_allocations

Automation Controller User Guide, Release Automation Controller 4.3.0

If you encounter the following error message, you will need the proper permissions required for the Satellite user with
which the controller admin uses to apply a subscription.

The Satellite username/password is used to query the Satellite API for existing subscriptions. From the Satellite
API, the automation controller gets back some metadata about those subscriptions, then filter through to find valid
subscriptions that you could apply, which are then displayed as valid subscription options in the UI.

The following Satellite roles grant proper access:

14

Automation Controller User Guide, Release Automation Controller 4.3.0

• Custom with view_subscriptions and view_organizations filter

• Viewer

• Administrator

• Organization Admin

• Manager

As the Custom role is the most restrictive of these, this is the recommend role to use for your controller integration.
Refer to the Satellite documentation on managing users and roles for more detail.

Note: The System Administrator role is not equivalent to the Administrator user checkbox, and will not provide
sufficient permissions to access the subscriptions API page.

3. Click Next to proceed to Tracking and Insights. Tracking and insights collect data to help Red Hat improve
the product by delivering you a much better user experience. For more information about data collection, refer
to Usability Analytics and Data Collection. This option is checked by default, but you may opt out of any of the
following:

• User analytics collects data from the controller User Interface.

• Insights Analytics provides a high level analysis of your automation with automation controller, which is used
to help you identify trends and anomalous use of the controller. For opt-in of Automation Analytics to have any
effect, your instance of automation controller must be running on Red Hat Enterprise Linux. See instructions
described in the Automation Analytics section. If you select to opt-in for this option, the screen expands and
prompts for a username and password to enable Insights, if applicable.

Note: You may change your analytics data collection preferences at any time, as described in the Usability Analytics
and Data Collection section.

4. After you have specified your tracking and insights preferences, click Next to proceed to the End User Agree-
ment.

5. Review and check the I agree to the End User License Agreement checkbox and click Submit.

Once your subscription has been accepted, the controller briefly displays the subscription details and navigates you
to the Dashboard of the automation controller interface. For later reference, you can return to this screen by clicking
Settings from the left navigation bar and select Subscription settings from the Subscription option.

15

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.8/html/administering_red_hat_satellite/chap-Red_Hat_Satellite-Administering_Red_Hat_Satellite-Users_and_Roles#sect-Red_Hat_Satellite-Administering_Red_Hat_Satellite-Users_and_Roles-Creating_and_Managing_Roles
http://docs.ansible.com/automation-controller/4.3.0/html/administration/usability_data_collection.html#usability-data-collection
http://docs.ansible.com/automation-controller/4.3.0/html/administration/usability_data_collection.html#user-data-insights
http://docs.ansible.com/automation-controller/4.3.0/html/administration/usability_data_collection.html#usability-data-collection
http://docs.ansible.com/automation-controller/4.3.0/html/administration/usability_data_collection.html#usability-data-collection

Automation Controller User Guide, Release Automation Controller 4.3.0

A status of Compliant indicates your subscription is in compliance with the number of hosts you have automated
within your subscription count. Otherwise, your status will show an Out of Compliance status, indicating you have
exceeded the number of hosts in your subscription.

Other important information displayed are:

• Hosts automated: Host count automated by the job, which consumes the license count

• Hosts imported: Host count considering all inventory sources (does not impact hosts remaining)

• Hosts remaining: Total host count minus hosts automated

4.1 Obtaining a subscriptions manifest

In order to upload a subscriptions manifest, first set up your subscription allocations:

1. Go to https://access.redhat.com/management/subscription_allocations.

The Subscriptions Allocations page contains no subscriptions until you create one.

2. Click the Create New subscription allocation button to create a new subscription allocation.

Note: If this button is not present or disabled, you do not have the proper permissions to create subscription allo-
cations. To create a subscription allocation, you must either be an Administrator on the Customer Portal, or have the
Manage Your Subscriptions role. Contact an access.redhat.com administrator or organization administrator who will
be able to grant you permission to manage subscriptions.

3. Enter a name for your subscription and select Satellite 6.8 from the Type drop-down menu.

4.1. Obtaining a subscriptions manifest 16

https://access.redhat.com/management/subscription_allocations

Automation Controller User Guide, Release Automation Controller 4.3.0

4. Click Create.

5. Once your subscriptions manifest is successfully created, it displays various information including subscription
information at the bottom of the Details tab. The number indicated next to Entitlements indicates the number of
entitlements associated with your subscription.

In order to obtain a subscriptions manifest, you must add an entitlement to your subscriptions though the Subscriptions
tab.

6. Click the Subscriptions tab.

4.1. Obtaining a subscriptions manifest 17

Automation Controller User Guide, Release Automation Controller 4.3.0

7. In the Subscriptions tab, there are no subscriptions to display, click the Add Subscriptions button.

The next screen allows you to select and add entitlements to put in the manifest file. You may select multiple Ansible
Automation Platform subscriptions (with the same SKU) in your subscription allocation. Valid Ansible Automation
Platform subscriptions commonly go by the name “Red Hat Ansible Automation. . . ”.

8. Specify the number of entitlements/managed nodes to put in the manifest file. This allows you to split up a
subscription (for example: 400 nodes on a development cluster and 600 nodes for the production cluster, out of
a 1000 node subscription).

Note: You can apply multiple subscriptions to a single installation by adding multiple subscriptions of the same type
to a manifest file and uploading them. Similarly, a subset of a subscription can be applied by only allocating a portion
of the subscription when creating the manifest.

9. Click Submit.

The allocations you specified, once successfully added, are displayed in the Subscriptions tab.

10. Click the Details tab to access the subscription manifest file.

11. At the bottom of the details window under Entitlements, click the Export Manifest button to export the manifest
file for this subscription.

4.1. Obtaining a subscriptions manifest 18

Automation Controller User Guide, Release Automation Controller 4.3.0

A folder pre-pended with manifest_ in the name is downloaded to your local drive. Multiple subscriptions with the
same SKU will be aggregated.

12. Now that you have a subscription manifest, proceed to the Subscription screen. Upload the entire manifest file
(.zip) by clicking Browse and navigate to the location where the file is saved. Do not open it or upload individual
parts of it.

4.2 Adding a subscription manually

If you are unable to apply or update the subscription info using the user interface, you can upload the subscriptions
manifest manually in an Ansible playbook using the license module in the ansible.controller collection:

- name: Set the license using a file
license:
manifest: "/tmp/my_manifest.zip"

See the Ansible tower_license module for more information.

4.2. Adding a subscription manually 19

https://cloud.redhat.com/ansible/automation-hub/ansible/tower/content/module/tower_license

CHAPTER

FIVE

THE USER INTERFACE

The User Interface offers a friendly graphical framework for your IT orchestration needs. The left navigation bar
provides quick access to resources, such as Projects, Inventories, Job Templates, and Jobs.

Across the top-right side of the interface, you can access your user profile, the About page, view related documentation,
and log out. Right below these options, you can view the activity stream for that user by clicking on the Activity Stream

button.

5.1 Activity Streams

Most screens have an Activity Stream () button. Clicking this brings up the Activity Stream for this object.

20

Automation Controller User Guide, Release Automation Controller 4.3.0

An Activity Stream shows all changes for a particular object. For each change, the Activity Stream shows the time of
the event, the user that initiated the event, and the action. The information displayed varies depending on the type of

event. Clicking on the Examine () button shows the event log for the change.

The Activity Stream can be filtered by the initiating user (or the system, if it was system initiated), and by any related
object, such as a particular credential, job template, or schedule.

The Activity Stream on the main Dashboard shows the Activity Stream for the entire instance. Most pages allow
viewing an activity stream filtered for that specific object.

5.2 Views

The User Interface provides several options for viewing information.

• Dashboard view

• Jobs view

• Schedules view

5.2. Views 21

Automation Controller User Guide, Release Automation Controller 4.3.0

5.2.1 Dashboard view

The Dashboard view begins with a summary of your hosts, inventories, and projects. Each of these is linked to the
corresponding objects for easy access.

On the main Dashboard screen, a summary appears listing your current Job Status. The Job Status graph displays
the number of successful and failed jobs over a specified time period. You can choose to limit the job types that are
viewed, and to change the time horizon of the graph.

Also available for view are summaries of Recent Jobs and Recent Templates on their respective tabs.

The Recent Jobs section displays which jobs were most recently run, their status, and time when they were run as
well.

The Recent Templates section of this display shows a summary of the most recently used templates. You can also
access this summary by clicking Templates from the left navigation bar.

5.2. Views 22

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: Clicking on Dashboard from the left navigation bar or the Ansible Automation Platform logo at any time
returns you to the Dashboard.

5.2.2 Jobs view

Access the Jobs view by clicking Jobs from the left navigation bar. This view shows all the jobs that have ran,
including projects, templates, management jobs, SCM updates, playbook runs, etc.

5.2.3 Schedules view

Access the Schedules view by clicking Schedules from the left navigation bar. This view shows all the scheduled jobs
that are configured.

5.2. Views 23

Automation Controller User Guide, Release Automation Controller 4.3.0

5.3 Resources and Access

The Resources and Access menus provide you access to the various components of automation controller and allow
you to configure who has permissions for which of those resources.

5.3. Resources and Access 24

Automation Controller User Guide, Release Automation Controller 4.3.0

5.4 Administration Menu

The Administration menu provides access to the various administrative options:

From here, you can create, view, and edit custom credential types, notifications, management jobs, tokens and appli-
cations, and configure Execution Environments.

5.5 The Settings Menu

Configuring global and system-level settings is accomplished through the Settings menu, which is described in further
detail in the proceeding section. The Settings menu offers access to administrative configuration options.

To enter the Settings window for automation controller, click Settings from the left navigation bar. This page allows
you to modify your controller’s configuration, such as settings associated with authentication, jobs, system, user
interface, and view or retrieve your subscription information.

5.4. Administration Menu 25

Automation Controller User Guide, Release Automation Controller 4.3.0

For more information on configuring these settings, refer to Controller Configuration section of the Automation Con-
troller Administration Guide.

5.5. The Settings Menu 26

http://docs.ansible.com/automation-controller/4.3.0/html/administration/configure_tower_in_tower.html#ag-configure-tower

CHAPTER

SIX

SEARCH

The automation controller has a powerful search tool that provides both search and filter capabilities that span across
multiple functions. Acceptable search criteria are provided in an expandable “cheat-sheet” accessible from the Ad-
vanced option from the Name drop-down menu in the search field. From there, use the combination of Set Type,
Key, Lookup type to filter.

6.1 Searching Tips

These searching tips assume that you are not searching hosts. Most of this section still applies to hosts but with some
subtle differences. A typical syntax of a search consists a field (left-hand side) and a value (right-hand side). A colon
is used to separate the field that you want to search from the value. If a search doesn’t have a colon (see example 3)
it is treated as a simple string search where ?search=foobar is sent. Here are the examples of syntax used for
searching:

1. name:localhost In this example, the string before the colon represents the field that you want to search on.
If that string does not match something from Fields or Related Fields then it’s treated the same way Example 3
is (string search). The string after the colon is the string that you want to search for within the name attribute.

2. organization.name:Default This example shows a Related Field Search. The period in the left-hand
portion separates the model from the field in this case. Depending on how deep/complex the search is, you could
have multiple periods in that left-hand portion.

3. foobar Simple string (key term) search that will find all instances of that term using an icontains search
against the name and description fields. If a space is used between terms (e.g. foo bar), then any results that
contain both terms will be returned. If the terms are wrapped in quotes (e.g. “foo bar”), the controller will search
for the entire string with the terms appearing together. Specific name searches will search against the API name.
For example, Management job in the user interface is system_job in the API.

27

Automation Controller User Guide, Release Automation Controller 4.3.0

4. organization:Default This example shows a Related Field search but without specifying a field to go
along with the organization. This is supported by the API and is analogous to a simple string search but done
against the organization (will do an icontains search against both the name and description).

6.1.1 Values for search fields

To find values for certain fields, refer to the API endpoint for extensive options and their valid values. For example,
if you want to search against /api/v2/jobs -> type field, you can find the values by performing an OPTIONS
request to /api/v2/jobs and look for entries in the API for "type". Additionally, you can view the related
searches by scrolling to the bottom of each screen. In the example for /api/v2/jobs, the related search shows:

"related_search_fields": [
"modified_by__search",
"project__search",
"project_update__search",
"credentials__search",
"unified_job_template__search",
"created_by__search",
"inventory__search",
"labels__search",
"schedule__search",
"webhook_credential__search",
"job_template__search",
"job_events__search",
"dependent_jobs__search",
"launch_config__search",
"unifiedjob_ptr__search",
"notifications__search",
"unified_job_node__search",
"instance_group__search",
"hosts__search",
"job_host_summaries__search"

The values for Fields come from the keys in a GET request. url, related, and summary_fields are not used.
The values for Related Fields also come from the OPTIONS response, but from a different attribute. Related Fields
is populated by taking all the values from related_search_fields and stripping off the __search from the
end.

Any search that does not start with a value from Fields or a value from the Related Fields, will be treated as a generic
string search. Searching for something like localhost will result in the UI sending ?search=localhost as a
query parameter to the API endpoint. This is a shortcut for an icontains search on the name and description fields.

6.1.2 Searching using values from Related Fields

Searching a Related Field requires you to start the search string with the Related Field. This example describes how
to search using values from the Related Field, organization.

The left-hand side of the search string must start with organization (ex: organization:Default). Depending
on the related field, you might want to provide more specific direction for the search by providing secondary/tertiary
fields. An example of this would be to specify that you want to search for all job templates that use a project matching
a certain name. The syntax on this would look like: job_template.project.name:"A Project".

Note: This query would execute against the unified_job_templates endpoint which is why it starts with
job_template. If we were searching against the job_templates endpoint, then you wouldn’t need the

6.1. Searching Tips 28

Automation Controller User Guide, Release Automation Controller 4.3.0

job_template portion of that query.

6.1.3 Other search considerations

The following are a few things about searching in the controller that you should be aware of:

• There’s currently no supported syntax for OR queries. All search terms get AND’d in the query parameters.

• The left-hand portion of a search parameter can be wrapped in quotes to support searching for strings with
spaces.

• Currently, the values in the Fields are direct attributes expected to be returned in a GET request. Whenever
you search against one of the values, the controller essentially does an __icontains search. So, for ex-
ample, name:localhost would send back ?name__icontains=localhost. The controller currently
performs this search for every Field value, even id, which is not ideal.

6.2 Sort

Where applicable, use the arrows in each column to sort by ascending or descending order (following is an example
from the schedules list).

The direction of the arrow indicates the sort order of the column.

6.2. Sort 29

CHAPTER

SEVEN

ORGANIZATIONS

An Organization is a logical collection of Users, Teams, Projects, and Inventories, and is the highest level in the
automation controller object hierarchy.

Access the Organizations page by clicking Organizations from the left navigation bar. The Organizations page dis-
plays all of the existing organizations for your installation. Organizations can be searched by Name or Description.
Modify and remove organizations using the Edit and Delete buttons.

Note: A default organization is automatically created.

30

Automation Controller User Guide, Release Automation Controller 4.3.0

From this list view, you can edit the details of an organization () from the Actions menu.

7.1 Creating a New Organization

1. You can create a new organization by clicking the Add button.

2. An organization has several attributes that may be configured:

• Enter the Name for your organization (required).

• Enter a Description for the organization.

• The Max Hosts is only editable by a superuser to set an upper limit on the number of license hosts that an
organization can have. Setting this value to 0 signifies no limit. If you try to add a host to an organization that
has reached or exceeded its cap on hosts, an error message displays:

The inventory sync output view also shows the host limit error. Click Details for additional detail about the error.

7.1. Creating a New Organization 31

Automation Controller User Guide, Release Automation Controller 4.3.0

• Enter Instance Groups on which to run this organization.

• Enter the name of the execution environment or search for an existing Default Execution Environment on
which to run this organization. See Upgrading to Execution Environments in the Ansible Automation Platform
Upgrade and Migration Guide for more information.

• If used, enter the Galaxy Credentials or search from a list of existing ones.

3. Click Save to finish creating the organization.

Once created, automation controller displays the Organization details, and allows for the managing access and execu-
tion environments for the organization.

From the Details tab, you can edit or delete the organization.

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

7.1. Creating a New Organization 32

http://docs.ansible.com/automation-controller/4.3.0/html/upgrade-migration-guide/upgrade_to_ees.html#upgrade-venv

Automation Controller User Guide, Release Automation Controller 4.3.0

7.2 Work with Access

Clicking on Access (beside Details when viewing your organization), displays all the Users associated with this
Organization and their roles.

As you can manage the user membership for this Organization here, you can manage user membership on a per-user
basis from the Users page by clicking Users from the left navigation bar. Organizations have a unique set of roles not
described here. You can assign specific users certain levels of permissions within your organization, or allow them to
act as an admin for a particular resource. Refer to Role-Based Access Controls for more information.

7.2. Work with Access 33

Automation Controller User Guide, Release Automation Controller 4.3.0

Clicking on a user brings up that user’s details, allowing you to review, grant, edit, and remove associated permissions
for that user. For more information, refer to Users.

7.2.1 Add a User or Team

In order to add a user or team to an organization, the user or team must already be created. See Create a User and
Create a Team for additional detail. To add existing users or team to the Organization:

1. In the Access tab, click the Add button.

2. Select a user or team to add and click Next

3. Select one or more users or teams from the list by clicking the check box(es) next to the name(s) to add them as
members and click Next.

In this example, two users have been selected to be added.

4. Select the role(s) you want the selected user(s) or team(s) to have. Be sure to scroll down for a complete list of
roles. Different resources have different options available.

7.2. Work with Access 34

Automation Controller User Guide, Release Automation Controller 4.3.0

5. Click the Save button to apply the roles to the selected user(s) or team(s) and to add them as members.

The Add Users/Teams window closes to display the updated roles assigned for each user and team.

To remove roles for a particular user, click the disassociate (x) button next to its resource.

7.2. Work with Access 35

Automation Controller User Guide, Release Automation Controller 4.3.0

This launches a confirmation dialog, asking you to confirm the disassociation.

Note: A user or team with roles associated will retain them even after they have been reassigned to another organiza-
tion.

7.3 Work with Notifications

Clicking the Notifications tab allows you to review any notification integrations you have setup.

Use the toggles to enable or disable the notifications to use with your particular organization. For more detail, see
Enable and Disable Notifications.

If no notifications have been set up, you must create them from the Notifications option on the left navigation bar.

7.3. Work with Notifications 36

Automation Controller User Guide, Release Automation Controller 4.3.0

Refer to Notification Types for additional details on configuring various notification types.

7.3. Work with Notifications 37

CHAPTER

EIGHT

USERS

A User is someone who has access to automation controller with associated permissions and credentials. Access the
Users page by clicking Users from the left navigation bar. The User list may be sorted and searched by Username,
First Name, or Last Name and click the headers to toggle your sorting preference.

You can easily view permissions and user type information by looking beside their user name in the User overview
screen.

8.1 Create a User

To create a new user:

1. Click the Add button, which opens the Create User dialog.

2. Enter the appropriate details about your new user. Fields marked with an asterisk (*) are required.

Note: When modifying your own password, log out and log back in again in order for it to take effect.

Three types of Users can be assigned:

• Normal User: Normal Users have read and write access limited to the resources (such as inventory, projects,
and job templates) for which that user has been granted the appropriate roles and privileges.

• System Auditor: Auditors implicitly inherit the read-only capability for all objects within the environment.

38

Automation Controller User Guide, Release Automation Controller 4.3.0

• System Administrator: A System Administrator (also known as Superuser) has full system administration
privileges – with full read and write privileges over the entire installation. A System Administrator is typically
responsible for managing all aspects of automation controller and delegating responsibilities for day-to-day
work to various Users. Assign with caution!

Note: The initial user (usually “admin”) created by the installation process is a Superuser. One Superuser must
always exist. To delete the “admin” user account, you must first create another Superuser account.

3. Select Save when finished.

Once the user is successfully created, the User dialog opens for that newly created User.

You may delete the user from its Details screen by clicking Delete, or once you exit the details screen, you can delete
users from a list of current users. See Delete a User for more detail.

The count for the number of users has also been updated, and a new entry for the new user is added to the list of users

below the edit form. The same window opens whether you click on the user’s name, or the Edit () button beside
the user. Here, the User’s Organizations, Teams, and Permissions, as well as other user membership details, may be
reviewed and modified.

Note: If the user is not a newly-created user, the user’s details screen displays the last login activity of that user.

8.1. Create a User 39

Automation Controller User Guide, Release Automation Controller 4.3.0

When you log in as yourself, and view the details of your own user profile, you can manage tokens from your user
profile. See Users - Tokens for more detail.

8.2 Delete a User

Before you can delete a user, you must have user permissions. When you delete a user account, the name and email of
the user are permanently removed from automation controller.

1. Expand the Access menu from the left navigation bar, and click Users to display a list of the current users.

2. Select the check box(es) for the user(s) that you want to remove and click Delete.

3. Click Delete in the confirmation warning message to permanently delete the user.

8.2. Delete a User 40

Automation Controller User Guide, Release Automation Controller 4.3.0

8.3 Users - Organizations

This displays the list of organizations of which that user is a member. This list may be searched by Organization Name
or Description. Organization membership cannot be modified from this display panel.

8.4 Users - Teams

This displays the list of teams of which that user is a member. This list may be searched by Team Name or Descrip-
tion. Team membership cannot be modified from this display panel. For more information, refer to Teams.

Until a Team has been created and the user has been assigned to that team, the assigned Teams Details for the User
appears blank.

8.5 Users - Permissions

The set of Permissions assigned to this user (role-based access controls) that provide the ability to read, modify, and
administer projects, inventories, job templates, and other automation controller elements are Privileges.

Note: It is important to note that the job template administrator may not have access to any inventory, project, or
credentials associated with the template. Without access to these, certain fields in the job template aren’t editable.

This screen displays a list of the roles that are currently assigned to the selected User and can be sorted and searched
by Name, Type, or Role.

8.3. Users - Organizations 41

Automation Controller User Guide, Release Automation Controller 4.3.0

8.5.1 Add Permissions

To add permissions to a particular user:

1. Click the Add button, which opens the Add Permissions Wizard.

2. Click to select the object for which the user will have access and click Next.

3. Click to select the resource to assign team roles and click Next.

8.5. Users - Permissions 42

Automation Controller User Guide, Release Automation Controller 4.3.0

4. Click the checkbox beside the role to assign that role to your chosen type of resource. Different resources have
different options available.

8.5. Users - Permissions 43

Automation Controller User Guide, Release Automation Controller 4.3.0

5. Click Save when done, and the Add Permissions Wizard closes to display the updated profile for the user with
the roles assigned for each selected resource.

To remove Permissions for a particular resource, click the disassociate (x) button next to its resource. This launches a
confirmation dialog, asking you to confirm the disassociation.

Note: You can also add teams, individual, or multiple users and assign them permissions at the object level (projects,
inventories, job templates, and workflow templates) as well. This feature reduces the time for an organization to

8.5. Users - Permissions 44

Automation Controller User Guide, Release Automation Controller 4.3.0

onboard many users at one time.

8.6 Users - Tokens

The Tokens tab will only be present for your user (yourself). Before you add a token for your user, you may want
to create an application if you want to associate your token to it. You may also create a personal access token (PAT)
without associating it with any application. To create a token for your user:

1. If not already selected, click on your user from the Users list view to configure your OAuth 2 tokens.

2. Click the Tokens tab from your user’s profile.

When no tokens are present, the Tokens screen prompts you to add them:

3. Click the Add button, which opens the Create Token window.

4. Enter the following details in Create Token window:

• Application: enter the name of the application with which you want to associate your token. Alternatively, you

can search for it by clicking the button. This opens a separate window that allows you to choose from the
available options. Use the Search bar to filter by name if the list is extensive. Leave this field blank if you want
to create a Personal Access Token (PAT) that is not linked to any application.

• Description: optionally provide a short description for your token.

• Scope (required): specify the level of access you want this token to have.

5. When done, click Save or Cancel to abandon your changes.

After the token is saved, the newly created token for the user displays with the token information and when it expires.

8.6. Users - Tokens 45

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: This is the only time the token value and associated refresh token value will ever be shown.

In the user’s profile, the application for which it is assigned to and its expiration displays in the token list view.

8.6. Users - Tokens 46

CHAPTER

NINE

TEAMS

A Team is a subdivision of an organization with associated users, projects, credentials, and permissions. Teams
provide a means to implement role-based access control schemes and delegate responsibilities across organizations.
For instance, permissions may be granted to a whole Team rather than each user on the Team.

You can create as many Teams of users as make sense for your Organization. Each Team can be assigned permissions,
just as with Users. Teams can also scalably assign ownership for Credentials, preventing multiple interface click-
throughs to assign the same Credentials to the same user.

Access the Teams page by clicking Teams from the left navigation bar. The team list may be sorted and searched by
Name or Organization.

Clicking the Edit () button next to the list of Teams allows you to edit details about the team. You can also
review Users and Permissions associated with this Team.

47

Automation Controller User Guide, Release Automation Controller 4.3.0

9.1 Create a Team

To create a new Team:

1. Click the Add button.

2. Enter the appropriate details into the following fields:

• Name

• Description (optional)

• Organization (Choose from an existing organization)

3. Click Save.

Once the Team is successfully created, automation controller opens the Details dialog, which also allows you to review
and edit your Team information.

9.1. Create a Team 48

Automation Controller User Guide, Release Automation Controller 4.3.0

9.1.1 Team Access

This tab displays the list of Users that are members of this Team. This list may be searched by Username, First
Name, or Last Name. For more information, refer to Users.

Add a User

In order to add a user to a team, the user must already be created. Refer to Create a User to create a user. Adding a
user to a team adds them as a member only, specifying a role for the user on different resources can be done in the
Access tab . To add existing users to the Team:

1. In the Access tab, click the Add button.

2. Follow the prompts to add user(s) and assign them to roles.

3. Click Save when done.

To remove roles for a particular user, click the disassociate (x) button next to its resource.

This launches a confirmation dialog, asking you to confirm the disassociation.

9.1. Create a Team 49

Automation Controller User Guide, Release Automation Controller 4.3.0

9.1.2 Team Roles

Selecting the Roles view displays a list of the permissions that are currently available for this Team. The permissions
list may be sorted and searched by Resource Name, Type, or Role.

The set of privileges assigned to Teams that provide the ability to read, modify, and administer projects, inventories,
and other automation controller elements are permissions. By default, the Team is given the “read” permission (also
called a role).

Permissions must be set explicitly via an Inventory, Project, Job Template, or within the Organization view.

Add Team Permissions

To add permissions to a Team:

1. Click the Add button, which opens the Add Permissions Wizard.

9.1. Create a Team 50

Automation Controller User Guide, Release Automation Controller 4.3.0

2. Click to select the object for which the team will have access and click Next.

3. Click to select the resource to assign team roles and click Next.

9.1. Create a Team 51

Automation Controller User Guide, Release Automation Controller 4.3.0

4. Click the checkbox beside the role to assign that role to your chosen type of resource. Different resources have
different options available.

9.1. Create a Team 52

Automation Controller User Guide, Release Automation Controller 4.3.0

5. Click Save when done, and the Add Permissions Wizard closes to display the updated profile for the user with
the roles assigned for each selected resource.

To remove Permissions for a particular resource, click the disassociate (x) button next to its resource. This launches a
confirmation dialog, asking you to confirm the disassociation.

Note: You can also add teams, individual, or multiple users and assign them permissions at the object level (projects,
inventories, job templates, and workflow templates) as well. This feature reduces the time for an organization to

9.1. Create a Team 53

Automation Controller User Guide, Release Automation Controller 4.3.0

onboard many users at one time.

9.1. Create a Team 54

CHAPTER

TEN

CREDENTIALS

Credentials are utilized for authentication when launching Jobs against machines, synchronizing with inventory
sources, and importing project content from a version control system.

You can grant users and teams the ability to use these credentials, without actually exposing the credential to the user.
If you have a user move to a different team or leave the organization, you don’t have to re-key all of your systems just
because that credential was available in the automation controller.

Note: The automation controller encrypts passwords and key information in the database and never makes secret
information visible via the API. See Automation Controller Administration Guide for details.

10.1 Understanding How Credentials Work

The automation controller uses SSH to connect to remote hosts (or the Windows equivalent). In order to pass the
key from the automation controller to SSH, the key must be decrypted before it can be written a named pipe. The
automation controller then uses that pipe to send the key to SSH (so that it is never written to disk).

If passwords are used, the automation controller handles those by responding directly to the password prompt and
decrypting the password before writing it to the prompt.

55

http://docs.ansible.com/automation-controller/4.3.0/html/administration/secret_handling.html#ag-secret-handling

Automation Controller User Guide, Release Automation Controller 4.3.0

10.2 Getting Started with Credentials

Click Credentials from the left navigation bar to access the Credentials page. The Credentials page displays a search-
able list of all available Credentials and can be sorted by Name.

Credentials added to a Team are made available to all members of the Team, whereas credentials added to a User are
only available to that specific User by default.

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

To help you get started, a Demo Credential has been created for your use.

10.2. Getting Started with Credentials 56

Automation Controller User Guide, Release Automation Controller 4.3.0

Clicking on the link for the Demo Credential takes you to the Details view of this Credential.

Clicking the Access tab shows you users and teams associated with this Credential and their granted roles (owner,
admin, auditor, etc.)

Note: A credential with roles associated will retain them even after the credential has been reassigned to another
organization.

You can click the Add button to assign this Demo Credential to additional users. If no users exist, add them from the
Users menu and refer to the Users section for further detail.

Clicking the Job Templates tab shows you the job templates associated with this Credential and which jobs recently
ran using this particular credential.

You can click the Add button to assign this Demo Credential to additional job templates. Refer to the Job Templates
section for further detail on creating a new job template.

10.2. Getting Started with Credentials 57

Automation Controller User Guide, Release Automation Controller 4.3.0

10.3 Add a New Credential

To create a new credential:

1. Click the Add button from the Credentials screen.

2. Enter the name for your new credential in the Name field.

3. Optionally enter a description and enter or select the name of the organization with which the credential is
associated.

Note: A credential with a set of permissions associated with one organization will remain even after the credential is
reassigned to another organization.

4. Enter or select the credential type you want to create.

10.3. Add a New Credential 58

Automation Controller User Guide, Release Automation Controller 4.3.0

5. Enter the appropriate details depending on the type of credential selected, as described in the next section,
Credential Types.

6. Click Save when done.

10.4 Credential Types

The following credential types are supported with the automation controller:

• Amazon Web Services

• Ansible Galaxy/Automation Hub API Token

• Centrify Vault Credential Provider Lookup

• Container Registry

• CyberArk AIM Credential Provider Lookup

• CyberArk Conjur Secret Lookup

• GitHub Personal Access Token

• GitLab Personal Access Token

• Google Compute Engine

• GPG Public Key

• HashiCorp Vault Secret Lookup

• HashiCorp Vault Signed SSH

• Insights

• Machine

• Microsoft Azure Key Vault

• Microsoft Azure Resource Manager

• Network

• OpenShift or Kubernetes API Bearer Token

• OpenStack

• Red Hat Ansible Automation Platform

• Red Hat Satellite 6

• Red Hat Virtualization

• Source Control

• Thycotic DevOps Secrets Vault

• Thycotic Secret Server

• Vault

• VMware vCenter

The credential types associated with Centrify, CyberArk, HashiCorp Vault, Microsoft Azure Key Management System

10.4. Credential Types 59

Automation Controller User Guide, Release Automation Controller 4.3.0

(KMS), and Thycotic are part of the credential plugins capability that allows an external system to lookup your secrets
information. See the Secret Management System section for further detail.

10.4.1 Amazon Web Services

Selecting this credential type enables synchronization of cloud inventory with Amazon Web Services.

The automation controller uses the following environment variables for AWS credentials and are fields prompted in
the user interface:

AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
AWS_SECURITY_TOKEN

Traditional Amazon Web Services credentials consist of the AWS Access Key and Secret Key.

The automation controller provides support for EC2 STS tokens (sometimes referred to as IAM STS credentials).
Security Token Service (STS) is a web service that enables you to request temporary, limited-privilege credentials
for AWS Identity and Access Management (IAM) users. To learn more about the IAM/EC2 STS Token, refer to:
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Note: If the value of your tags in EC2 contain booleans (yes/no/true/false), you must remember to quote them.

Warning: To use implicit IAM role credentials, do not attach AWS cloud credentials in the automation controller
when relying on IAM roles to access the AWS API. While it may seem to make sense to attach your AWS cloud
credential to your job template, doing so will force the use of your AWS credentials and will not “fall through” to
use your IAM role credentials (this is due to the use of the boto library.)

10.4. Credential Types 60

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Automation Controller User Guide, Release Automation Controller 4.3.0

10.4.2 Ansible Galaxy/Automation Hub API Token

Selecting this credential allows the automation controller to access Galaxy or use a collection published on a local
Automation Hub. See Using Collections via Hub for detail. Entering the Galaxy server URL is the only required value
on this screen.

10.4.3 Centrify Vault Credential Provider Lookup

This is considered part of the secret management capability. See Centrify Vault Credential Provider Lookup for more
detail.

10.4.4 Container Registry

Selecting this credential allows the automation controller to access a collection of container images. See What is a
container registry? for more information.

Aside from specifying a name, the Authentication URL is the only required field on this screen, and it is already pre-
populated with a default value. You may change this default by specifying the authentication endpoint for a different
container registry.

10.4. Credential Types 61

https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry
https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry

Automation Controller User Guide, Release Automation Controller 4.3.0

10.4.5 CyberArk AIM Credential Provider Lookup

This is considered part of the secret management capability. See CyberArk AIM Credential Provider Lookup for more
detail.

10.4.6 CyberArk Conjur Secret Lookup

This is considered part of the secret management capability. See CyberArk Conjur Secret Lookup for more detail.

10.4.7 GitHub Personal Access Token

Selecting this credential allows you to access GitHub using a Personal Access Token (PAT), which is obtained through
GitHub. See Working with Webhooks for detail. Entering the provided token is the only required value in this screen.

10.4. Credential Types 62

Automation Controller User Guide, Release Automation Controller 4.3.0

GitHub PAT credentials require a value in the Token field, which is provided in your GitHub profile settings.

This credential can be used for establishing an API connection to GitHub for use in webhook listener jobs, to post
status updates.

10.4.8 GitLab Personal Access Token

Selecting this credential allows you to access GitLab using a Personal Access Token (PAT), which is obtained through
GitLab. See Working with Webhooks for detail. Entering the provided token is the only required value in this screen.

GitLab PAT credentials require a value in the Token field, which is provided in your GitLab profile settings.

This credential can be used for establishing an API connection to GitLab for use in webhook listener jobs, to post
status updates.

10.4.9 Google Compute Engine

Selecting this credential type enables synchronization of cloud inventory with Google Compute Engine (GCE).

The automation controller uses the following environment variables for GCE credentials and are fields prompted in
the user interface:

GCE_EMAIL
GCE_PROJECT
GCE_CREDENTIALS_FILE_PATH

10.4. Credential Types 63

Automation Controller User Guide, Release Automation Controller 4.3.0

GCE credentials have the following inputs that are required:

• Service Account Email Address: The email address assigned to the Google Compute Engine service account.

• Project: Optionally provide the GCE assigned identification or the unique project ID you provided at project
creation time.

• Service Account JSON File: Optionally upload a GCE service account file. Use the folder () icon to
browse for the file that contains the special account information that can be used by services and applications
running on your GCE instance to interact with other Google Cloud Platform APIs. This grants permissions to
the service account and virtual machine instances.

• RSA Private Key: The PEM file associated with the service account email.

10.4.10 GPG Public Key

Selecting this credential type allows you to create a credential that gives the controller the ability to verify the integrity
of the project when syncing from source control.

10.4. Credential Types 64

Automation Controller User Guide, Release Automation Controller 4.3.0

See Project Signing and Verification for detailed information on how to generate a valid keypair, use the CLI tool to
sign content, and how to add the public key to the controller.

10.4.11 HashiCorp Vault Secret Lookup

This is considered part of the secret management capability. See HashiCorp Vault Secret Lookup for more detail.

10.4.12 HashiCorp Vault Signed SSH

This is considered part of the secret management capability. See HashiCorp Vault Signed SSH for more detail.

10.4.13 Insights

Selecting this credential type enables synchronization of cloud inventory with Red Hat Insights.

10.4. Credential Types 65

Automation Controller User Guide, Release Automation Controller 4.3.0

Insights credentials consist of the Insights Username and Password, which is the user’s Red Hat Customer Portal
Account username and password.

10.4.14 Machine

Machine credentials enable the automation controller to invoke Ansible on hosts under your management. Just like
using Ansible on the command line, you can specify the SSH username, optionally provide a password, an SSH key,
a key password, or even have the automation controller prompt the user for their password at deployment time. They
define ssh and user-level privilege escalation access for playbooks, and are used when submitting jobs to run playbooks
on a remote host. Network connections (httpapi, netconf, and network_cli) use Machine for the credential
type.

Machine/SSH credentials do not use environment variables. Instead, they pass the username via the ansible -u
flag, and interactively write the SSH password when the underlying SSH client prompts for it.

10.4. Credential Types 66

Automation Controller User Guide, Release Automation Controller 4.3.0

Machine credentials have several attributes that may be configured:

• Username: The username to be used for SSH authentication.

• Password: The actual password to be used for SSH authentication. This password will be stored encrypted in the
database, if entered. Alternatively, you can configure the automation controller to ask the user for the password at
launch time by selecting Prompt on launch. In these cases, a dialog opens when the job is launched, promoting
the user to enter the password and password confirmation.

• SSH Private Key: Copy or drag-and-drop the SSH private key for the machine credential.

• Private Key Passphrase: If the SSH Private Key used is protected by a password, you can configure a Key
Password for the private key. This password will be stored encrypted in the database, if entered. Alternatively,
you can configure the automation controller to ask the user for the password at launch time by selecting Prompt
on launch. In these cases, a dialog opens when the job is launched, prompting the user to enter the password
and password confirmation.

• Privilege Escalation Method: Specifies the type of escalation privilege to assign to specific users. This is
equivalent to specifying the --become-method=BECOME_METHOD parameter, where BECOME_METHOD
could be any of the typical methods described below, or a custom method you’ve written. Begin entering the

10.4. Credential Types 67

Automation Controller User Guide, Release Automation Controller 4.3.0

name of the method, and the appropriate name auto-populates.

• empty selection: If a task/play has become set to yes and is used with an empty selection, then it will default
to sudo

• sudo: Performs single commands with super user (root user) privileges

• su: Switches to the super user (root user) account (or to other user accounts)

• pbrun: Requests that an application or command be run in a controlled account and provides for advanced root
privilege delegation and keylogging

• pfexec: Executes commands with predefined process attributes, such as specific user or group IDs

• dzdo: An enhanced version of sudo that uses RBAC information in an Centrify’s Active Directory service (see
Centrify’s site on DZDO)

• pmrun: Requests that an application is run in a controlled account (refer to Privilege Manager for Unix 6.0)

• runas: Allows you to run as the current user

• enable: Switches to elevated permissions on a network device

• doas: Allows your remote/login user to execute commands as another user via the doas (“Do as user”) utility

• ksu: Allows your remote/login user to execute commands as another user via Kerberos access

• machinectl: Allows you to manage containers via the systemd machine manager

• sesu: Allows your remote/login user to execute commands as another user via the CA Privileged Access Man-
ager

Note: Custom become plugins are available only starting with Ansible 2.8. For more detail on this concept, refer
to Understanding Privilege Escalation https://docs.ansible.com/ansible/latest/user_guide/become.html and the list of
become plugins https://docs.ansible.com/ansible/latest/plugins/become.html#plugin-list.

• Privilege Escalation Username field is only seen if an option for privilege escalation is selected. Enter the
username to use with escalation privileges on the remote system.

• Privilege Escalation Password: field is only seen if an option for privilege escalation is selected. Enter the
actual password to be used to authenticate the user via the selected privilege escalation type on the remote
system. This password will be stored encrypted in the database, if entered. Alternatively, you may configure
the automation controller to ask the user for the password at launch time by selecting Prompt on launch. In
these cases, a dialog opens when the job is launched, promoting the user to enter the password and password
confirmation.

Note: Sudo Password must be used in combination with SSH passwords or SSH Private Keys, since the automation
controller must first establish an authenticated SSH connection with the host prior to invoking sudo to change to the

10.4. Credential Types 68

http://community.centrify.com/t5/Centrify-Server-Suite/FAQ-What-is-DirectAuthorize-dzdo-dzwin/td-p/21193
http://documents.software.dell.com/privilege-manager-for-unix/6.0/administrators-guide/privilege-manager-programs/pmrun

Automation Controller User Guide, Release Automation Controller 4.3.0

sudo user.

Warning: Credentials which are used in Scheduled Jobs must not be configured as “Prompt on launch”.

10.4.15 Microsoft Azure Key Vault

This is considered part of the secret management capability. See Microsoft Azure Key Vault for more detail.

10.4.16 Microsoft Azure Resource Manager

Selecting this credential type enables synchronization of cloud inventory with Microsoft Azure Resource Manager.

Microsoft Azure Resource Manager credentials have several attributes that may be configured:

• Subscription ID: The Subscription UUID for the Microsoft Azure account (required).

• Username: The username to use to connect to the Microsoft Azure account.

• Password: The password to use to connect to the Microsoft Azure account.

• Client ID: The Client ID for the Microsoft Azure account.

• Client Secret: The Client Secret for the Microsoft Azure account.

• Tenant ID: The Tenant ID for the Microsoft Azure account.

• Azure Cloud Environment: The variable associated with Azure cloud or Azure stack environments.

These fields are equivalent to the variables in the API. To pass service principal credentials, define the following
variables:

10.4. Credential Types 69

Automation Controller User Guide, Release Automation Controller 4.3.0

AZURE_CLIENT_ID
AZURE_SECRET
AZURE_SUBSCRIPTION_ID
AZURE_TENANT
AZURE_CLOUD_ENVIRONMENT

To pass an Active Directory username/password pair, define the following variables:

AZURE_AD_USER
AZURE_PASSWORD
AZURE_SUBSCRIPTION_ID

You can also pass credentials as parameters to a task within a playbook. The order of precedence is parameters, then
environment variables, and finally a file found in your home directory.

To pass credentials as parameters to a task, use the following parameters for service principal credentials:

client_id
secret
subscription_id
tenant
azure_cloud_environment

Or, pass the following parameters for Active Directory username/password:

ad_user
password
subscription_id

10.4.17 Network

Select the Network credential type only if you are using a local connection with provider to use Ansible networking
modules to connect to and manage networking devices. When connecting to network devices, the credential type must
match the connection type:

• For local connections using provider, credential type should be Network

• For all other network connections (httpapi, netconf, and network_cli), credential type should be
Machine

For an overview of connection types available for network devices, refer to Multiple Communication Protocols.

The automation controller uses the following environment variables for Network credentials and are fields prompted
in the user interface:

ANSIBLE_NET_USERNAME
ANSIBLE_NET_PASSWORD

10.4. Credential Types 70

https://docs.ansible.com/ansible/devel/network/getting_started/network_differences.html#multiple-communication-protocols.

Automation Controller User Guide, Release Automation Controller 4.3.0

Network credentials have several attributes that may be configured:

• Username: The username to use in conjunction with the network device (required).

• Password: The password to use in conjunction with the network device.

• SSH Private Key: Copy or drag-and-drop the actual SSH Private Key to be used to authenticate the user to the
network via SSH.

• Private Key Passphrase: The actual passphrase for the private key to be used to authenticate the user to the
network via SSH.

• Authorize: Select this from the Options field to control whether or not to enter privileged mode.

• If Authorize is checked, enter a password in the Authorize Password field to access privileged mode.

For more information, refer to the Inside Playbook blog, Porting Ansible Network Playbooks with New Connection
Plugins.

10.4. Credential Types 71

https://www.ansible.com/blog/porting-ansible-network-playbooks-with-new-connection-plugins
https://www.ansible.com/blog/porting-ansible-network-playbooks-with-new-connection-plugins

Automation Controller User Guide, Release Automation Controller 4.3.0

10.4.18 OpenShift or Kubernetes API Bearer Token

Selecting this credential type allows you to create instance groups that point to a Kubernetes or OpenShift container.
For more information about this concept, refer to Container and Instance Groups.

Container credentials have the following inputs:

• OpenShift or Kubernetes API Endpoint (required): the endpoint to be used to connect to an OpenShift or
Kubernetes container

• API Authentication Bearer Token (required): The token to use to authenticate the connection

• Verify SSL: Optionally you can check this option to verify the server’s SSL certificate is valid and trusted.
Environments that use internal or private CA’s should leave this option unchecked to disable verification.

• Certificate Authority Data: include the BEGIN CERTIFICATE and END CERTIFICATE lines when past-
ing the certificate, if provided

A ContainerGroup is a type of InstanceGroup that has an associated Credential that allows for connecting to
an OpenShift cluster. To set up a container group, you must first have the following:

• A namespace you can launch into (every cluster has a “default” namespace, but you may want to use a specific
namespace)

• A service account that has the roles that allow it to launch and manage Pods in this namespace

• If you will be using execution environments in a private registry, and have a Container Registry credential
associated to them in the automation controller, the service account also needs the roles to get, create, and delete
secrets in the namespace. If you do not want to give these roles to the service account, you can pre-create the
ImagePullSecrets and specify them on the pod spec for the ContainerGroup. In this case, the execution
environment should NOT have a Container Registry credential associated, or the controller will attempt to create
the secret for you in the namespace.

10.4. Credential Types 72

http://docs.ansible.com/automation-controller/4.3.0/html/administration/containers_instance_groups.html#ag-ext-exe-env

Automation Controller User Guide, Release Automation Controller 4.3.0

• A token associated with that service account (OpenShift or Kubernetes Bearer Token)

• A CA certificate associated with the cluster

This section describes creating a Service Account in an Openshift cluster (or K8s) in order to be used to run jobs in
a container group via automation controller. After the Service Account is created, its credentials are provided to the
controller in the form of an Openshift or Kubernetes API bearer token credential. Below describes how to create a
service account and collect the needed information for configuring automation controller.

To configure the controller:

1. To create a service account, you may download and use this sample service account, containergroup sa
and modify it as needed to obtain the above credentials.

2. Apply the configuration from containergroup-sa.yml:

oc apply -f containergroup-sa.yml

3. Get the secret name associated with the service account:

export SA_SECRET=$(oc get sa containergroup-service-account -o json | jq '.
↪→secrets[0].name' | tr -d '"')

4. Get the token from the secret:

oc get secret $(echo ${SA_SECRET}) -o json | jq '.data.token' | xargs | base64 --
↪→decode > containergroup-sa.token

5. Get the CA cert:

oc get secret $SA_SECRET -o json | jq '.data["ca.crt"]' | xargs | base64 --decode
↪→> containergroup-ca.crt

6. Use the contents of containergroup-sa.token and containergroup-ca.crt to provide the infor-
mation for the OpenShift or Kubernetes API Bearer Token required for the container group.

10.4.19 OpenStack

Selecting this credential type enables synchronization of cloud inventory with OpenStack.

10.4. Credential Types 73

Automation Controller User Guide, Release Automation Controller 4.3.0

OpenStack credentials have the following inputs that are required:

• Username: The username to use to connect to OpenStack.

• Password (API Key): The password or API key to use to connect to OpenStack.

• Host (Authentication URL): The host to be used for authentication.

• Project (Tenant Name): The Tenant name or Tenant ID used for OpenStack. This value is usually the same as
the username.

• Project (Domain Name): Optionally provide the project name associated with your domain.

• Domain name: Optionally provide the FQDN to be used to connect to OpenStack.

If you are interested in using OpenStack Cloud Credentials, refer to Utilizing Cloud Credentials in this guide for more
information, including a sample playbook.

10.4. Credential Types 74

Automation Controller User Guide, Release Automation Controller 4.3.0

10.4.20 Red Hat Ansible Automation Platform

Selecting this credential allows you to access another automation controller instance.

Automation controller credentials have the following inputs that are required:

• Controller Hostname: The base URL or IP address of the other instance to connect to.

• Username: The username to use to connect to it.

• Password: The password to use to connect to it.

• Oauth Token: If username and password is not used, provide an OAuth token to use to authenticate.

10.4.21 Red Hat Satellite 6

Selecting this credential type enables synchronization of cloud inventory with Red Hat Satellite 6.

The automation controller writes a Satellite configuration file based on fields prompted in the user interface. The
absolute path to the file is set in the following environment variable:

FOREMAN_INI_PATH

10.4. Credential Types 75

Automation Controller User Guide, Release Automation Controller 4.3.0

Satellite credentials have the following inputs that are required:

• Satellite 6 URL: The Satellite 6 URL or IP address to connect to.

• Username: The username to use to connect to Satellite 6.

• Password: The password to use to connect to Satellite 6.

10.4.22 Red Hat Virtualization

This credential allows the automation controller to access Ansible’s oVirt4.py dynamic inventory plugin, which is
managed by Red Hat Virtualization (RHV).

The automation controller uses the following environment variables for Red Hat Virtualization credentials and are
fields in the user interface:

OVIRT_URL
OVIRT_USERNAME
OVIRT_PASSWORD

10.4. Credential Types 76

Automation Controller User Guide, Release Automation Controller 4.3.0

RHV credentials have the following inputs that are required:

• Host (Authentication URL): The host URL or IP address to connect to. In order to sync with the inventory, the
credential URL needs to include the ovirt-engine/api path.

• Username: The username to use to connect to oVirt4. This needs to include the domain profile to succeed, for
example username@ovirt.host.com.

• Password: The password to use to connect to it.

• CA File: Optionally provide an absolute path to the oVirt certificate file (it may end in .pem, .cer and .crt
extensions, but preferably .pem for consistency)

10.4.23 Source Control

SCM (source control) credentials are used with Projects to clone and update local source code repositories from a
remote revision control system such as Git or Subversion.

10.4. Credential Types 77

Automation Controller User Guide, Release Automation Controller 4.3.0

Source Control credentials have several attributes that may be configured:

• Username: The username to use in conjunction with the source control system.

• Password: The password to use in conjunction with the source control system.

• SCM Private Key: Copy or drag-and-drop the actual SSH Private Key to be used to authenticate the user to the
source control system via SSH.

• Private Key Passphrase: If the SSH Private Key used is protected by a passphrase, you may configure a Key
Passphrase for the private key.

Note: Source Control credentials cannot be configured as “Prompt on launch”. If you are using a GitHub account
for a Source Control credential and you have 2FA (Two Factor Authenication) enabled on your account, you will need
to use your Personal Access Token in the password field rather than your account password.

10.4.24 Thycotic DevOps Secrets Vault

This is considered part of the secret management capability. See Thycotic DevOps Secrets Vault for more detail.

10.4. Credential Types 78

Automation Controller User Guide, Release Automation Controller 4.3.0

10.4.25 Thycotic Secret Server

This is considered part of the secret management capability. See Thycotic Secret Server for more detail.

10.4.26 Vault

Selecting this credential type enables synchronization of inventory with Ansible Vault.

Vault credentials require the Vault Password and an optional Vault Identifier if applying multi-Vault credentialing.
For more information on the automation controller Multi-Vault support, refer to the Multi-Vault Credentials section of
the Automation Controller Administration Guide.

You may configure the automation controller to ask the user for the password at launch time by selecting Prompt
on launch. In these cases, a dialog opens when the job is launched, promoting the user to enter the password and
password confirmation.

Warning: Credentials which are used in Scheduled Jobs must not be configured as “Prompt on launch”.

For more information about Ansible Vault, refer to: http://docs.ansible.com/ansible/playbooks_vault.html

10.4.27 VMware vCenter

Selecting this credential type enables synchronization of inventory with VMware vCenter.

The automation controller uses the following environment variables for VMware vCenter credentials and are fields
prompted in the user interface:

VMWARE_HOST
VMWARE_USER
VMWARE_PASSWORD
VMWARE_VALIDATE_CERTS

10.4. Credential Types 79

http://docs.ansible.com/automation-controller/4.3.0/html/administration/multi-creds-assignment.html#ag-multi-vault
http://docs.ansible.com/ansible/playbooks_vault.html

Automation Controller User Guide, Release Automation Controller 4.3.0

VMware credentials have the following inputs that are required:

• vCenter Host: The vCenter hostname or IP address to connect to.

• Username: The username to use to connect to vCenter.

• Password: The password to use to connect to vCenter.

Note: If the VMware guest tools are not running on the instance, VMware inventory sync may not return an IP
address for that instance.

10.4. Credential Types 80

CHAPTER

ELEVEN

CUSTOM CREDENTIAL TYPES

As an administrator with superuser access, you can define a custom credential type in a standard format using a
YAML/JSON-like definition, allowing the assignment of new credential types to jobs and inventory updates. This
allows you to define a custom credential type that works in ways similar to existing credential types. For example,
you could create a custom credential type that injects an API token for a third-party web service into an environment
variable, which your playbook or custom inventory script could consume.

Custom credentials support the following ways of injecting their authentication information:

• Environment variables

• Ansible extra variables

• File-based templating (i.e., generating .ini or .conf files that contain credential values)

You can attach one SSH and multiple cloud credentials to a Job Template. Each cloud credential must be of a different
type. In other words, only one AWS credential, one GCE credential, etc., are allowed. Vault credentials and machine
credentials are separate entities.

Note: When creating a new credential type, you are responsible for avoiding collisions in the extra_vars,
env, and file namespaces. Also, avoid environment variable or extra variable names that start with ANSIBLE_
because they are reserved. You must have Superuser permissions to be able to create and edit a credential type
(CredentialType) and to be able to view the CredentialType.injection field.

11.1 Content sourcing from collections

A “managed” credential type of kind=galaxy represents a content source for fetching collections defined in
requirements.yml when project updates are run (e.g., galaxy.ansible.com, cloud.redhat.com, on-premise Au-
tomation Hub). This new type will represent a URL and (optional) authentication details necessary to construct the
environment variables when a project update runs ansible-galaxy collection install as described in
the Ansible documentation, Configuring the ansible-galaxy client. It has fields which map directly to the configuration
options exposed to the Ansible Galaxy CLI, e.g., per-server. An endpoint in the API reflects an ordered list of these
credentials at the Organization level:

/api/v2/organizations/N/galaxy_credentials/

Installations of the automation controller migrates existing Galaxy-oriented setting values in such a way that post-
upgrade, proper credentials are created and attached to every Organization. After upgrading to the latest version ,
every organization that existed prior to upgrade now has a list of (one or more) “Galaxy” credentials associated with
it.

81

https://docs.ansible.com/ansible/latest/user_guide/collections_using.html#configuring-the-ansible-galaxy-client

Automation Controller User Guide, Release Automation Controller 4.3.0

Additionally, post-upgrade, these settings are not be visible (or editable) from the /api/v2/settings/jobs/
endpoint.

The automation controller should still continue to fetch roles directly from public Galaxy even if galaxy.ansible.com
is not the first credential in the list for the Organization. The global “Galaxy” settings are no longer configured at
the jobs level, but at the Organization level in the User Interface. The Organization’s Add and Edit windows have an
optional Credential lookup field for credentials of kind=galaxy.

It is very important to specify the order of these credentials as order sets precedence for the sync and lookup of
the content. For more information, see Creating a New Organization. For detail on how to set up a project using
collections, see Using Collections via Hub.

11.2 Backwards-Compatible API Considerations

Support for version 2 of the API (api/v2/) means a one-to-many relationship for Job Templates to credentials
(including multi-cloud support). Credentials can be filtered using the v2 API:

$ curl "https://controller.example.org/api/v2/credentials/?credential_type__
↪→namespace=aws"

In the V2 CredentialType model, the relationships are defined as follows:

Machine SSH
Vault Vault
Network Sets environment variables (e.g., ANSIBLE_NET_AUTHORIZE)
SCM Source Control
Cloud EC2, AWS

Lots of others
Insights Insights
Galaxy galaxy.ansible.com, cloud.redhat.com

on-premise Automation Hub

11.2. Backwards-Compatible API Considerations 82

Automation Controller User Guide, Release Automation Controller 4.3.0

11.3 Content verification

Automation controller uses GNU Privacy Guard (GPG) to verify content. For more information, refer to The GNU
Privacy Handbook.

11.4 Getting Started with Credential Types

Access the Credentials from clicking Credential Types from the left navigation bar. If no custom credential types
have been created, the Credential Types view will not have any to display and will prompt you to add one:

If credential types have been created, this page displays a list of all existing and available Credential Types.

To view more information about a credential type, click on its name or the Edit () button from the Actions
column.

Each credential type displays its own unique configurations in the Input Configuration field and the Injector Con-
figuration field, if applicable. Both YAML and JSON formats are supported in the configuration fields.

11.3. Content verification 83

https://www.gnupg.org/gph/en/manual/c14.html#:~:text=GnuPG%20uses%20public%2Dkey%20cryptography,the%20user%20wants%20to%20communicate
https://www.gnupg.org/gph/en/manual/c14.html#:~:text=GnuPG%20uses%20public%2Dkey%20cryptography,the%20user%20wants%20to%20communicate

Automation Controller User Guide, Release Automation Controller 4.3.0

11.5 Create a New Credential Type

To create a new credential type:

1. Click the Add button in the Credential Types screen.

2. Enter the appropriate details in the Name and Description field.

Note: When creating a new credential type, do not use reserved variable names that start with ANSIBLE_ for the
INPUT and INJECTOR names and IDs, as they are invalid for custom credential types.

3. In the Input Configuration field, specify an input schema which defines a set of ordered fields for that type.
The format can be in YAML or JSON, as shown:

YAML

fields:
- type: string

id: username
label: Username

- type: string
id: password
label: Password
secret: true

required:
- username
- password

View more YAML examples at http://www.yaml.org/start.html.

JSON

11.5. Create a New Credential Type 84

http://www.yaml.org/start.html

Automation Controller User Guide, Release Automation Controller 4.3.0

{
"fields": [
{
"type": "string",
"id": "username",
"label": "Username"
},
{
"secret": true,
"type": "string",
"id": "password",
"label": "Password"
}

],
"required": ["username", "password"]
}

View more JSON examples at www.json.org.

The configuration in JSON format below show each field and how they are used:

{
"fields": [{

"id": "api_token", # required - a unique name used to
reference the field value

"label": "API Token", # required - a unique label for the
field

"help_text": "User-facing short text describing the field.",

"type": ("string" | "boolean") # defaults to 'string'

"choices": ["A", "B", "C"] # (only applicable to `type=string`)

"format": "ssh_private_key" # optional, can be used to enforce data
format validity for SSH private key
data (only applicable to

↪→`type=string`)

"secret": true, # if true, the field value will be
↪→encrypted

"multiline": false # if true, the field should be rendered
as multi-line for input entry
(only applicable to `type=string`)

},{
field 2...

},{
field 3...

}],

"required": ["api_token"] # optional; one or more fields can be
↪→marked as required
},

When type=string, fields can optionally specify multiple choice options:

11.5. Create a New Credential Type 85

www.json.org

Automation Controller User Guide, Release Automation Controller 4.3.0

{
"fields": [{

"id": "api_token", # required - a unique name used to
↪→reference the field value

"label": "API Token", # required - a unique label for the field
"type": "string",
"choices": ["A", "B", "C"]

}]
},

4. In the Injector Configuration field, enter environment variables or extra variables that specify the values a
credential type can inject. The format can be in YAML or JSON (see examples in the previous step). The
configuration in JSON format below show each field and how they are used:

{
"file": {

"template": "[mycloud]\ntoken={{ api_token }}"
},
"env": {

"THIRD_PARTY_CLOUD_API_TOKEN": "{{ api_token }}"
},
"extra_vars": {

"some_extra_var": "{{ username }}:{{ password }}"
}

}

Credential Types can also generate temporary files to support .ini files or certificate/key data:

{
"file": {

"template": "[mycloud]\ntoken={{ api_token }}"
},
"env": {

"MY_CLOUD_INI_FILE": "{{ tower.filename }}"
}

}

In this example, the automation controller will write a temporary file that contains:

[mycloud]\ntoken=SOME_TOKEN_VALUE

The absolute file path to the generated file will be stored in an environment variable named MY_CLOUD_INI_FILE.

An example of referencing multiple files in a custom credential template is as follows:

Inputs

{
"fields": [{
"id": "cert",
"label": "Certificate",
"type": "string"

},{
"id": "key",
"label": "Key",
"type": "string"

}]
}

11.5. Create a New Credential Type 86

Automation Controller User Guide, Release Automation Controller 4.3.0

Injectors

{
"file": {

"template.cert_file": "[mycert]\n{{ cert }}",
"template.key_file": "[mykey]\n{{ key }}"

},
"env": {

"MY_CERT_INI_FILE": "{{ tower.filename.cert_file }}",
"MY_KEY_INI_FILE": "{{ tower.filename.key_file }}"

}
}

5. Click Save when done.

6. Scroll down to the bottom of the screen and your newly created credential type appears on the list of credential
types:

Click to modify the credential type options under the Actions column.

Note: In the Edit screen, you can modify the details or delete the credential. If the Delete button is grayed out, it is
indication that the credential type that is being used by a credential, and you must delete the credential type from all
the credentials that use it before you can delete it. Below is an example of such a message:

7. Verify that the newly created credential type can be selected from the Credential Type selection window when
creating a new credential:

11.5. Create a New Credential Type 87

Automation Controller User Guide, Release Automation Controller 4.3.0

For details on how to create a new credential, see Credentials.

11.5. Create a New Credential Type 88

CHAPTER

TWELVE

SECRET MANAGEMENT SYSTEM

Users and admins upload machine and cloud credentials so that automation can access machines and external services
on their behalf. By default, sensitive credential values (such as SSH passwords, SSH private keys, API tokens for cloud
services) are stored in the database after being encrypted. With external credentials backed by credential plugins, you
can map credential fields (like a password or an SSH Private key) to values stored in a secret management system
instead of providing them to the controller directly. automation controller provides a secret management system that
include integrations for:

• Centrify Vault Credential Provider Lookup

• CyberArk Application Identity Manager (AIM)

• CyberArk Conjur

• HashiCorp Vault Key-Value Store (KV)

• HashiCorp Vault SSH Secrets Engine

• Microsoft Azure Key Management System (KMS)

• Thycotic DevOps Secrets Vault

• Thycotic Secret Server

These external secret values will be fetched prior to running a playbook that needs them. For more information on
specifying these credentials in the User Interface, see Credentials.

12.1 Configure and link secret lookups

When configuring automation controller to pull a secret from a 3rd-party system, it is in essence linking credential
fields to external systems. To link a credential field to a value stored in an external system, select the external credential
corresponding to that system and provide metadata to look up the desired value. The metadata input fields are part of
the external credential type definition of the source credential.

Automation controller provides a credential plugin interface for developers, integrators, admins, and power-users with
the ability to add new external credential types to extend it to support other secret management systems. For more
detail, see the development docs for credential plugins.

Use the automation controller User Interface to configure and use each of the supported 3-party secret management
systems.

1. First, create an external credential for authenticating with the secret management system. At minimum, provide
a name for the external credential and select one of the following for the Credential Type:

89

https://github.com/ansible/awx/blob/devel/docs/credentials/credential_plugins.md

Automation Controller User Guide, Release Automation Controller 4.3.0

• Metadata for credential input sources

• Centrify Vault Credential Provider Lookup

• CyberArk AIM Credential Provider Lookup

• CyberArk Conjur Secret Lookup

• HashiCorp Vault Secret Lookup

• HashiCorp Vault Signed SSH

• Microsoft Azure Key Vault

• Thycotic DevOps Secrets Vault

• Thycotic Secret Server

2. Navigate to the credential form of the target credential and link one or more input fields to the external credential
along with metadata for locating the secret in the external system. In this example, the Demo Credential is the
target credential.

3. For any of the fields below the Type Details area that you want to link to the external credential, click the
button of the input field. You are prompted to set the input source to use to retrieve your secret information.

4. Select the credential you want to link to, and click Next. This takes you to the Metadata tab of the input source.
This example shows the Metadata prompt for HashiVault Secret Lookup. Metadata is specific to the input source
you select. See the Metadata for credential input sources table for details.

12.1. Configure and link secret lookups 90

Automation Controller User Guide, Release Automation Controller 4.3.0

5. Click Test to verify connection to the secret management system. If the lookup is unsuccessful, an error message
like this one displays:

6. When done, click OK. This closes the prompt window and returns you to the Details screen of your target
credential. Repeat these steps, starting with step 3 above to complete the remaining input fields for the target
credential. By linking the information in this manner, automation controller retrieves sensitive information, such
as username, password, keys, certificates, and tokens from the 3rd-party management systems and populates that
data into the remaining fields of the target credential form.

7. If necessary, supply any information manually for those fields that do not use linking as a way of retrieving
sensitive information. Refer to the appropriate Credential Types for more detail about each of the fields.

8. Click Save when done.

12.1. Configure and link secret lookups 91

Automation Controller User Guide, Release Automation Controller 4.3.0

12.1.1 Metadata for credential input sources

Centrify Vault Credential Provider Lookup

Metadata Description
Account Name (Required) Name of the system account or domain associated with Centrify Vault.
System Name Specify the name used by the Centrify portal.

CyberArk AIM

Metadata Description
Object Query (Required) Lookup query for the object.
Object Query Format Select Exact for a specific secret name, or Regexp for a secret that has a

dynamically generated name.
Reason If required per the object’s policy, supply a reason for checking out the

secret, as CyberArk logs those.

CyberArk Conjur

Metadata Description
Secret Identifier The identifier for the secret.
Secret Version Specify a version of the secret, if necessary, otherwise, leave it empty to use

the latest version.

HashiVault Secret Lookup

Metadata Description
Name of Secret Backend Specify the name of the KV backend to use. Leave it blank to use the first

path segment of the Path to Secret field instead.
Path to Secret (required) Specify the path to where the secret information is stored; for example, /

path/username.
Key Name (required) Specify the name of the key to look up the secret information.
Secret Version (V2 Only) Specify a version if necessary, otherwise, leave it empty to use the latest

version.

HashiCorp Signed SSH

Metadata Description
Unsigned Public Key (required) Specify the public key of the cert you want to get signed. It needs to be

present in the authorized keys file of the target host(s).
Path to Secret (required) Specify the path to where the secret information is stored; for example, /

path/username.
Role Name (required) A role is a collection of SSH settings and parameters that are stored in Hashi

vault. Typically, you can specify a couple of them with different privileges,
timeouts, etc. So you could have a role that is allowed to get a cert signed
for root, and other less privileged ones, for example.

Valid Principals Specify a user (or users) other than the default, that you are requesting vault
to authorize the cert for the stored key. Hashi vault has a default user for
whom it signs (e.g., ec2-user).

Azure KMS

12.1. Configure and link secret lookups 92

Automation Controller User Guide, Release Automation Controller 4.3.0

Metadata Description
Secret Name (required) The actual name of the secret as it is referenced in Azure’s Key vault app.
Secret Version Specify a version of the secret, if necessary, otherwise, leave it empty to use

the latest version.

Thycotic DevOps Secrets Vault

Metadata Description
Secret Path (required) Specify the path to where the secret information is stored (e.g.,

/path/username).

Thycotic Secret Server

Metadata Description
Secret ID (required) The identifier for the secret.
Secret Field Specify the field to be used from the secret.

12.1.2 Centrify Vault Credential Provider Lookup

You need the Centrify Vault web service running to store secrets in order for this integration to work. When Centrify
Vault Credential Provider Lookup is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Centrify Tenant URL (required): provide the URL used for communicating with Centrify’s secret management
system

• Centrify API User (required): provide the username

• Centrify API Password (required): provide the password

• OAuth2 Application ID : specify the identifier given associated with the OAuth2 client

• OAuth2 Scope : specify the scope of the OAuth2 client

Below shows an example of a configured CyberArk AIM credential.

12.1. Configure and link secret lookups 93

Automation Controller User Guide, Release Automation Controller 4.3.0

12.1.3 CyberArk AIM Credential Provider Lookup

You need the CyberArk Central Credential Provider web service running to store secrets in order for this integration to
work. When CyberArk AIM Credential Provider Lookup is selected for Credential Type, provide the following
metadata to properly configure your lookup:

• CyberArk AIM URL (required): provide the URL used for communicating with CyberArk AIM’s secret man-
agement system

• Application ID (required): specify the identifier given by CyberArk AIM services

• Client Key: paste the client key if provided by CyberArk

• Client Certificate: include the BEGIN CERTIFICATE and END CERTIFICATE lines when pasting the
certificate, if provided by CyberArk

• Verify SSL Certificates: this option is only available when the URL uses HTTPS. Check this option to verify
the server’s SSL certificate is valid and trusted. Environments that use internal or private CA’s should leave this
option unchecked to disable verification.

Below shows an example of a configured CyberArk AIM credential.

12.1. Configure and link secret lookups 94

Automation Controller User Guide, Release Automation Controller 4.3.0

12.1.4 CyberArk Conjur Secret Lookup

When CyberArk Conjur Secret Lookup is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Conjur URL (required): provide the URL used for communicating with CyberArk Conjur’s secret management
system

• API Key (required): provide the key given by your Conjur admin

• Account (required): the organization’s account name

• Username (required): the specific authenticated user for this service

• Public Key Certificate: include the BEGIN CERTIFICATE and END CERTIFICATE lines when pasting
the public key, if provided by CyberArk

Below shows an example of a configured CyberArk Conjur credential.

12.1. Configure and link secret lookups 95

Automation Controller User Guide, Release Automation Controller 4.3.0

12.1.5 HashiCorp Vault Secret Lookup

When HashiCorp Vault Secret Lookup is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Server URL (required): provide the URL used for communicating with HashiCorp Vault’s secret management
system

• Token: specify the access token used to authenticate HashiCorp’s server

• CA Certificate: specify the CA certificate used to verify HashiCorp’s server

• Approle Role_ID: specify the ID for Approle authentication

• Approle Secret_ID: specify the corresponding secret ID for Approle authentication

• Path to Approle Auth: specify a path if other than the default path of /approle

• API Version (required): select v1 for static lookups and v2 for versioned lookups

For more detail about Approle and its fields, refer to the Vault documentation for Approle Auth Method. Below shows
an example of a configured HashiCorp Vault Secret Lookup credential.

12.1. Configure and link secret lookups 96

https://www.vaultproject.io/docs/auth/approle

Automation Controller User Guide, Release Automation Controller 4.3.0

12.1.6 HashiCorp Vault Signed SSH

When HashiCorp Vault Signed SSH is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Server URL (required): provide the URL used for communicating with HashiCorp Signed SSH’s secret man-
agement system

• Token: specify the access token used to authenticate HashiCorp’s server

• CA Certificate: specify the CA certificate used to verify HashiCorp’s server

• Approle Role_ID: specify the ID for Approle authentication

• Approle Secret_ID: specify the corresponding secret ID for Approle authentication

• Path to Approle Auth: specify a path if other than the default path of /approle

For more detail about Approle and its fields, refer to the Vault documentation for Approle Auth Method.

Below shows an example of a configured HashiCorp SSH Secrets Engine credential.

12.1. Configure and link secret lookups 97

https://www.vaultproject.io/docs/auth/approle

Automation Controller User Guide, Release Automation Controller 4.3.0

12.1.7 Microsoft Azure Key Vault

When Microsoft Azure Key Vault is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Vault URL (DNS Name) (required): provide the URL used for communicating with MS Azure’s key manage-
ment system

• Client ID (required): provide the identifier as obtained by the Azure Active Directory

• Client Secret (required): provide the secret as obtained by the Azure Active Directory

• Tenant ID (required): provide the unique identifier that is associated with an Azure Active Directory instance
within an Azure subscription

• Cloud Environment: select the applicable cloud environment to apply

Below shows an example of a configured Microsoft Azure KMS credential.

12.1. Configure and link secret lookups 98

Automation Controller User Guide, Release Automation Controller 4.3.0

12.1.8 Thycotic DevOps Secrets Vault

When Thycotic DevOps Secrets Vault is selected for Credential Type, provide the following metadata to properly
configure your lookup:

• Tenant (required): provide the URL used for communicating with Thycotic’s secret management system

• Top-level Domain (TLD) : provide the top-level domain designation (e.g., com, edu, org) associated with the
secret vault you want to integrate

• Client ID (required): provide the identifier as obtained by the Thycotic secret management system

• Client Secret (required): provide the secret as obtained by the Thycotic secret management system

Below shows an example of a configured Thycotic DevOps Secrets Vault credential.

12.1. Configure and link secret lookups 99

Automation Controller User Guide, Release Automation Controller 4.3.0

12.1.9 Thycotic Secret Server

When Thycotic Secrets Server is selected for Credential Type, provide the following metadata to properly configure
your lookup:

• Secret Server URL (required): provide the URL used for communicating with the Thycotic Secrets Server
management system

• Username (required): specify the authenticated user for this service

• Password (required): provide the password associated with the user

Below shows an example of a configured Thycotic Secret Server credential.

12.1. Configure and link secret lookups 100

CHAPTER

THIRTEEN

APPLICATIONS

Creating and configuring token-based authentication for external applications is available starting in automation con-
troller 3.3. This makes it easier for external applications such as ServiceNow and Jenkins to integrate with automation
controller. OAuth 2 allows you to use tokens to share certain data with an application without disclosing login infor-
mation, and furthermore, these tokens can be scoped as “read-only”. You create an application that is representative
of the external application you are integrating with, then use it to create tokens for that application to use on behalf of
the users of the external application.

Having these tokens associated to an application resource gives you the ability to manage all tokens issued for a
particular application more easily. By separating token issuance under Applications, you can revoke all tokens based
on the Application without having to revoke all tokens in the system.

When integrating an external web app with automation controller that web app may need to create OAuth2 Tokens on
behalf of users in that other web app. Creating an application with the Authorization Code grant type is the preferred
way to do this because:

• external applications can obtain a token for users, using their credentials

• compartmentalized tokens issued for a particular application, allows those tokens to be easily managed (revoke
all tokens associated with that application, for example)

13.1 Getting Started with Applications

Access the Applications page by clicking Applications from the left navigation bar. The Applications page displays a
search-able list of all available Applications currently managed by the controller and can be sorted by Name.

101

Automation Controller User Guide, Release Automation Controller 4.3.0

If no other applications exist, only a gray box with a message to add applications displays.

13.2 Create a new application

Token-based authentication for users can be configured in the Applications window.

1. In the automation controller User Interface, click Applications from the left navigation bar.

The Applications window opens.

2. Click the Add button located in the upper right corner of the Applications window.

The New Application window opens.

13.2. Create a new application 102

Automation Controller User Guide, Release Automation Controller 4.3.0

3. Enter the following details in Create New Application window:

• Name (required): provide a name for the application you want to create

• Description: optionally provide a short description for your application

• Organization (required): provide an organization for which this application is associated

• Authorization Grant Type (required): Select from one of the grant types to use in order for the user to ac-
quire tokens for this application. Refer to grant types in the Applications section of the Automation Controller
Administration Guide.

• Redirect URIS: Provide a list of allowed URIs, separated by spaces. This is required if you specified the grant
type to be Authorization code.

• Client Type (required): Select the level of security of the client device

4. When done, click Save or Cancel to abandon your changes. Upon saving, the client ID displays in a pop-up
window.

13.2.1 Applications - Tokens

Selecting the Tokens view displays a list of the users that have tokens to access the application.

13.2. Create a new application 103

http://docs.ansible.com/automation-controller/4.3.0/html/administration/oauth2_token_auth.html#ag-oauth2-token-auth-grant-types

Automation Controller User Guide, Release Automation Controller 4.3.0

Tokens can only access resources that its associated user can access, and can be limited further by specifying the scope
of the token.

Add Tokens

Tokens are added through the Users screen and can be associated with an application at that time. Specifying an
application can be performed directly in the User’s token settings. You can create a token for your user in the Tokens
configuration tab, meaning only you can create and see your tokens in your own user screen. To add a token:

1. Access the Users list view by clicking Users from the left navigation bar then click on your user to configure
your OAuth 2 tokens.

Note: You can only create OAuth 2 Tokens for your user via the API or UI, which means you can only access your
own user profile in order to configure or view your tokens. If you are an admin and need to create or remove tokens
for other users, see the revoke and create commands in the Token and session management section of the Automation
Controller Administration Guide.

2. Click the Tokens tab from your user’s profile.

When no tokens are present, the Tokens screen prompts you to add them:

3. Click the Add button, which opens the Create Token window.

4. Enter the following details in Create Token window:

13.2. Create a new application 104

http://docs.ansible.com/automation-controller/4.3.0/html/administration/tower-manage.html#ag-token-utility

Automation Controller User Guide, Release Automation Controller 4.3.0

• Application: enter the name of the application with which you want to associate your token. Alternatively, you

can search for it by clicking the button. This opens a separate window that allows you to choose from the
available options. Use the Search bar to filter by name if the list is extensive. Leave this field blank if you want
to create a Personal Access Token (PAT) that is not linked to any application.

• Description: optionally provide a short description for your token.

• Scope (required): specify the level of access you want this token to have.

5. When done, click Save or Cancel to abandon your changes.

After the token is saved, the newly created token for the user displays with the token information and when it expires.

Note: This is the only time the token value and associated refresh token value will ever be shown.

In the user’s profile, the application for which it is assigned to and its expiration displays in the token list view.

To verify the application in the example above now shows the user with the appropriate token, go to the Tokens tab of
the Applications window:

13.2. Create a new application 105

Automation Controller User Guide, Release Automation Controller 4.3.0

13.2. Create a new application 106

CHAPTER

FOURTEEN

EXECUTION ENVIRONMENTS

The ability to build and deploy Python virtual environments for automation has been replaced by Ansible execution
environments. Unlike legacy virtual environments, execution environments are container images that make it possible
to incorporate system-level dependencies and collection-based content. Each execution environment allows you to
have a customized image to run jobs, and each of them contain only what you need when running the job, nothing
more.

14.1 Building an Execution Environment

Using Ansible content that depends on non-default dependencies (custom virtual environments) can be tricky. Pack-
ages must be installed on each node, play nicely with other software installed on the host system, and be kept in
sync. Previously, jobs ran inside of a virtual environment at /var/lib/awx/venv/ansible by default, which
was pre-loaded with dependencies for ansible-runner and certain types of Ansible content used by the Ansible control
machine.

To help simplify this process, container images can be built that serve as Ansible control nodes. These container
images are referred to as automation execution environments, which you can create with ansible-builder and then
ansible-runner can make use of those images.

14.1.1 Install ansible-builder

In order to build images, either installations of podman or docker is required along with the ansible-builder Python
package. The --container-runtime option needs to correspond to the Podman/Docker executable you intend
to use.

To install from PyPi:

$ pip install ansible-builder

To install from the mainline development branch:

$ pip install https://github.com/ansible/ansible-builder/archive/devel.zip

To install from a specific tag or branch, replace <ref> in the following example:

$ pip install https://github.com/ansible/ansible-builder/archive/<ref>.zip

107

https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html#control-node

Automation Controller User Guide, Release Automation Controller 4.3.0

14.1.2 Build an execution environment

Ansible-builder is used to create an execution environment.

An execution environment is expected to contain:

• Ansible

• Ansible Runner

• Ansible Collections

• Python and/or system dependencies of:

– modules/plugins in collections

– content in ansible-base

– custom user needs

Building a new execution environment involves a definition (a .yml file) that specifies which content you would like
to include in your execution environment, such as collections, Python requirements, and system-level packages. The
content from the output generated from migrating to execution environments has some of the required data that can be
piped to a file or pasted into this definition file. See Migrate legacy venvs to execution environments for more detail.
If you did not migrate from a virtual environment, you can create a definition file with the required data outlined in
Execution environment definition.

Collection developers can declare requirements for their content by providing the appropriate metadata. For more
information, refer to Collection-level metadata.

14.1.3 Run the builder

Once you created a definition, use this procedure to build your execution environment.

The ansible-builder build command takes an execution environment definition as an input. It outputs the
build context necessary for building an execution environment image, and proceeds with building that image. The
image can be re-built with the build context elsewhere, and produces the same result. By default, it looks for a file
named execution-environment.yml in the current directory.

For the illustration purposes, the following example execution-environment.yml file is used as a starting
point:

version: 1
dependencies:

galaxy: requirements.yml

The content of requirements.yml:

collections:

- name: awx.awx

To build an execution environment using the files above, run:

$ ansible-builder build
...
STEP 7: COMMIT my-awx-ee
--> 09c930f5f6a

(continues on next page)

14.1. Building an Execution Environment 108

http://docs.ansible.com/automation-controller/4.3.0/html/upgrade-migration-guide/upgrade_to_ees.html#migrate-new-venv

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

09c930f5f6ac329b7ddb321b144a029dbbfcc83bdfc77103968b7f6cdfc7bea2
Complete! The build context can be found at: context

In addition to producing a ready-to-use container image, the build context is preserved, which can be rebuilt at a
different time and/or location with the tooling of your choice, such as docker build or podman build.

14.2 Use an execution environment in jobs

In order to use an execution environment in a job, a few components are required:

• An execution environment must have been created using ansible-builder. See Build an execution environment
for detail. Once an execution environment is created, you can use it to run jobs. Use the automation controller
user interface to specify the execution environment to use in your job templates.

• Depending on whether an execution environment is made available for global use or tied to an organization, you
must have the appropriate level of administrator privileges in order to use an execution environment in a job.
Execution environments tied to an organization require Organization administrators to be able to run jobs with
those execution environments.

• Before running a job or job template that uses an execution environment that has a credential assigned to it, be
sure that the credential contains a username, host, and password.

1. Click Execution Environments from the left navigation bar of the controller user interface.

2. Add an execution environment by selecting the Add button.

3. Enter the appropriate details into the following fields:

• Name: Enter a name for the execution environment (required).

• Image: Enter the image name (required). The image name requires its full location (repo), the registry, image
name, and version tag in the example format of quay.io/ansible/awx-ee:latestrepo/project/
image-name:tag.

• Pull: optionally choose the type of pull when running jobs:

• Always pull container before running: Pulls the latest image file for the container.

• Only pull the image if not present before running: Only pulls latest image if none specified.

• Never pull container before running: Never pull the latest version of the container image.

• Description: optional.

• Organization: optionally assign the organization to specifically use this execution environment. To make the
execution environment available for use across multiple organizations, leave this field blank.

• Registry credential: If the image has a protected container registry, provide the credential to access it.

14.2. Use an execution environment in jobs 109

Automation Controller User Guide, Release Automation Controller 4.3.0

4. Click Save.

Now your newly added execution environment is ready to be used in a job template. To add an execution environment
to a job template, specify it in the Execution Environment field of the job template, as shown in the example below.
For more information on setting up a job template, see Job Templates in the Automation Controller User Guide.

Once you added an execution environment to a job template, you can see those templates listed in the Templates tab
of the execution environment:

14.2. Use an execution environment in jobs 110

Automation Controller User Guide, Release Automation Controller 4.3.0

14.3 Execution environment mount options

Rebuilding an execution environment is one way to add certs, but inheriting certs from the host provides a more
convenient solution. For VM-based installs, the controller automatically mounts the system trust store in the execution
environment when jobs run.

Additionally, you may customize execution environment mount options and mount paths in the Paths to expose to
isolated jobs field of the Job Settings page, where it supports podman-style volume mount syntax. Refer to the
Podman documentation for detail.

In some cases where the /etc/ssh/* files were added to the execution environment image due to customization
of an execution environment, an SSH error may occur. For example, exposing the /etc/ssh/ssh_config.
d:/etc/ssh/ssh_config.d:O path allows the container to be mounted, but the ownership permissions are not
mapped correctly.

If you encounter this error, or have upgraded from an older version of the controller (e.g. 3.8.x), perform the following
steps:

1. Change the container ownership on the mounted volume to root.

2. In the Paths to expose to isolated jobs field of the Job Settings page, using the current example, expose the
path as such:

Note: The :O option is only supported for directories. It is highly recommended that you be as specific as possible,
especially when specifying system paths. Mounting /etc or /usr directly have impact that make it difficult to
troubleshoot.

This informs podman to run a command similar to the example below, where the configuration is mounted and the
ssh command works as expected.

podman run -v /ssh_config:/etc/ssh/ssh_config.d/:O ...

To expose isolated paths in OpenShift or Kubernetes containers as HostPath, assume the following configuration:

14.3. Execution environment mount options 111

https://docs.podman.io/en/latest/markdown/podman-run.1.html#volume-v-source-volume-host-dir-container-dir-options

Automation Controller User Guide, Release Automation Controller 4.3.0

Use the Expose host paths for Container Groups toggle to enable it.

Once the playbook runs, the resulting Pod spec will display similar to the example below. Note the details of the
volumeMounts and volumes sections.

14.3. Execution environment mount options 112

CHAPTER

FIFTEEN

EXECUTION ENVIRONMENT SETUP REFERENCE

This section contains reference information associated with setting up and building execution environments.

15.1 Execution environment definition

A definition file is a .yml file that is required to build an image for an execution environment. An example of an
execution environment definition schema is as follows:

version: 1

build_arg_defaults:
EE_BASE_IMAGE: 'quay.io/ansible/ansible-runner:stable-2.10-devel'

ansible_config: 'ansible.cfg'

dependencies:
galaxy: requirements.yml
python: requirements.txt
system: bindep.txt

additional_build_steps:
prepend: |
RUN whoami
RUN cat /etc/os-release

append:
- RUN echo This is a post-install command!
- RUN ls -la /etc

15.1.1 Build arguments and base image

Default values for build arguments can be specified in the definition file in the default_build_args section as a
dictionary. This is an alternative to using the --build-arg CLI flag.

Build arguments used by ansible-builder are the following:

• ANSIBLE_GALAXY_CLI_COLLECTION_OPTS allows the user to pass the -pre flag to enable the installa-
tion of pre-releases collections.

• EE_BASE_IMAGE specifies the parent image for the execution environment.

• EE_BUILDER_IMAGE specifies the image used for compiling type tasks.

113

Automation Controller User Guide, Release Automation Controller 4.3.0

Values given inside of default_build_args will be hard-coded into the Containerfile, so they will persist if
podman build is called manually.

If the same variable is specified in the CLI --build-arg flag, the CLI value will take higher precedence.

15.1.2 Ansible config file path

When using an ansible.cfg file to pass a token and other settings for a private account to an Automation Hub
server, listing the config file path here (as a string) will enable it to be included as a build argument in the initial phase
of the build.

15.1.3 Ansible Galaxy dependencies

The galaxy entry points to a valid requirements file for the ansible-galaxy collection install -r
... command.

The entry requirements.yml may be a relative path from the directory of the execution environment definition’s
folder, or an absolute path.

15.1.4 Python dependencies

The python entry points to a valid requirements file for the pip install -r ... command.

The entry requirements.txt may be a relative path from the directory of the execution environment definition’s
folder, or an absolute path.

15.1.5 System-level dependencies

The system entry points to a bindep requirements file. This will be processed by bindep and then passed to dnf,
other platforms are not yet supported. For more information about bindep, refer to the OpenDev documentation.

15.1.6 Additional custom build steps

Additional commands may be specified in the additional_build_steps section, either for before the main
build steps (prepend) or after (append). The syntax needs to be one of the following:

• a multi-line string (example shown in the prepend section above)

• a dictionary (as shown via append)

15.2 ansible-builder build options

The following options can be used with the ansible-builder build command:

15.2. ansible-builder build options 114

https://docs.opendev.org/opendev/bindep/latest/readme.html

Automation Controller User Guide, Release Automation Controller 4.3.0

Flag Syntax Description
--tag $ ansible-builder

build
--tag=my-custom-ee

To customize the tagged name applied to the built im-
age.

--file $ ansible-builder
build
--file=my-ee.yml

To use a definition file named something other than
execution-environment.yml.

--context $ ansible-builder
build --context=/
path/to/dir

To specify a location other than the default directory
named context created in the current working direc-
tory.

--build-arg $ ansible-builder
build --build-arg
FOO=bar

To use Podman or Docker build-time variables, spec-
ify them the same way you would with podman
build or docker build. By default, the Con-
tainerfile or Dockerfile contains a build argument
EE_BASE_IMAGE, that lets you rebuild without mod-
ifying files.

--build-arg $ ansible-builder
build --build-arg
EE_BASE_IMAGE=registry.
example.com/
another-ee

To use a custom base image, replaces previously discon-
tinued --base-image option.

--container-runtime $ ansible-builder
build
--container-runtime=docker

To use Docker to build images instead of the Podman
default.

--verbosity $ ansible-builder
build --verbosity
2

To customize the level of verbosity.

15.2.1 Examples

The example in test/data/pytz requires the awx.awx collection in the execution environment definition.
The lookup plugin awx.awx.tower_schedule_rrule requires the PyPI pytz and another library to work.
If test/data/pytz/execution-environment.yml file is provided to the ansible-builder build
command, then it will install the collection inside the image, read the requirements.txt file inside of the collec-
tion, and then install pytz into the image.

The image produced can be used inside of an ansible-runner project by placing these variables inside the env/
settings file, inside of the private data directory.

container_image: image-name
process_isolation_executable: podman # or docker
process_isolation: true

The awx.awx collection is a subset of content included in the default AWX execution environment. More details can
be found in the awx-ee repository.

15.2. ansible-builder build options 115

https://github.com/ansible/awx-ee

Automation Controller User Guide, Release Automation Controller 4.3.0

15.3 Collection-level metadata

Collections inside of the galaxy entry of an execution environment will contribute their Python and system require-
ments to the image.

Requirements from a collection can be recognized in these ways:

• A file meta/execution-environment.yml references the Python and/or bindep requirements files

• A file named requirements.txt is in the root level of the collection

• A file named bindep.txt is in the root level of the collection

If any of these files are in the build_ignore of the collection, it will not work correctly.

Collection maintainers can verify that ansible-builder recognizes the requirements they expect by using the
introspect command, for example:

ansible-builder introspect --sanitize ~/.ansible/collections/

15.3.1 Python Dependencies

Python requirements files are combined into a single file using the requirements-parser library in order to
support complex syntax like references to other files.

Entries from separate collections that give the same package name will be combined into the same entry, with the
constraints combined.

There are several package names which are specifically ignored by ansible-builder, meaning that if a collection lists
these, they will not be included in the combined file. These include test packages and packages that provide Ansible
itself. The full list can be found in EXCLUDE_REQUIREMENTS in the ansible_builder.requirements
module.

15.3.2 System-level Dependencies

The bindep format provides a way of specifying cross-platform requirements. A minimum expectation is that
collections specify necessary requirements for [platform:rpm].

Entries from multiple collections will be combined into a single file. Only requirements with no profiles (runtime
requirements) will be installed to the image. Entries from multiple collections which are outright duplicates of each
other may be consolidated in the combined file.

15.3. Collection-level metadata 116

CHAPTER

SIXTEEN

PROJECTS

A Project is a logical collection of Ansible playbooks.

You can manage playbooks and playbook directories by either placing them manually under the Project Base Path on
your server, or by placing your playbooks into a source code management (SCM) system supported by automation
controller, including Git, Subversion, and Red Hat Insights. To create a Red Hat Insights project, refer to Setting up
Insights Remediations.

Note: By default, the Project Base Path is /var/lib/awx/projects, but this may have been modified by
the administrator. It is configured in /etc/tower/conf.d/custom.py. Use caution when editing this file, as
incorrect settings can disable your installation.

The Projects page displays the list of the projects that are currently available. The default view is collapsed (Compact)
with project name and its status, but you can use the arrow next to each entry to expand for more information.

117

Automation Controller User Guide, Release Automation Controller 4.3.0

For each project listed, you can get the latest SCM revision (), edit the project (), or copy the project attributes

(), using the respective icons next to each project. Projects are allowed to be updated while a related job is running.
In cases where you have a big project (around 10 GB), disk space on /tmp may be an issue.

Status indicates the state of the project and may be one of the following (note that you can also filter your view by
specific status types):

• Pending - The source control update has been created, but not queued or started yet. Any job (not just source
control updates) will stay in pending until it’s actually ready to be run by the system. Reasons for it not being
ready because it has dependencies that are currently running so it has to wait until they are done, or there is not
enough capacity to run in the locations it is configured to.

• Waiting - The source control update is in the queue waiting to be executed.

• Running - The source control update is currently in progress.

• Successful - The last source control update for this project succeeded.

• Failed - The last source control update for this project failed.

• Error - The last source control update job failed to run at all. (To be deprecated.)

• Canceled - The last source control update for the project was canceled.

• Never updated - The project is configured for source control, but has never been updated.

• OK - The project is not configured for source control, and is correctly in place. (To be deprecated.)

• Missing - Projects are absent from the project base path of /var/lib/awx/projects (applicable for man-
ual or source control managed projects).

Note: Projects of credential type Manual cannot update or schedule source control-based actions without being
reconfigured as an SCM type credential.

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

118

Automation Controller User Guide, Release Automation Controller 4.3.0

16.1 Add a new project

To create a new project:

1. Click the Add button, which launches the Create Project window.

2. Enter the appropriate details into the following required fields:

• Name

• Description (optional)

• Organization - A project must have at least one organization. Pick one organization now to create the project,
and then after the project is created you can add additional organizations.

• Execution Environment (optional) - Enter the name of the execution environment or search from a list of
existing ones to run this project. See Upgrading to Execution Environments in the Ansible Automation Platform
Upgrade and Migration Guide for more information.

16.1. Add a new project 119

http://docs.ansible.com/automation-controller/4.3.0/html/upgrade-migration-guide/upgrade_to_ees.html#upgrade-venv

Automation Controller User Guide, Release Automation Controller 4.3.0

• Source Control Type - Select from the drop-down menu list an SCM type associated with this project. The
options in the subsequent section become available depend on the type you choose. Refer to Manage playbooks
manually or Manage playbooks using source control in the subsequent sections for more detail.

• Content Signature Validation Credential - Use this optional field to enable content verification. Specify the
GPG key to use for validating content signature during project sync. If the content has been tampered with, the
job will not run. See Project Signing and Verification for more detail.

3. Click Save when done.

16.1.1 Manage playbooks manually

• Create one or more directories to store playbooks under the Project Base Path (for example,
/var/lib/awx/projects/).

• Create or copy playbook files into the playbook directory.

• Ensure that the playbook directory and files are owned by the same UNIX user and group that the automation
controller service runs as.

• Ensure that the permissions are appropriate for the playbook directories and files.

If adding a manual project, each project path inside of the project root folder can only be assigned to one project. If
you receive the following message, ensure that you have not already assigned the project path to an existing project:

All of the project paths have been assigned to existing projects, or
there are no directories found in the base path. You will need to add
a project path before creating a new project.

If you have trouble adding a project path, check the permissions and SELinux context settings for the project directory
and files.

Warning: If you have not added any Ansible playbook directories to the base project path, you will receive the
following message:

16.1. Add a new project 120

Automation Controller User Guide, Release Automation Controller 4.3.0

Correct this issue by creating the appropriate playbook directories and checking out playbooks from your SCM or
otherwise copying playbooks into the appropriate playbook directories.

16.1.2 Manage playbooks using source control

• SCM Types - Git and Subversion

• SCM Type - Red Hat Insights

• SCM Type - Remote Archive

SCM Types - Git and Subversion

To configure playbooks to use source control, in the Project Details tab:

1. Select the appropriate option (Git or Subversion) from the SCM Type drop-down menu list.

2. Enter the appropriate details into the following fields:

• SCM URL - See an example in the tooltip .

• SCM Branch/Tag/Commit - Optionally enter the SCM branch, tags, commit hashes, arbitrary refs,
or revision number (if applicable) from the source control (Git or Subversion) to checkout. Some
commit hashes and refs may not be available unless you also provide a custom refspec in the next
field. If left blank, the default is HEAD which is the last checked out Branch/Tag/Commit for this
project.

• SCM Refspec - This field is an option specific to git source control and only advanced users familiar
and comfortable with git should specify which references to download from the remote repository.
For more detail, see job branch overriding.

16.1. Add a new project 121

Automation Controller User Guide, Release Automation Controller 4.3.0

• Source Control Credential - If authentication is required, select the appropriate source control
credential

3. In the SCM Update Options, optionally select the launch behavior, if applicable.

• Clean - Removes any local modifications prior to performing an update.

• Delete - Deletes the local repository in its entirety prior to performing an update. Depending on
the size of the repository this may significantly increase the amount of time required to complete an
update.

• Track submodules - Tracks the latest commit. See more details in the tooltip .

• Update Revision on Launch - Updates the revision of the project to the current revision in the
remote source control, as well as cache the roles directory from Galaxy or Collections. Automation
controller ensures that the local revision matches and that the roles and collections are up-to-date
with the last update. Also, to avoid job overflows if jobs are spawned faster than the project can
sync, selecting this allows you to configure a Cache Timeout to cache prior project syncs for a
certain number of seconds.

• Allow Branch Override - Allows a job template that uses this project to launch with a specified
SCM branch or revision other than that of the project’s. For more detail, see job branch overriding.

4. Click Save to save your project.

Tip: Using a GitHub link offers an easy way to use a playbook. To help get you started, use the
helloworld.yml file available at: https://github.com/ansible/tower-example.git

This link offers a very similar playbook to the one created manually in the instructions found in the
Automation Controller Quick Setup Guide. Using it will not alter or harm your system in anyway.

SCM Type - Red Hat Insights

To configure playbooks to use Red Hat Insights, in the Project Details tab:

1. Select Red Hat Insights from the SCM Type drop-down menu list.

2. Red Hat Insights requires a credential for authentication. Select from the Credential field the appropriate
credential for use with Insights.

3. In the SCM Update Options, optionally select the launch behavior, if applicable.

• Clean - Removes any local modifications prior to performing an update.

• Delete - Deletes the local repository in its entirety prior to performing an update. Depending on
the size of the repository this may significantly increase the amount of time required to complete an
update.

• Update Revision on Launch - Updates the revision of the project to the current revision in the
remote source control, as well as cache the roles directory from Galaxy or Collections. Automation
controller ensures that the local revision matches and that the roles and collections are up-to-date
with the last update. Also, to avoid job overflows if jobs are spawned faster than the project can
sync, selecting this allows you to configure a Cache Timeout to cache prior project syncs for a
certain number of seconds.

16.1. Add a new project 122

https://github.com/ansible/tower-example.git
http://docs.ansible.com/automation-controller/4.3.0/html/quickstart/index.html#qs-start

Automation Controller User Guide, Release Automation Controller 4.3.0

3. Click Save to save your project.

SCM Type - Remote Archive

Playbooks using a remote archive allow projects to be provided based on a build process that produces a versioned
artifact, or release, containing all the requirements for that project in a single archive.

To configure playbooks to use a remote archive, in the Project Details tab:

1. Select Remote Archive from the SCM Type drop-down menu list.

2. Enter the appropriate details into the following fields:

• SCM URL - requires a URL to a remote archive, such as a GitHub Release or a build artifact stored in Artifactory
and unpacks it into the project path for use

• SCM Credential - If authentication is required, select the appropriate SCM credential

3. In the SCM Update Options, optionally select the launch behavior, if applicable.

• Clean - Removes any local modifications prior to performing an update.

• Delete - Deletes the local repository in its entirety prior to performing an update. Depending on
the size of the repository this may significantly increase the amount of time required to complete an
update.

• Update Revision on Launch - Not recommended, as this option updates the revision of the project
to the current revision in the remote source control, as well as cache the roles directory from Galaxy
or Collections.

• Allow Branch Override - Not recommended, as this option allows a job template that uses this
project to launch with a specified SCM branch or revision other than that of the project’s.

16.1. Add a new project 123

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: Since this SCM type is intended to support the concept of unchanging artifacts, it is advisable to disable Galaxy
integration (for roles, at minimum).

4. Click Save to save your project.

16.2 Updating projects from source control

1. Update an existing SCM-based project by selecting the project and clicking the button.

Note: Please note that immediately after adding a project setup to use source control, a “Sync” starts that
fetches the project details from the configured source control.

2. Click on project’s status under the Status column to get further details about the update process.

16.2. Updating projects from source control 124

Automation Controller User Guide, Release Automation Controller 4.3.0

16.3 Work with Permissions

The set of permissions assigned to this project (role-based access controls) that provide the ability to read, modify, and
administer projects, inventories, job templates, and other automation controller elements are Privileges.

You can access the project permissions via the Access tab next to the Details tab. This screen displays a list of users
that currently have permissions to this project. The list may be sorted and searched by Username, First Name, or
Last Name.

16.3. Work with Permissions 125

Automation Controller User Guide, Release Automation Controller 4.3.0

16.3.1 Add Permissions

1. In the Access tab, click the Add button.

2. Select a user or team to add and click Next

3. Select one or more users or teams from the list by clicking the check box(es) next to the name(s) to add them as
members and click Next.

16.3. Work with Permissions 126

Automation Controller User Guide, Release Automation Controller 4.3.0

In this example, two users have been selected to be added.

4. Select the role(s) you want the selected user(s) or team(s) to have. Be sure to scroll down for a complete list of
roles. Different resources have different options available.

16.3. Work with Permissions 127

Automation Controller User Guide, Release Automation Controller 4.3.0

5. Click the Save button to apply the roles to the selected user(s) or team(s) and to add them as members.

The Add Users/Teams window closes to display the updated roles assigned for each user and team.

To remove roles for a particular user, click the disassociate (x) button next to its resource.

16.3. Work with Permissions 128

Automation Controller User Guide, Release Automation Controller 4.3.0

This launches a confirmation dialog, asking you to confirm the disassociation.

16.4 Work with Notifications

Clicking the Notifications tab allows you to review any notification integrations you have setup.

Use the toggles to enable or disable the notifications to use with your particular project. For more detail, see Enable
and Disable Notifications.

If no notifications have been set up, you can configure them from the Notifications link from the left navigation bar to
create a new notification.

Refer to Notification Types for additional details on configuring various notification types.

16.4. Work with Notifications 129

Automation Controller User Guide, Release Automation Controller 4.3.0

16.5 Work with Job Templates

Clicking on Job Templates allows you to add and review any job templates or workflow templates associated with
this project.

Click on the recent jobs that ran using that template to see its details and other useful information. You can sort this
list by various criteria, and perform a search to filter the templates of interest.

From this view, you can also launch (), edit (), or copy () the template configuration.

16.6 Work with Schedules

Clicking on Schedules allows you to review any schedules set up for this project.

16.5. Work with Job Templates 130

Automation Controller User Guide, Release Automation Controller 4.3.0

16.6.1 Schedule a Project

To schedule a project run, click the Schedules tab.

• If schedules are already set up; review, edit, or enable/disable your schedule preferences.

• If schedules have not been set up, refer to Schedules for more information.

16.7 Ansible Galaxy Support

At the end of a Project update, automation controller searches for a file called requirements.yml in the roles di-
rectory, located at <project-top-level-directory>/roles/requirements.yml. If this file is found,
the following command automatically runs:

ansible-galaxy role install -r roles/requirements.yml -p <project-specific cache
↪→location>/requirements_roles -vvv

This file allows you to reference Galaxy roles or roles within other repositories which can be checked out in conjunction
with your own project. The addition of this Ansible Galaxy support eliminates the need to create git submodules for
achieving this result. Given that SCM projects (along with roles/collections) are pulled into and executed from a private
job environment, a <private job directory> specific to the project within /tmp is created by default. However, you can
specify another Job Execution Path based on your environment in the Jobs Settings tab of the Settings window:

16.7. Ansible Galaxy Support 131

Automation Controller User Guide, Release Automation Controller 4.3.0

The cache directory is a subdirectory inside the global projects folder. The content may be copied from the cache
location to <job private directory>/requirements_roles location.

By default, automation controller has a system-wide setting that allows roles to be dynamically downloaded from the
roles/requirements.yml file for SCM projects. You may turn off this setting in the Jobs settings screen of
the Settings menu by switching the Enable Role Download toggle button to OFF.

Whenever a project sync runs, automation controller determines if the project source and any roles from Galaxy and/or
Collections are out of date with the project. Project updates will download the roles inside the update.

If jobs need to pick up a change made to an upstream role, updating the project will ensure this happens. A change
to the role means that a new commit was pushed to the provision-role source control. To make this change take effect
in a job, you do not need to push a new commit to the playbooks repo, but you do need to update the project, which
downloads roles to a local cache. For instance, say you have two git repositories in source control. The first one
is playbooks and the project in automation controller points to this URL. The second one is provision-role and it is
referenced by the roles/requirements.yml file inside of the playbooks git repo.

In short, jobs would download the most recent roles before every job run. Roles and collections are locally cached for
performance reasons, and you will need to select Update Revision on Launch in the project SCM Update Options to
ensure that the upstream role is re-downloaded before each job run:

16.7. Ansible Galaxy Support 132

Automation Controller User Guide, Release Automation Controller 4.3.0

The update happens much earlier in the process than the sync, so this surfaces errors and details faster and in a more
logic place.

For more information and examples on the syntax of the requirements.yml file, refer to the role requirements
section in the Ansible documentation.

If there are any directories that should specifically be exposed, you can specify those in the Jobs section of the Settings
screen in the Paths to Expose to Isolated Jobs or by updating the following entry in the settings file:

AWX_ISOLATION_SHOW_PATHS = ['/list/of/', '/paths']

Note: The primary file you may want to add to AWX_ISOLATION_SHOW_PATHS is /var/lib/
awx/.ssh, if your playbooks need to use keys or settings defined there.

If you made changes in the settings file, be sure to restart services with the automation-controller-service
restart command after your changes have been saved.

In the User Interface, you can configure these settings in the Jobs settings window.

Note: The Primary Galaxy Server Username and Primary Galaxy Server Password fields are no longer config-
urable in automation controller 3.8. We recommend using tokens to access Galaxy or Automation Hub instead.

16.8 Collections Support

Automation controller supports project-specific Ansible collections in job runs. If you specify a collections require-
ments file in the SCM at collections/requirements.yml, automation controller will install collections in
that file in the implicit project sync before a job run.

By default, automation controller has a system-wide setting that allows collections to be dynamically downloaded
from the collections/requirements.yml file for SCM projects. You may turn off this setting in the Jobs
settings tab of the Settings menu by switching the Enable Collections Download toggle button to OFF.

16.8. Collections Support 133

https://docs.ansible.com/ansible/latest/galaxy/user_guide.html#installing-multiple-roles-from-a-file
https://docs.ansible.com/ansible/latest/galaxy/user_guide.html#installing-multiple-roles-from-a-file
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html

Automation Controller User Guide, Release Automation Controller 4.3.0

Roles and collections are locally cached for performance reasons, and you will need to select Update Revision on
Launch in the project SCM Update Options to ensure this:

16.8.1 Using Collections via Hub

Before automation controller can use Automation Hub as the default source for collections content, you need to create
an API token in the Automation Hub UI so that it could be specified in automation controller. You may connect to a
private Automation Hub or a public Automation Hub collection, the only difference is which URL you specify.

1. Navigate to https://cloud.redhat.com/ansible/automation-hub/token and click Load token.

2. Click the copy icon to copy the API token to the clipboard.

16.8. Collections Support 134

https://cloud.redhat.com/ansible/automation-hub/token

Automation Controller User Guide, Release Automation Controller 4.3.0

3. To use the public Automation Hub, create an Automation Hub credential using the copied token and pointing to
the URLs shown in the Server URL and SSO URL fields of the token page:

• Galaxy Server URL = https://cloud.redhat.com/api/automation-hub/

• AUTH SEVER URL = https://sso.redhat.com/auth/realms/redhat-external/
protocol/openid-connect/token

4. To use a private Automation Hub, create an Automation Hub credential using a token retrieved from the Repo
Management dashboard of your local Automation Hub and pointing to the published repo URL as shown:

You can create different repos with different namespaces/collections in them. But for each repo in Automation Hub
you need to create a different Automation Hub credential. Copy the Ansible CLI URL from the Automation Hub UI in
the format of https://$<hub_url>/api/galaxy/content/<repo you want to pull from> into
the Galaxy Server URL field of the Create Credential form:

16.8. Collections Support 135

Automation Controller User Guide, Release Automation Controller 4.3.0

Refer to Managing Red Hat Certified and Ansible Galaxy Collections in Ansible Hub for Automation Hub UI-specific
instructions.

5. Navigate to the organization for which you want to be able to sync content from Automation Hub and add the
new Automation Hub credential to the organization. This step allows you to associate each organization with
the Automation Hub credential (i.e. repo) that you want to be able to use content from.

Note: Suppose you have two repos:

• Prod: Namespace 1 and Namespace 2, each with collection A and B so: namespace1.
collectionA:v2.0.0 and namespace2.collectionB:v2.0.0

• Stage: Namespace 1 with only collection A so: namespace1.collectionA:v1.5.0 on Automation
Hub, you will have a repo URL for Prod and Stage.

You can create an Automation Hub credential for each one. Then you can assign different levels of access to different
organizations. For example, you can create a Developers organization has access to both repos, while an Operations
organization just has access to the Automation Hub Prod repo only.

Refer to Managing User Access in Ansible Hub for Automation Hub UI-specific instructions.

6. If the Automation Hub has self-signed certificates, click the toggle to enable the setting Ignore Ansible Galaxy
SSL Certificate Verification. For public Automation Hub, which uses a signed certificate, click the toggle to
disable it instead. Note this is a global setting:

16.8. Collections Support 136

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/1.2/html/managing_red_hat_certified_and_ansible_galaxy_collections_in_automation_hub/index
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/1.0/html/managing_user_access_in_automation_hub/index

Automation Controller User Guide, Release Automation Controller 4.3.0

7. Create a project, where the source repository specifies the necessary collections in a require-
ments file located in the collections/requirements.yml file. Refer to the syntax described
in the Ansible documentation: https://docs.ansible.com/ansible/latest/user_guide/collections_using.html#
install-multiple-collections-with-a-requirements-file.

8. In the Projects list view, click to run an update against this project. Automation controller fetches the Galaxy
collections from the collections/requirements.yml file and report it as changed; and the collections
will now be installed for any job template using this project.

Note: If updates are needed from Galaxy or Collections, a sync is performed that downloads the required roles,
consuming that much more space in your /tmp file. In cases where you have a big project (around 10 GB), disk space
on /tmp may be an issue.

For more information on collections, refer to Using Collections. For more information on how Red Hat itself publishes
one of these official collections, which can be used to automate your automation controller install directly, refer to the

16.8. Collections Support 137

https://docs.ansible.com/ansible/latest/user_guide/collections_using.html#install-multiple-collections-with-a-requirements-file
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html#install-multiple-collections-with-a-requirements-file
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html

Automation Controller User Guide, Release Automation Controller 4.3.0

AWX Ansible Collection documentation. This page is accessible with your Red Hat customer credentials as part of
your Red Hat Ansible Automation Platform subscription.

16.8. Collections Support 138

https://cloud.redhat.com/ansible/automation-hub/ansible/tower/docs

CHAPTER

SEVENTEEN

PROJECT SIGNING AND VERIFICATION

Project signing and verification provides the ability to sign files in your project directory and then verify whether or
not that content has changed in any way, or files have been added or removed from the project unexpectedly. To
accomplish this, a private key for signing and a matching public key for verifying are needed.

For project maintainers, the supported way to perform content signing is to use a utility called, ansible-sign,
through the command-line interface (CLI) that comes with it.

The CLI aims to make it easy to use cryptographic technology like GNU Privacy Guard (GPG) to validate that specified
files within a project have not been tampered with in any way. Currently, GPG is the only supported means of signing
and validation.

The Ansible Automation controller is used to verify the signed content. After a matching public key has been associ-
ated with the signed project, the controller will verify that the files included during signing have not changed, and that
files have been added or removed unexpectedly. If the signature is not valid or a file has changed, the project will fail
to update, and no jobs making use of the project will be able to launch. Verification status of the project ensures that
only secure, untampered content is run in jobs.

Assuming that the repository has already been configured for signing and verification (see below), the usual workflow
for altering the project becomes the following:

1. User has a project repository set up already and wants to make a change to a file.

2. User makes the change, runs ansible-sign project gpg-sign /path/to/project, which up-
dates a checksum manifest and signs it.

3. User commits the change and the updated checksum manifest and the signature to the repository.

4. When the user syncs the project, the controller (already configured, in this scenario) pulls in the new changes,
checks that the public key associated with the project in the controller matches the private key that the checksum
manifest was signed with (this prevents tampering with the checksum manifest itself), then re-calculates check-
sums of each file in the manifest to ensure that the checksum matches (and thus that no file has changed). It also
looks to ensure that all files are accounted for: They must have been either included in, or excluded from, the
MANIFEST.in file discussed below; if files have been added or removed unexpectedly, verification will fail.

139

Automation Controller User Guide, Release Automation Controller 4.3.0

17.1 Prerequisites

• RHEL nodes must properly be subscribed to:

– RHEL subscription and with baseos and appstream repositories enabled

– Ansible Automation Platform subscription and the proper Ansible Automation Platform channel
enabled:

ansible-automation-platform-2.3-for-rhel-8-x86_64-rpms for RHEL 8
ansible-automation-platform-2.3-for-rhel-9-x86_64-rpms for RHEL 9

• A valid GPG public/private keypair is required for signing content. Refer to How to create GPG keypairs for
details.

Vist the GnuPG documentation for more information regarding GPG keys.

You can verify that you have a valid GPG keypair and in your default GnuPG keyring, with the following
command:

$ gpg --list-secret-keys

If the above command produces no output, or one line of output that states, trustdb was created,
then you do not have a secret key in your default keyring. In this case, refer to How to create GPG keypairs
to learn how to create a new keypair before proceeding. If it produces output other than that, you have a
valid secret key and are ready to move on to using ansible-sign.

17.1. Prerequisites 140

https://www.redhat.com/sysadmin/creating-gpg-keypairs
https://www.gnupg.org/documentation/index.html
https://www.redhat.com/sysadmin/creating-gpg-keypairs

Automation Controller User Guide, Release Automation Controller 4.3.0

17.2 Add a GPG key to Ansible Automation Controller

In order to use the GPG key for content singing and validation in the controller, you must add it running the following
command in the CLI:

$ gpg --list-keys
$ gpg --export --armour <key fingerprint> > my_public_key.asc

1. In the controller user interface, click Credentials from the left side navigation menu then click the Add button.

2. Provide the new credential a meaningful name (for example, “Infrastructure team public GPG key”)

3. In the Credential Type field, select GPG Public Key.

4. Click Browse to locate and select the public key file (e.g., my_public_key.asc)

5. Click Save when done.

This credential can now be selected in projects, and content verification will automatically take place on future project
syncs.

Note: Use the project cache SCM timeout to control how often you want the controller to re-validate the signed
content. When a project is configured to update on launch (of any job template configured to use that project), you
can enable the cache timeout setting, which tells it to update after N seconds have passed since the last update. If

17.2. Add a GPG key to Ansible Automation Controller 141

Automation Controller User Guide, Release Automation Controller 4.3.0

validation is running too frequently, you can slow down how often project updates occur by specifying the time in the
Cache Timeout field of the Option Details pane of the project.

17.3 Access the ansible-sign CLI utility

The ansible-sign utility provide options for the user to sign and verify whether the project is signed.

1. Run the following command to install ansible-sign:

$ dnf install ansible-sign

2. Verify that ansible-sign was successfully installed:

$ ansible-sign --version

Output similar to the following displays (possibly with a different version number):

ansible-sign 0.1

This indicates you have successfully installed ansible-sign.

17.4 Signing your project

As the name suggests, signing a project involves an Ansible project directory. Refer to the Ansible documentation for
more sophisticated examples of project directory structures.

The following sample project has a very simple structure. An inventory file, and two small playbooks under a play-
books directory:

$ cd sample-project/
$ tree -a .
.

inventory
playbooks

get_uptime.yml
hello.yml

1 directory, 3 files

17.3. Access the ansible-sign CLI utility 142

https://docs.ansible.com/ansible/latest/user_guide/sample_setup.html

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: The commands used in this section assume that your working directory is the root of your project. As a rule,
ansible-sign project commands always take the project root directory as their last argument, and therefore,
we use . to indicate the current working directory.

The way that ansible-sign protects content from tampering is by taking checksums (SHA256) of all of the secured
files in the project, compiling those into a checksum manifest file, and then finally signing that manifest file.

The first step toward signing content is to create a file that tells ansible-sign which files to protect. This file
should be called MANIFEST.in and reside in the project root directory.

Internally, ansible-sign makes use of the distlib.manifest module of Python’s distlib library, and thus
MANIFEST.in must follow the syntax that this library specifies. See the Python Packaging User Guide for an
explanation of the MANIFEST.in file directives.

In the sample project, included are two directives, resulting in a MANIFEST.in file that looks like this:

include inventory
recursive-include playbooks *.yml

With this file in place, generate your checksum manifest file and sign it. Both of these steps are achieved in a single
ansible-sign command:

$ ansible-sign project gpg-sign .
[OK] GPG signing successful!
[NOTE] Checksum manifest: ./.ansible-sign/sha256sum.txt
[NOTE] GPG summary: signature created

Now the project has been signed.

Notice that the gpg-sign subcommand resides under the project subcommand. For signing project content,
every command will start with ansible-sign project. As noted above, as a rule, every ansible-sign
project command takes the project root directory as its final argument.

As mentioned earlier, ansible-sign by default makes use of your default keyring and looks for the first available
secret key that it can find, to sign your project. You can specify a specific secret key to use with the --fingerprint
option, or even a completely independent GPG home directory with the --gnupg-home option.

Note: If you are using a desktop environment, GnuPG will automatically prompt you for your secret key’s passphrase.
If this functionality does not work, or you are working without a desktop environment (e.g., via SSH), you can use the
-p/--prompt-passphrase flag after gpg-sign in the above command, which will cause ansible-sign to
prompt for the password instead.

Upon viewing the structure of the project directory, notice that a new .ansible-sign directory was created. This
directory contains the checksum manifest and a detached GPG signature for it.

$ tree -a .
.

.ansible-sign
sha256sum.txt
sha256sum.txt.sig

inventory
MANIFEST.in
playbooks

get_uptime.yml
hello.yml

17.4. Signing your project 143

https://packaging.python.org/en/latest/guides/using-manifest-in/#manifest-in-commands

Automation Controller User Guide, Release Automation Controller 4.3.0

17.5 Verifying your project

If you want to verify that a signed Ansible project has not been altered, you can use ansible-sign to check whether
the signature is valid and that the checksums of the files match what the checksum manifest says they should be. In
particular, the ansible-sign project gpg-verify command can be used to automatically verify both of
these conditions.

$ ansible-sign project gpg-verify .
[OK] GPG signature verification succeeded.
[OK] Checksum validation succeeded.

Note: By default, ansible-sign makes use of your default GPG keyring to look for a matching public key. You
can specify a keyring file with the --keyring option, or a different GPG home with the --gnugpg-home option.

If verification fails for any reason, information will be displayed to help you debug the cause. More verbosity can be
enabled by passing the global --debug flag, immediately after ansible-sign in your commands.

Note: When a GPG credential is used in a project, content verification will automatically take place on future project
syncs.

17.6 Automate signing

In environments with highly-trusted CI environments (e.g., OpenShift, Jenkins, etc.), it is possible to automate the
signing process. For example, you could store your GPG private key in a CI platform of choice as a secret, and import
that into GnuPG in the CI environment. You could then run through the signing workflow above within the normal CI
workflow/container/environment.

When signing a project using GPG, the environment variable ANSIBLE_SIGN_GPG_PASSPHRASE can be set to
the passphrase of the signing key. This can be injected (and masked/secured) in a CI pipeline.

Depending on the scenario at hand, ansible-sign will return with a different exit-code, during both signing and
verification. This can also be useful in the context of CI and automation, as a CI environment can act differently based
on the failure (for example, sending alerts for some errors but silently failing for others).

These are the exit codes used in ansible-sign currently, which can be considered stable:

17.5. Verifying your project 144

Automation Controller User Guide, Release Automation Controller 4.3.0

Exit code Approximate meaning Example scenarios
0 Success

• Signing was successful
• Verification was successful

1 General failure
• The checksum manifest file contained a syntax error

during verification
• The signature file did not exist during verification
• MANIFEST.in did not exist during signing

2 Checksum verification failure
• The checksum hashes calculated during verification

differed from what was in the signed checksum man-
ifest (e.g., a project file was changed but the signing
process was not re-completed)

3 Signature verification failure
• The signer’s public key was not in the user’s GPG

keyring
• The wrong GnuPG home directory or keyring file was

specified
• The signed checksum manifest file was modified in

some way

4 Signing process failure
• The signer’s private key was not found in the GPG

keyring
• The wrong GnuPG home directory or keyring file was

specified

17.6. Automate signing 145

CHAPTER

EIGHTEEN

INVENTORIES

An Inventory is a collection of hosts against which jobs may be launched, the same as an Ansible inventory file.
Inventories are divided into groups and these groups contain the actual hosts. Groups may be sourced manually, by
entering host names into the automation controller, or from one of its supported cloud providers.

Note: If you have a custom dynamic inventory script, or a cloud provider that is not yet supported natively in the
controller, you can also import that into the controller. Refer to Inventory File Importing in the Automation Controller
Administration Guide.

The Inventories window displays a list of the inventories that are currently available. The inventory list may be sorted
by name and searched type, organization, description, owners and modifiers of the inventory, or additional criteria as
needed.

The list of Inventory details includes:

• Name: The inventory name. Clicking the Inventory name navigates to the properties screen for the selected

inventory, which shows the inventory’s groups and hosts. (This view is also accessible from the icon.)

• Status

The statuses are:

• Success: when the inventory source sync completed successfully

• Disabled: no inventory source added to the inventory

• Error: when the inventory source sync completed with error

146

http://docs.ansible.com/automation-controller/4.3.0/html/administration/scm-inv-source.html#ag-inv-import

Automation Controller User Guide, Release Automation Controller 4.3.0

An example of inventories of various states, including one with detail for a disabled state:

• Type: Identifies whether it is a standard inventory or a Smart Inventory.

• Organization: The organization to which the inventory belongs.

• Actions: The following actions are available for the selected inventory:

– Edit (): Edit the properties for the selected inventory

– Copy (): Makes a copy of an existing inventory as a template for creating a new one

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

147

Automation Controller User Guide, Release Automation Controller 4.3.0

18.1 Smart Inventories

A Smart Inventory is a collection of hosts defined by a stored search that can be viewed like a standard inventory
and made to be easily used with job runs. Organization administrators have admin permission to inventories in their
organization and can create a Smart Inventories. A Smart Inventory is identified by KIND=smart. You can define a
Smart Inventory using the same method being used with Search. InventorySource is directly associated with an
Inventory.

The Inventory model has the following new fields that are blank by default but are set accordingly for Smart
Inventories:

• kind is set to smart for Smart Inventories

• host_filter is set AND kind is set to smart for Smart Inventories.

The host model has a related endpoint, smart_inventories that identifies a set of all the Smart Inventory a host
is associated with. The membership table is updated every time a job runs against a smart inventory.

Note: To update the memberships more frequently, you can change the file-based setting
AWX_REBUILD_SMART_MEMBERSHIP to True (default is False). This will update memberships in the fol-
lowing events:

• a new host is added

• an existing host is modified (updated or deleted)

• a new Smart Inventory is added

• an existing Smart Inventory is modified (updated or deleted)

18.1. Smart Inventories 148

Automation Controller User Guide, Release Automation Controller 4.3.0

You can view actual inventories without being editable:

• Names of Host and Group created as a result of an inventory source sync

• Group records cannot be edited or moved

You cannot create hosts from a Smart Inventory host endpoint (/inventories/N/hosts/) as with a normal
inventory. The administrator of a Smart Inventory has permission to edit fields such as the name, description, variables,
and the ability to delete, but does not have the permission to modify the host_filter, because that will affect
which hosts (that have a primary membership inside another inventory) are included in the smart inventory. Note,
host_filter only apply to hosts inside of inventories inside of the Smart Inventory’s organization.

In order to modify the host_filter, you need to be the organization administrator of the inventory’s organization.
Organization admins already have implicit “admin” access to all inventories inside the organization, therefore, this
does not convey any permissions they did not already possess.

Administrators of the Smart Inventory can grant other users (who are not also admins of your organization) permissions
like “use” “adhoc” to the smart inventory, and these will allow the actions indicate by the role, just like other standard
inventories. However, this will not give them any special permissions to hosts (which live in a different inventory).
It will not allow them direct read permission to hosts, or permit them to see additional hosts under /#/hosts/,
although they can still view the hosts under the smart inventory host list.

In some situations, you can modify the following:

• A new Host manually created on Inventory w/ inventory sources

• In Groups that were created as a result of inventory source syncs

• Variables on Host and Group are changeable

Hosts associated with the Smart Inventory are manifested at view time. If the results of a Smart Inventory contains
more than one host with identical hostnames, only one of the matching hosts will be included as part of the Smart
Inventory, ordered by Host ID.

18.1.1 Smart Host Filter

You can use a search filter to populate hosts for an inventory. This feature utilized the capability of the fact searching
feature.

Facts generated by an Ansible playbook during a Job Template run are stored by the automation con-
troller into the database whenever use_fact_cache=True is set per-Job Template. New facts are
merged with existing facts and are per-host. These stored facts can be used to filter hosts via the /
api/v2/hosts endpoint, using the GET query parameter host_filter For example: /api/v2/hosts?
host_filter=ansible_facts__ansible_processor_vcpus=8

The host_filter parameter allows for:

• grouping via ()

• use of the boolean and operator:

– __ to reference related fields in relational fields

– __ is used on ansible_facts to separate keys in a JSON key path

– [] is used to denote a json array in the path specification

– "" can be used in the value when spaces are wanted in the value

• “classic” Django queries may be embedded in the host_filter

Examples:

18.1. Smart Inventories 149

Automation Controller User Guide, Release Automation Controller 4.3.0

/api/v2/hosts/?host_filter=name=localhost
/api/v2/hosts/?host_filter=ansible_facts__ansible_date_time__weekday_number="3"
/api/v2/hosts/?host_filter=ansible_facts__ansible_processor[]="GenuineIntel"
/api/v2/hosts/?host_filter=ansible_facts__ansible_lo__ipv6[]__scope="host"
/api/v2/hosts/?host_filter=ansible_facts__ansible_processor_vcpus=8
/api/v2/hosts/?host_filter=ansible_facts__ansible_env__PYTHONUNBUFFERED="true"
/api/v2/hosts/?host_filter=(name=localhost or name=database) and (groups__name=east
↪→or groups__name="west coast") and ansible_facts__an

You can search host_filter by host name, group name, and Ansible facts.

The format for a group search is:

groups.name:groupA

The format for a fact search is:

ansible_facts.ansible_fips:false

You can also perform Smart Search searches, which consist a host name and host description.

host_filter=name=my_host

If a search term in host_filter is of string type, to make the value a number (e.g. 2.66), or a JSON keyword
(e.g. null, true or false) valid, add double quotations around the value to prevent the controller from mistakenly
parsing it as a non-string:

host_filter=ansible_facts__packages__dnsmasq[]__version="2.66"

18.1.2 Define host filter with ansible_facts

To use ansible_facts to define the host filter when creating Smart Inventories, perform the following steps:

1. In the Create new smart inventory screen, click the button next to the Smart host filter field to open a
pop-up window to filter hosts for this inventory.

18.1. Smart Inventories 150

Automation Controller User Guide, Release Automation Controller 4.3.0

2. In the search pop-up window, change the search criteria from Name to Advanced and select ansible_facts from
the Key field.

If you wanted to add an ansible fact of

/api/v2/hosts/?host_filter=ansible_facts__ansible_processor[]="GenuineIntel"

In the search field, enter ansible_processor[]="GenuineIntel" (no extra spaces or __ before the value)
and press [Enter].

The resulting search criteria for the specified ansible fact populates in the lower part of the window.

18.1. Smart Inventories 151

Automation Controller User Guide, Release Automation Controller 4.3.0

3. Click Select to add it to the Smart host filter field.

4. Click Save to save the new Smart Inventory.

The Details tab of the new Smart Inventory opens and displays the specified ansible facts in the Smart host filter field.

18.1. Smart Inventories 152

Automation Controller User Guide, Release Automation Controller 4.3.0

5. From the Details view, you can edit the Smart host filter field by clicking Edit and delete existing filter(s),
clear all existing filters, or add new ones.

18.2 Inventory Plugins

Inventory updates use dynamically-generated YAML files which are parsed by their respective inventory plugin. In
Automation Controller Version 4.3.0, users can provide the new style inventory plugin config directly to the controller
via the inventory source source_vars for all the following inventory sources:

• Amazon Web Services EC2

• Google Compute Engine

• Microsoft Azure Resource Manager

• VMware vCenter

• Red Hat Satellite 6

• Red Hat Insights

• OpenStack

• Red Hat Virtualization

• Red Hat Ansible Automation Platform

18.2. Inventory Plugins 153

Automation Controller User Guide, Release Automation Controller 4.3.0

Newly created configurations for inventory sources will contain the default plugin configuration values. If you want
your newly created inventory sources in 3.8 to match the output of a 3.7 source, you must apply a specific set of
configuration values for that source. To ensure backward compatibility, the controller uses “templates” for each of
these sources to force the output of inventory plugins into the legacy format. Refer to Supported Inventory Plugin
Templates section of this guide for each source and their respective templates to help you migrate to the new style
inventory plugin output.

source_vars that contain plugin: foo.bar.baz as a top-level key will be replaced with the appropriate
fully-qualified inventory plugin name at runtime based on the InventorySource source. For example, if ec2 is
selected for the InventorySource then, at run-time, plugin will be set to amazon.aws.aws_ec2.

18.3 Add a new inventory

Adding a new inventory involves several components:

• Add permissions

• Add groups

• Add hosts

• Add source

• View completed jobs

To create a new inventory or Smart Inventory:

1. Click the Add button, and select the type of inventory to create.

The type of inventory is identified at the top of the create form.

2. Enter the appropriate details into the following fields:

• Name: Enter a name appropriate for this inventory.

• Description: Enter an arbitrary description as appropriate (optional).

• Organization: Required. Choose among the available organizations.

18.3. Add a new inventory 154

Automation Controller User Guide, Release Automation Controller 4.3.0

• Smart Host Filter: (Only applicable to Smart Inventories) Click the button to open a separate window to
filter hosts for this inventory. These options are based on the organization you chose.

Filters are similar to tags in that tags are used to filter certain hosts that contain those names. Therefore, to
populate the Smart Host Filter field, you are specifying a tag that contains the hosts you want, not actually
selecting the hosts themselves. Enter the tag in the Search field and press [Enter]. Filters are case-sensitive.
Refer to the Smart Host Filter section for more information.

• Instance Groups: Click the button to open a separate window. Choose the instance groups for this
inventory to run on. If the list is extensive, use the search to narrow the options.

• Variables: Variable definitions and values to be applied to all hosts in this inventory. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

3. Click Save when done.

After saving the new inventory, you can proceed with configuring permissions, groups, hosts, sources, and view
completed jobs, if applicable to the type of inventory. For more instructions, refer to the subsequent sections.

18.3.1 Add permissions

1. In the Access tab, click the Add button.

2. Select a user or team to add and click Next

3. Select one or more users or teams from the list by clicking the check box(es) next to the name(s) to add them as
members and click Next.

18.3. Add a new inventory 155

Automation Controller User Guide, Release Automation Controller 4.3.0

In this example, two users have been selected to be added.

4. Select the role(s) you want the selected user(s) or team(s) to have. Be sure to scroll down for a complete list of
roles. Different resources have different options available.

18.3. Add a new inventory 156

Automation Controller User Guide, Release Automation Controller 4.3.0

5. Click the Save button to apply the roles to the selected user(s) or team(s) and to add them as members.

The Add Users/Teams window closes to display the updated roles assigned for each user and team.

To remove roles for a particular user, click the disassociate (x) button next to its resource.

18.3. Add a new inventory 157

Automation Controller User Guide, Release Automation Controller 4.3.0

This launches a confirmation dialog, asking you to confirm the disassociation.

18.3.2 Add groups

Inventories are divided into groups, which may contain hosts and other groups, and hosts. Groups are only applicable to
standard inventories and is not a configurable directly through a Smart Inventory. You can associate an existing group
through host(s) that are used with standard inventories. There are several actions available for standard inventories:

• Create a new Group

• Create a new Host

• Run a command on the selected Inventory

• Edit Inventory properties

• View activity streams for Groups and Hosts

• Obtain help building your Inventory

Note: Inventory sources are not associated with groups. Spawned groups are top-level and may still have child
groups, and all of these spawned groups may have hosts.

To create a new group for an inventory:

1. Click the Add button to open the Create Group window.

18.3. Add a new inventory 158

Automation Controller User Guide, Release Automation Controller 4.3.0

2. Enter the appropriate details into the required and optional fields:

• Name: Required

• Description: Enter an arbitrary description as appropriate (optional)

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

3. When done, click Save.

Add groups within groups

To add groups within groups:

1. Click the Related Groups tab.

2. Click the Add button, and select whether to add a group that already exists in your configuration or create a new
group.

3. If creating a new group, enter the appropriate details into the required and optional fields:

• Name: Required

• Description: Enter an arbitrary description as appropriate (optional)

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

4. When done, click Save.

The Create Group window closes and the newly created group displays as an entry in the list of groups associated
with the group that it was created for.

18.3. Add a new inventory 159

Automation Controller User Guide, Release Automation Controller 4.3.0

If you chose to add an existing group, available groups will appear in a separate selection window.

Once a group is selected, it displays as an entry in the list of groups associated with the group.

5. To configure additional groups and hosts under the subgroup, click on the name of the subgroup from the list of
groups and repeat the same steps described in this section.

View or edit inventory groups

The list view displays all your inventory groups at once, or you can filter it to only display the root group(s). An
inventory group is considered a root group if it is not a subset of another group.

You may be able to delete a subgroup without concern for dependencies, since the controller will look for dependencies
such as any child groups or hosts. If any exists, a confirmation dialog displays for you to choose whether to delete
the root group and all of its subgroups and hosts; or promote the subgroup(s) so they become the top-level inventory
group(s), along with their host(s).

18.3. Add a new inventory 160

Automation Controller User Guide, Release Automation Controller 4.3.0

18.3.3 Add hosts

You can configure hosts for the inventory as well as for groups and groups within groups. To configure hosts:

1. Click the Hosts tab.

2. Click the Add button, and select whether to add a host that already exists in your configuration or create a new
host.

3. If creating a new host, select the button to specify whether or not to include this host while running
jobs.

4. Enter the appropriate details into the required and optional fields:

• Host Name: Required

• Description: Enter an arbitrary description as appropriate (optional)

• Variables: Enter definitions and values to be applied to all hosts in this group. Enter variables using either
JSON or YAML syntax. Use the radio button to toggle between the two.

5. When done, click Save.

The Create Host window closes and the newly created host displays as an entry in the list of hosts associated with the
group that it was created for.

If you chose to add an existing host, available hosts will appear in a separate selection window.

18.3. Add a new inventory 161

Automation Controller User Guide, Release Automation Controller 4.3.0

Once a host is selected, it displays as an entry in the list of hosts associated with the group. You can disassociate a
host from this screen by selecting the host and click the Disassociate button.

Note: You may also run ad hoc commands from this screen. Refer to Running Ad Hoc Commands for more detail.

6. To configure additional groups for the host, click on the name of the host from the list of hosts.

This opens the Details tab of the selected host.

18.3. Add a new inventory 162

Automation Controller User Guide, Release Automation Controller 4.3.0

7. Click the Groups tab to configure groups for the host.

a. Click the Add button to associate the host with an existing group.

Available groups appear in a separate selection window.

b. Click to select the group(s) to associate with the host and click Save.

Once a group is associated, it displays as an entry in the list of groups associated with the host.

8. If a host was used to run a job, you can view details about those jobs in the Completed Jobs tab of the host and
click Expanded to view details about each job.

18.3. Add a new inventory 163

Automation Controller User Guide, Release Automation Controller 4.3.0

18.3.4 Add source

Inventory sources are not associated with groups. Spawned groups are top-level and may still have child groups, and
all of these spawned groups may have hosts. Adding a source to an inventory only applies to standard inventories.
Smart inventories inherit their source from the standard inventories they are associated with. To configure the source
for the inventory:

1. In the inventory you want to add a source, click the Sources tab.

2. Click the Add button.

This opens the Create Source window.

3. Enter the appropriate details into the required and optional fields:

• Name: Required

• Description: Enter an arbitrary description as appropriate (optional)

• Execution Environment: Optionally search () or enter the name of the execution environment with which
you want to run your inventory imports. Refer to the Execution Environments section for details on building an
execution environment.

18.3. Add a new inventory 164

Automation Controller User Guide, Release Automation Controller 4.3.0

• Source: Choose a source for your inventory. Refer to the Inventory Sources section for more information about
each source and details for entering the appropriate information.

4. After completing the required information for your chosen inventory source, you can continue to optionally
specify other common parameters, such as verbosity, host filters, and variables.

Note: The Regions, Instance Filters, and Only Group By fields have been removed in automation
controller 3.8.

5. Select the appropriate level of output on any inventory source’s update jobs from the Verbosity drop-down
menu.

6. Use the Host Filter field to specify only matching host names to be imported into the controller.

7. In the Enabled Variable, specify the controller to retrieve the enabled state from the given dictionary of host
variables. The enabled variable may be specified using dot notation as ‘foo.bar’, in which case the lookup will
traverse into nested dicts, equivalent to: from_dict.get('foo', {}).get('bar', default).

8. If you specified a dictionary of host variables in the Enabled Variable field, you can provide
a value to enable on import. For example, if enabled_var='status.power_state' and
enabled_value='powered_on' with the following host variables, the host would be marked enabled:

{
"status": {
"power_state": "powered_on",
"created": "2020-08-04T18:13:04+00:00",
"healthy": true
},
"name": "foobar",
"ip_address": "192.168.2.1"
}

If power_state were any value other than powered_on, then the host would be disabled when
imported into the controller. If the key is not found, then the host will be enabled.

9. All cloud inventory sources have the following update options:

• Overwrite: If checked, any hosts and groups that were previously present on the external source but
are now removed, will be removed from the controller inventory. Hosts and groups that were not
managed by the inventory source will be promoted to the next manually created group, or if there is
no manually created group to promote them into, they will be left in the “all” default group for the
inventory.

When not checked, local child hosts and groups not found on the external source will remain
untouched by the inventory update process.

• Overwrite Variables: If checked, all variables for child groups and hosts will be removed and
replaced by those found on the external source. When not checked, a merge will be performed,
combining local variables with those found on the external source.

• Update on Launch: Each time a job runs using this inventory, refresh the inventory from the se-
lected source before executing job tasks. To avoid job overflows if jobs are spawned faster than the
inventory can sync, selecting this allows you to configure a Cache Timeout to cache prior inventory
syncs for a certain number of seconds.

The “Update on Launch” setting refers to a dependency system for projects and inventory, and
it will not specifically exclude two jobs from running at the same time. If a cache timeout
is specified, then the dependencies for the second job is created and it uses the project and
inventory update that the first job spawned. Both jobs then wait for that project and/or inventory

18.3. Add a new inventory 165

Automation Controller User Guide, Release Automation Controller 4.3.0

update to finish before proceeding. If they are different job templates, they can then both
start and run at the same time, if the system has the capacity to do so. If you intend to use
the controller’s provisioning callback feature with a dynamic inventory source, Update on
Launch should be set for the inventory group.

If you sync an inventory source that uses a project that has Update On Launch set, then
the project may automatically update (according to cache timeout rules) before the inventory
update starts.

You can create a job template that uses an inventory that sources from the same project that
the template uses. In this case, the project will update and then the inventory will update (if
updates are not already in-progress, or if the cache timeout has not already expired).

10. Review your entries and selections and click Save when done. This allows you to configure additional details,
such as schedules and notifications.

11. To configure schedules associated with this inventory source, click the Schedules tab.

a. If schedules are already set up; review, edit, or enable/disable your schedule preferences.

b. if schedules have not been set up, refer to Schedules for more information.

Note: The Notifications tab is only present after you save the newly-created source.

12. To configure notifications for the source, click the Notifications tab.

a. If notifications are already set up, use the toggles to enable or disable the notifications to use with your particular
source. For more detail, see Enable and Disable Notifications.

b. if notifications have not been set up, refer to Notifications for more information.

13. Review your entries and selections and click Save when done.

Once a source is defined, it displays as an entry in the list of sources associated with the inventory. From the Sources
tab you can perform a sync on a single source, or sync all of them at once. You can also perform additional actions
such as scheduling a sync process, and edit or delete the source.

18.3. Add a new inventory 166

Automation Controller User Guide, Release Automation Controller 4.3.0

Inventory Sources

Choose a source which matches the inventory type against which a host can be entered:

• Sourced from a Project

• Amazon Web Services EC2

• Google Compute Engine

• Microsoft Azure Resource Manager

• VMware vCenter

• Red Hat Satellite 6

• Red Hat Insights

• OpenStack

• Red Hat Virtualization

• Red Hat Ansible Automation Platform

Sourced from a Project

An inventory that is sourced from a project means that is uses the SCM type from the project it is tied to. For example,
if the project’s source is from GitHub, then the inventory will use the same source.

1. To configure a project-sourced inventory, select Sourced from a Project from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Optionally specify the credential to use for this source.

• Project: Required. Specify the project this inventory is using as its source. Click the button
to choose from a list of projects. If the list is extensive, use the search to narrow the options.

• Inventory File: Required. Select an inventory file associated with the sourced project. If not already
populated, you can type it into the text field within the drop down menu to filter the extraneous file
types. In addition to a flat file inventory, you can point to a directory or an inventory script.

18.3. Add a new inventory 167

Automation Controller User Guide, Release Automation Controller 4.3.0

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

4. In order to pass to the custom inventory script, you can optionally set environment variables in the Environment
Variables field. You may also place inventory scripts in source control and then run it from a project. See
Inventory File Importing in the Automation Controller Administration Guide for detail.

Note: If you are executing a custom inventory script from SCM, please make sure you set the execution bit (i.e.
chmod +x) on the script in your upstream source control. If you do not, the controller will throw a [Errno 13]

18.3. Add a new inventory 168

http://docs.ansible.com/automation-controller/4.3.0/html/administration/scm-inv-source.html#ag-inv-import

Automation Controller User Guide, Release Automation Controller 4.3.0

Permission denied error upon execution.

Amazon Web Services EC2

1. To configure an AWS EC2-sourced inventory, select Amazon EC2 from the Source field.

2. The Create Source window expands with additional fields. Enter the following details:

• Credential: Optionally choose from an existing AWS credential (for more information, refer to Credentials).

If the controller is running on an EC2 instance with an assigned IAM Role, the credential may be omitted, and
the security credentials from the instance metadata will be used instead. For more information on using IAM
Roles, refer to the IAM_Roles_for_Amazon_EC2_documentation_at_Amazon.

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

4. Use the Source Variables field to override variables used by the aws_ec2 inventory plugin. Enter variables
using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed description
of these variables, view the aws_ec2 inventory plugin documenation.

Note: If you only use include_filters, the AWS plugin always returns all the hosts. To use this prop-
erly, the first condition on the or must be on filters and then build the rest of the OR conditions on a list of
include_filters.

18.3. Add a new inventory 169

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://cloud.redhat.com/ansible/automation-hub/repo/published/amazon/aws/content/inventory/aws_ec2

Automation Controller User Guide, Release Automation Controller 4.3.0

Google Compute Engine

1. To configure a Google-sourced inventory, select Google Compute Engine from the Source field.

2. The Create Source window expands with the required Credential field. Choose from an existing GCE Creden-
tial. For more information, refer to Credentials.

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

4. Use the Source Variables field to override variables used by the gcp_compute inventory plugin. Enter
variables using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed
description of these variables, view the gcp_compute inventory plugin documenation.

Microsoft Azure Resource Manager

1. To configure a Azure Resource Manager-sourced inventory, select Microsoft Azure Resource Manager from
the Source field.

2. The Create Source window expands with the required Credential field. Choose from an existing Azure Creden-
tial. For more information, refer to Credentials.

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

4. Use the Source Variables field to override variables used by the azure_rm inventory plugin. Enter variables
using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed description

18.3. Add a new inventory 170

https://cloud.redhat.com/ansible/automation-hub/repo/published/google/cloud/content/inventory/gcp_compute

Automation Controller User Guide, Release Automation Controller 4.3.0

of these variables, view the azure_rm inventory plugin documentation.

VMware vCenter

1. To configure a VMWare-sourced inventory, select VMware vCenter from the Source field.

2. The Create Source window expands with the required Credential field. Choose from an existing VMware
Credential. For more information, refer to Credentials.

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

4. Use the Source Variables field to override variables used by the vmware_inventory inventory plugin. Enter
variables using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed
description of these variables, view the vmware_inventory inventory plugin.

Starting with Ansible 2.9, VMWare properties have changed from lower case to camelCase. The controller
provides aliases for the top-level keys, but lower case keys in nested properties have been discontinued.
For a list of valid and supported properties starting with Ansible 2.9, refer to virtual machine attributes in
the VMware dynamic inventory plugin.

18.3. Add a new inventory 171

https://cloud.redhat.com/ansible/automation-hub/repo/published/azure/azcollection/content/inventory/azure_rm
https://github.com/ansible-collections/community.vmware/blob/main/plugins/inventory/vmware_vm_inventory.py
https://docs.ansible.com/ansible/latest/collections/community/vmware/docsite/vmware_scenarios/vmware_inventory_vm_attributes.html
https://docs.ansible.com/ansible/latest/collections/community/vmware/docsite/vmware_scenarios/vmware_inventory_vm_attributes.html

Automation Controller User Guide, Release Automation Controller 4.3.0

Red Hat Satellite 6

1. To configure a Red Hat Satellite-sourced inventory, select Red Hat Satellite from the Source field.

2. The Create Source window expands with the required Credential field. Choose from an existing Satellite
Credential. For more information, refer to Credentials.

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

4. Use the Source Variables field to specify parameters used by the foreman inventory source. Enter variables
using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed descrip-
tion of these variables, refer to the theforeman.foreman.foreman – Foreman inventory source in the Ansible
documentation.

18.3. Add a new inventory 172

https://docs.ansible.com/ansible/latest/collections/theforeman/foreman/foreman_inventory.html

Automation Controller User Guide, Release Automation Controller 4.3.0

If you encounter an issue with the controller inventory not having the “related groups” from Satellite, you might need
to define these variables in the inventory source. See the inventory plugins template example for Red Hat Satellite 6
in the Ansible Automation Platform Installation and Reference Guide for detail.

If you see the message, "no foreman.id" variable(s) when syncing the inventory, refer to the
solution on the Red Hat Customer Portal at: https://access.redhat.com/solutions/5826451. Be sure to login with your
customer credentials to access the full article.

Red Hat Insights

1. To configure a Red Hat Insights-sourced inventory, select Red Hat Insights from the Source field.

2. The Create Source window expands with the required Credential field. Choose from an existing Insights Cre-
dential. For more information, refer to Credentials.

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

4. Use the Source Variables field to override variables used by the insights inventory plugin. Enter variables
using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed description
of these variables, view the insights inventory plugin.

18.3. Add a new inventory 173

https://access.redhat.com/solutions/5826451
https://cloud.redhat.com/ansible/automation-hub/repo/published/redhat/insights/content/inventory/insights

Automation Controller User Guide, Release Automation Controller 4.3.0

OpenStack

1. To configure an OpenStack-sourced inventory, select OpenStack from the Source field.

2. The Create Source window expands with the required Credential field. Choose from an existing OpenStack
Credential. For more information, refer to Credentials.

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

4. Use the Source Variables field to override variables used by the openstack inventory plugin. Enter variables
using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed description
of these variables, view the openstack inventory plugin in the Ansible collections documentation.

18.3. Add a new inventory 174

https://docs.ansible.com/ansible/latest/collections/openstack/cloud/openstack_inventory.html

Automation Controller User Guide, Release Automation Controller 4.3.0

Red Hat Virtualization

1. To configure a Red Hat Virtualization-sourced inventory, select Red Hat Virtualization from the Source field.

2. The Create Source window expands with the required Credential field. Choose from an existing Red Hat
Virtualization Credential. For more information, refer to Credentials.

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

4. Use the Source Variables field to override variables used by the ovirt inventory plugin. Enter variables using
either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed description of
these variables, view the ovirt inventory plugin.

18.3. Add a new inventory 175

https://cloud.redhat.com/ansible/automation-hub/repo/published/redhat/rhv/content/inventory/ovirt

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: Red Hat Virtualization (ovirt) inventory source requests are secure by default. To change this default setting,
set the key ovirt_insecure to true in source_variables, which is only available from the API details of
the inventory source at the /api/v2/inventory_sources/N/ endpoint.

Red Hat Ansible Automation Platform

1. To configure a automation controller-sourced inventory, select Red Hat Ansible Automation Platform from
the Source field.

2. The Create Source window expands with the required Credential field. Choose from an existing Ansible Au-
tomation Platform Credential. For more information, refer to Credentials.

3. You can optionally specify the verbosity, host filter, enabled variable/value, and update options as described in
the main procedure for adding a source.

18.3. Add a new inventory 176

Automation Controller User Guide, Release Automation Controller 4.3.0

4. Use the Source Variables field to override variables used by the controller inventory plugin. Enter vari-
ables using either JSON or YAML syntax. Use the radio button to toggle between the two. For a detailed
description of these variables, view the controller inventory plugin (requires your Red Hat Customer login).

Export old inventory scripts

Despite the removal of the custom inventory scripts API, the scripts are still saved in the database. The commands
described in this section allows you to recover the scripts in a format that is suitable for you to subsequently check
into source control. Usage looks like this:

$ awx-manage export_custom_scripts --filename=my_scripts.tar
Dump of old custom inventory scripts at my_scripts.tar

Making use of the output:

$ mkdir my_scripts
$ tar -xf my_scripts.tar -C my_scripts

The naming of the scripts is _<pk>__<name>. This is the naming scheme used for project folders.

$ ls my_scripts
_10__inventory_script_rawhook _19__
↪→_30__inventory_script_listenhospital
_11__inventory_script_upperorder _1__inventory_script_commercialinternet45
↪→_4__inventory_script_whitestring
_12__inventory_script_eastplant _22__inventory_script_pinexchange
↪→_5__inventory_script_literaturepossession
_13__inventory_script_governmentculture _23__inventory_script_brainluck
↪→_6__inventory_script_opportunitytelephone
_14__inventory_script_bottomguess _25__inventory_script_buyerleague
↪→_7__inventory_script_letjury
_15__inventory_script_wallisland _26__inventory_script_lifesport
↪→_8__random_inventory_script_ (continues on next page)

18.3. Add a new inventory 177

https://cloud.redhat.com/ansible/automation-hub/repo/published/ansible/controller/content/inventory/controller

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

_16__inventory_script_wallisland _27__inventory_script_exchangesomewhere
↪→_9__random_inventory_script_
_17__inventory_script_bidstory _28__inventory_script_boxchild
_18__p _29__inventory_script_wearstress

Each file contains a script. Scripts can be bash/python/ruby/more, so the extension is not included. They are
all directly executable (assuming the scripts worked). If you execute the script, it dumps the inventory data.

$./my_scripts/_11__inventory_script_upperorder
{"group_\ud801\udcb0\uc20e\u7b0e\ud81c\udfeb\ub12b\ub4d0\u9ac6\ud81e\udf07\u6ff9\uc17b
↪→": {"hosts":
["host_\ud821\udcad\u68b6\u7a51\u93b4\u69cf\uc3c2\ud81f\uddbe\ud820\udc92\u3143\u62c7
↪→",
"host_\u6057\u3985\u1f60\ufefb\u1b22\ubd2d\ua90c\ud81a\udc69\u1344\u9d15",
"host_\u78a0\ud820\udef3\u925e\u69da\ua549\ud80c\ude7e\ud81e\udc91\ud808\uddd1\u57d6\
↪→ud801\ude57",
"host_\ud83a\udc2d\ud7f7\ua18a\u779a\ud800\udf8b\u7903\ud820\udead\u4154\ud808\ude15\
↪→u9711",
"host_\u18a1\u9d6f\u08ac\u74c2\u54e2\u740e\u5f02\ud81d\uddee\ufbd6\u4506"], "vars": {
↪→"ansible_host": "127.0.0.1", "ansible_connection":
"local"}}}

You can verify functionality with ansible-inventory. This should give the same data, but reformatted.

$ ansible-inventory -i ./my_scripts/_11__inventory_script_upperorder --list --export

In the above example, you could cd into my_scripts and then issue a git init command, add the scripts you
want, push it to source control, and then create an SCM inventory source in the automation controller user interface.

For more information on syncing or using custom inventory scripts, refer to Inventory File Importing in the Automation
Controller Administration Guide.

18.3.5 View completed jobs

If an inventory was used to run a job, you can view details about those jobs in the Completed Jobs tab of the inventory
and click Expanded to view details about each job.

18.3. Add a new inventory 178

http://docs.ansible.com/automation-controller/4.3.0/html/administration/scm-inv-source.html#ag-inv-import

Automation Controller User Guide, Release Automation Controller 4.3.0

18.4 Running Ad Hoc Commands

To run an ad hoc command:

1. Select an inventory source from the list of hosts or groups. The inventory source can be a single group or host,
a selection of multiple hosts, or a selection of multiple groups.

2. Click the Run Command button.

The Run command window opens.

18.4. Running Ad Hoc Commands 179

Automation Controller User Guide, Release Automation Controller 4.3.0

3. Enter the details for the following fields:

• Module: Select one of the modules that the automation controller supports running commands against.

command apt_repository mount win_service
shell apt_rpm ping win_updates
yum service selinux win_group
apt group setup win_user
apt_key user win_ping

• Arguments: Provide arguments to be used with the module you selected.

• Limit: Enter the limit used to target hosts in the inventory. To target all hosts in the inventory enter all or *,
or leave the field blank. This is automatically populated with whatever was selected in the previous view prior
to clicking the launch button.

• Machine Credential: Select the credential to use when accessing the remote hosts to run the command. Choose
the credential containing the username and SSH key or password that Ansbile needs to log into the remote hosts.

• Verbosity: Select a verbosity level for the standard output.

• Forks: If needed, select the number of parallel or simultaneous processes to use while executing the command.

• Show Changes: Select to enable the display of Ansible changes in the standard output. The default is OFF.

• Enable Privilege Escalation: If enabled, the playbook is run with administrator privileges. This is the equiva-
lent of passing the --become option to the ansible command.

• Extra Variables: Provide extra command line variables to be applied when running this inventory. Enter
variables using either JSON or YAML syntax. Use the radio button to toggle between the two.

18.4. Running Ad Hoc Commands 180

Automation Controller User Guide, Release Automation Controller 4.3.0

4. Click Next to choose the execution environment you want the ad-hoc command to be run against.

18.4. Running Ad Hoc Commands 181

Automation Controller User Guide, Release Automation Controller 4.3.0

5. Click Next to choose the credential you want to use and click the Launch button.

The results display in the Output tab of the module’s job window.

18.4. Running Ad Hoc Commands 182

CHAPTER

NINETEEN

SUPPORTED INVENTORY PLUGIN TEMPLATES

Upon upgrade to 4.x, existing configurations will be migrated to the new format that will produce a backwards com-
patible inventory output. Use the templates below to help aid in migrating your inventories to the new style inventory
plugin output.

• Amazon Web Services EC2

• Google Compute Engine

• Microsoft Azure Resource Manager

• VMware vCenter

• Red Hat Satellite 6

• OpenStack

• Red Hat Virtualization

• Red Hat Ansible Automation Platform

19.1 Amazon Web Services EC2

compose:
ansible_host: public_ip_address
ec2_account_id: owner_id
ec2_ami_launch_index: ami_launch_index | string
ec2_architecture: architecture
ec2_block_devices: dict(block_device_mappings | map(attribute='device_name') | list

↪→| zip(block_device_mappings | map(attribute='ebs.volume_id') | list))
ec2_client_token: client_token
ec2_dns_name: public_dns_name
ec2_ebs_optimized: ebs_optimized
ec2_eventsSet: events | default("")
ec2_group_name: placement.group_name
ec2_hypervisor: hypervisor
ec2_id: instance_id
ec2_image_id: image_id
ec2_instance_profile: iam_instance_profile | default("")
ec2_instance_type: instance_type
ec2_ip_address: public_ip_address
ec2_kernel: kernel_id | default("")

(continues on next page)

183

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

ec2_key_name: key_name
ec2_launch_time: launch_time | regex_replace(" ", "T") | regex_replace("(\+)(\d\

↪→d):(\d)(\d)$", ".\g<2>\g<3>Z")
ec2_monitored: monitoring.state in ['enabled', 'pending']
ec2_monitoring_state: monitoring.state
ec2_persistent: persistent | default(false)
ec2_placement: placement.availability_zone
ec2_platform: platform | default("")
ec2_private_dns_name: private_dns_name
ec2_private_ip_address: private_ip_address
ec2_public_dns_name: public_dns_name
ec2_ramdisk: ramdisk_id | default("")
ec2_reason: state_transition_reason
ec2_region: placement.region
ec2_requester_id: requester_id | default("")
ec2_root_device_name: root_device_name
ec2_root_device_type: root_device_type
ec2_security_group_ids: security_groups | map(attribute='group_id') | list | join(

↪→',')
ec2_security_group_names: security_groups | map(attribute='group_name') | list |

↪→join(',')
ec2_sourceDestCheck: source_dest_check | default(false) | lower | string
ec2_spot_instance_request_id: spot_instance_request_id | default("")
ec2_state: state.name
ec2_state_code: state.code
ec2_state_reason: state_reason.message if state_reason is defined else ""
ec2_subnet_id: subnet_id | default("")
ec2_tag_Name: tags.Name
ec2_virtualization_type: virtualization_type
ec2_vpc_id: vpc_id | default("")

filters:
instance-state-name:
- running

groups:
ec2: true

hostnames:
- network-interface.addresses.association.public-ip
- dns-name
- private-dns-name

keyed_groups:
- key: image_id | regex_replace("[^A-Za-z0-9_]", "_")
parent_group: images
prefix: ''
separator: ''

- key: placement.availability_zone
parent_group: zones
prefix: ''
separator: ''

- key: ec2_account_id | regex_replace("[^A-Za-z0-9_]", "_")
parent_group: accounts
prefix: ''
separator: ''

- key: ec2_state | regex_replace("[^A-Za-z0-9_]", "_")
parent_group: instance_states
prefix: instance_state

- key: platform | default("undefined") | regex_replace("[^A-Za-z0-9_]", "_")
parent_group: platforms

(continues on next page)

19.1. Amazon Web Services EC2 184

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

prefix: platform
- key: instance_type | regex_replace("[^A-Za-z0-9_]", "_")
parent_group: types
prefix: type

- key: key_name | regex_replace("[^A-Za-z0-9_]", "_")
parent_group: keys
prefix: key

- key: placement.region
parent_group: regions
prefix: ''
separator: ''

- key: security_groups | map(attribute="group_name") | map("regex_replace", "[^A-Za-
↪→z0-9_]", "_") | list

parent_group: security_groups
prefix: security_group

- key: dict(tags.keys() | map("regex_replace", "[^A-Za-z0-9_]", "_") | list |
↪→zip(tags.values()

| map("regex_replace", "[^A-Za-z0-9_]", "_") | list))
parent_group: tags
prefix: tag

- key: tags.keys() | map("regex_replace", "[^A-Za-z0-9_]", "_") | list
parent_group: tags
prefix: tag

- key: vpc_id | regex_replace("[^A-Za-z0-9_]", "_")
parent_group: vpcs
prefix: vpc_id

- key: placement.availability_zone
parent_group: '{{ placement.region }}'
prefix: ''
separator: ''

plugin: amazon.aws.aws_ec2
use_contrib_script_compatible_sanitization: true

19.2 Google Compute Engine

auth_kind: serviceaccount
compose:

ansible_ssh_host: networkInterfaces[0].accessConfigs[0].natIP |
↪→default(networkInterfaces[0].networkIP)
gce_description: description if description else None
gce_id: id
gce_image: image
gce_machine_type: machineType
gce_metadata: metadata.get("items", []) | items2dict(key_name="key", value_name=

↪→"value")
gce_name: name
gce_network: networkInterfaces[0].network.name
gce_private_ip: networkInterfaces[0].networkIP
gce_public_ip: networkInterfaces[0].accessConfigs[0].natIP | default(None)
gce_status: status
gce_subnetwork: networkInterfaces[0].subnetwork.name
gce_tags: tags.get("items", [])
gce_zone: zone

hostnames:

(continues on next page)

19.2. Google Compute Engine 185

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

- name
- public_ip
- private_ip
keyed_groups:
- key: gce_subnetwork

prefix: network
- key: gce_private_ip

prefix: ''
separator: ''

- key: gce_public_ip
prefix: ''
separator: ''

- key: machineType
prefix: ''
separator: ''

- key: zone
prefix: ''
separator: ''

- key: gce_tags
prefix: tag

- key: status | lower
prefix: status

- key: image
prefix: ''
separator: ''

plugin: google.cloud.gcp_compute
retrieve_image_info: true
use_contrib_script_compatible_sanitization: true

19.3 Microsoft Azure Resource Manager

conditional_groups:
azure: true

default_host_filters: []
fail_on_template_errors: false
hostvar_expressions:

computer_name: name
private_ip: private_ipv4_addresses[0] if private_ipv4_addresses else None
provisioning_state: provisioning_state | title
public_ip: public_ipv4_addresses[0] if public_ipv4_addresses else None
public_ip_id: public_ip_id if public_ip_id is defined else None
public_ip_name: public_ip_name if public_ip_name is defined else None
tags: tags if tags else None
type: resource_type

keyed_groups:
- key: location

prefix: ''
separator: ''

- key: tags.keys() | list if tags else []
prefix: ''
separator: ''

- key: security_group
prefix: ''
separator: ''

(continues on next page)

19.3. Microsoft Azure Resource Manager 186

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

- key: resource_group
prefix: ''
separator: ''

- key: os_disk.operating_system_type
prefix: ''
separator: ''

- key: dict(tags.keys() | map("regex_replace", "^(.*)$", "\1_") | list | zip(tags.
↪→values() | list)) if tags else []
prefix: ''
separator: ''

plain_host_names: true
plugin: azure.azcollection.azure_rm
use_contrib_script_compatible_sanitization: true

19.4 VMware vCenter

compose:
ansible_host: guest.ipAddress
ansible_ssh_host: guest.ipAddress
ansible_uuid: 99999999 | random | to_uuid
availablefield: availableField
configissue: configIssue
configstatus: configStatus
customvalue: customValue
effectiverole: effectiveRole
guestheartbeatstatus: guestHeartbeatStatus
layoutex: layoutEx
overallstatus: overallStatus
parentvapp: parentVApp
recenttask: recentTask
resourcepool: resourcePool
rootsnapshot: rootSnapshot
triggeredalarmstate: triggeredAlarmState

filters:
- runtime.powerState == "poweredOn"
keyed_groups:
- key: config.guestId

prefix: ''
separator: ''

- key: '"templates" if config.template else "guests"'
prefix: ''
separator: ''

plugin: community.vmware.vmware_vm_inventory
properties:
- availableField
- configIssue
- configStatus
- customValue
- datastore
- effectiveRole
- guestHeartbeatStatus
- layout
- layoutEx
- name

(continues on next page)

19.4. VMware vCenter 187

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

- network
- overallStatus
- parentVApp
- permission
- recentTask
- resourcePool
- rootSnapshot
- snapshot
- triggeredAlarmState
- value
- capability
- config
- guest
- runtime
- storage
- summary
strict: false
with_nested_properties: true

19.5 Red Hat Satellite 6

group_prefix: foreman_
keyed_groups:
- key: foreman['environment_name'] | lower | regex_replace(' ', '') | regex_replace(
↪→'[^A-Za-z0-9_]', '_') | regex_replace('none', '')
prefix: foreman_environment_
separator: ''

- key: foreman['location_name'] | lower | regex_replace(' ', '') | regex_replace('[^A-
↪→Za-z0-9_]', '_')
prefix: foreman_location_
separator: ''

- key: foreman['organization_name'] | lower | regex_replace(' ', '') | regex_replace(
↪→'[^A-Za-z0-9_]', '_')
prefix: foreman_organization_
separator: ''

- key: foreman['content_facet_attributes']['lifecycle_environment_name'] | lower |
↪→regex_replace(' ', '') | regex_replace('[^A-Za-z0-9_]', '_')
prefix: foreman_lifecycle_environment_
separator: ''

- key: foreman['content_facet_attributes']['content_view_name'] | lower | regex_
↪→replace(' ', '') | regex_replace('[^A-Za-z0-9_]', '_')
prefix: foreman_content_view_
separator: ''

legacy_hostvars: true
plugin: theforeman.foreman.foreman
validate_certs: false
want_facts: true
want_hostcollections: false
want_params: true

19.5. Red Hat Satellite 6 188

Automation Controller User Guide, Release Automation Controller 4.3.0

19.6 OpenStack

expand_hostvars: true
fail_on_errors: true
inventory_hostname: uuid
plugin: openstack.cloud.openstack

19.7 Red Hat Virtualization

compose:
ansible_host: (devices.values() | list)[0][0] if devices else None

keyed_groups:
- key: cluster

prefix: cluster
separator: _

- key: status
prefix: status
separator: _

- key: tags
prefix: tag
separator: _

ovirt_hostname_preference:
- name
- fqdn
ovirt_insecure: false
plugin: ovirt.ovirt.ovirt

19.8 Red Hat Ansible Automation Platform

include_metadata: true
inventory_id: <inventory_id or url_quoted_named_url>
plugin: awx.awx.tower
validate_certs: <true or false>

19.6. OpenStack 189

CHAPTER

TWENTY

JOB TEMPLATES

A job template is a definition and set of parameters for running an Ansible job. Job templates are useful to execute the
same job many times. Job templates also encourage the reuse of Ansible playbook content and collaboration between
teams.

The Templates menu opens a list of the job templates that are currently available. The default view is collapsed
(Compact), showing the template name, template type, and the timestamp of last job that ran using that template. You
can click Expanded (arrow next to each entry) to expand to view more information. This list is sorted alphabetically
by name, but you can sort by other criteria, or search by various fields and attributes of a template.

From this screen, you can launch (), edit (), and copy () a job template. To delete a job template, you
must select one or more templates and click the Delete button. Before deleting a job template, be sure it is not used in
a workflow job template.

Note: If deleting items that are used by other work items, a message opens listing the items are affected by the deletion
and prompts you to confirm the deletion. Some screens will contain items that are invalid or previously deleted, so
they will fail to run. Below is an example of such a message:

190

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: Job templates can be used to build a workflow template. For templates that show the Workflow Visualizer

() icon next to them are workflow templates. Clicking it allows you to graphically build a workflow. Many
parameters in a job template allow you to enable Prompt on Launch that can be modified at the workflow level, and
do not affect the values assigned at the job template level. For instructions, see the Workflow Visualizer section.

20.1 Create a Job Template

To create a new job template:

1. Click the Add button then select Job Template from the menu list.

2. Enter the appropriate details into the following fields:

Note: If a field has the Prompt on launch checkbox selected, launching the job will prompt you for the value for that
field upon launch. Most prompted values will override any values set in the job template; exceptions are noted below.

20.1. Create a Job Template 191

Automation Controller User Guide, Release Automation Controller 4.3.0

Field Options Prompt on Launch
Name Enter a name for the job. N/A
Description Enter an arbitrary description as appropriate (optional). N/A
Job Type

Choose a job type:
• Run: Execute the playbook when launched,

running Ansible tasks on the selected hosts.
• Check: Perform a “dry run” of the playbook

and report changes that would be made without
actually making them. Tasks that do not support
check mode will be skipped and will not report
potential changes.

More information on job types can be found in the Play-
books: Special Topics section of the Ansible documenta-
tion.

Yes

Inventory Choose the inventory to be used with this job template from
the inventories available to the currently logged in user.

Yes. Inventory prompts will show
up as its own step in a subsequent
prompt window.

Project Choose the project to be used with this job template from
the projects available to the currently logged in user.

N/A

SCM
Branch

This field is only present if you chose a project that allows
branch override. Specify the overriding branch to use in
your job run. If left blank, the specified SCM branch (or
commit hash or tag) from the project is used. For more de-
tail, see job branch overriding.

Yes

Execution
Environ-
ment

Select the container image to be used to run this job. A
project must be selected before you can select an execution
environment.

Yes. Execution environment
prompts will show up as its own
step in a subsequent prompt
window.

Playbook Choose the playbook to be launched with this job template
from the available playbooks. This field automatically pop-
ulates with the names of the playbooks found in the project
base path for the selected project. Alternatively, you can en-
ter the name of the playbook if it is not listed, such as the
name of a file (like foo.yml) you want to use to run with
that playbook. If you enter a filename that is not valid, the
template will display an error, or cause the job to fail.

N/A

Credentials Click the button to open a separate window. Choose
the credential from the available options to be used with this
job template. Use the drop-down menu list to filter by cre-
dential type if the list is extensive. Some credential types are
not listed because they do not apply to certain job templates.

• If selected, upon launching a
job template that has a default
credential and supplying an-
other credential will replace
the default credential if it is
the same type. Example of
such a message:

Job Template default
↪→credentials must be
↪→replaced
with one of the same type.
↪→ Please select a
↪→credential
for the following types
↪→in order to proceed:
↪→Machine.

• Alternatively, you can add
more credentials as you see
fit.

• Credential prompts will show
up as its own step in a subse-
quent prompt window.

Labels
• Optionally supply labels that describe this job tem-

plate, such as “dev” or “test”. Labels can be used to
group and filter job templates and completed jobs in
the display.

• Labels are created when they are added to the Job
Template. Labels are associated to a single Organiza-
tion using the Project that is provided in the Job Tem-
plate. Members of the Organization can create labels
on a Job Template if they have edit permissions (such
as admin role).

• Once the Job Template is saved, the labels appear in
the Job Templates overview in the Expanded view.

• Click the () beside a label to remove it. When a
label is removed, it is no longer associated with that
particular Job or Job Template, but it will remain as-
sociated with any other jobs that reference it.

• Jobs inherit labels from the Job Template at the time
of launch. If a label is deleted from a Job Template, it
is also deleted from the Job.

• If selected, even if a de-
fault value is supplied, you
will be prompted upon launch
to supply additional labels if
needed.

• You will not be able to
delete existing labels - click-

ing () only removes the
newly added labels, not exist-
ing default labels.

Variables
• Pass extra command line variables to the playbook.

This is the “-e” or “–extra-vars” command line pa-
rameter for ansible-playbook that is documented in
the Ansible documentation at Passing Variables on
the Command Line.

• Provide key/value pairs using either YAML or JSON.
These variables have a maximum value of precedence
and overrides other variables specified elsewhere. An
example value might be:

git_branch: production
release_version: 1.5

Yes. If you want to be able to spec-
ify extra_vars on a schedule,
you must select Prompt on Launch
for Variables on the job template, or
a enable a survey on the job tem-
plate, then those answered survey
questions become extra_vars.

Forks The number of parallel or simultaneous processes to use
while executing the playbook. A value of zero uses the
Ansible default setting, which is 5 parallel processes unless
overridden in /etc/ansible/ansible.cfg.

Yes

Limit A host pattern to further constrain the list of hosts managed
or affected by the playbook. Multiple patterns can be sepa-
rated by colons (:). As with core Ansible, a:b means “in
group a or b”, a:b:&c means “in a or b but must be in c”,
and a:!b means “in a, and definitely not in b”. For more
information and examples refer to Patterns in the Ansible
documentation.

Yes

Verbosity Control the level of output Ansible produces as the playbook
executes. Choose the verbosity from Normal to various Ver-
bose or Debug settings. This only appears in the “details”
report view. Verbose logging includes the output of all com-
mands. Debug logging is exceedingly verbose and includes
information on SSH operations that can be useful in cer-
tain support instances. Most users do not need to see debug
mode output.

Warning:
Ver-
bosity
5
causes
au-
toma-
tion
con-
troller
to
block
heav-
ily
when
jobs
are
run-
ning,
which
could
de-
lay
re-
port-
ing
that
the
job
has
fin-
ished
(even
though
it
has)
and
can
cause
the
browser
tab
to
lock
up.

Yes

Job Slicing Specify the number of slices you want this job template to
run. Each slice will run the same tasks against a portion of
the inventory. For more information about job slices, see
Job Slicing.

Yes

Timeout
Allows you to specify the length of time (in seconds) that the job may run before it is canceled. Some caveats for setting the timeout value:

• There is a global timeout defined in the settings
which defaults to 0, indicating no timeout.

• A negative timeout (<0) on a job template is a
true “no timeout” on the job.

• A timeout of 0 on a job template defaults the
job to the global timeout (which is no timeout
by default).

• A positive timeout sets the timeout for that job
template.

Yes

Show
Changes

Allows you to see the changes made by Ansible tasks. Yes

Instance
Groups

Choose Instance Groups to associate with this job template.

If the list is extensive, use the to narrow the options.
Note, job template instance groups contribute to the job
scheduling criteria, see Job Runtime Behavior and Control
Where a Job Runs for rules.

• Yes. If selected, you are pro-
viding the jobs preferred in-
stance groups in order of pref-
erence. If the first group is
out of capacity, subsequent
groups in the list will be con-
sidered until one with capac-
ity is available, at which point
that will be selected to run the
job.

• If you prompt for an in-
stance group, what you enter
replaces the normal instance
group hierarchy and overrides
all of the organizations’ and
inventories’ instance groups.

• Instance Groups prompts will
show up as its own step in a
subsequent prompt window.

Job Tags Begin typing and selecting the Create x drop-down to spec-
ify which parts of the playbook should be executed. For
more information and examples refer to Tags in the Ansible
documentation.

Yes

Skip Tags Begin typing and selecting the Create x drop-down to spec-
ify certain tasks or parts of the playbook to skip. For more
information and examples refer to Tags in the Ansible doc-
umentation.

Yes

20.1. Create a Job Template 192

http://docs.ansible.com/playbooks_special_topics.html
http://docs.ansible.com/playbooks_special_topics.html
http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line
http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line
http://docs.ansible.com/intro_patterns.html
http://docs.ansible.com/automation-controller/4.3.0/html/administration/containers_instance_groups.html#ag-instance-groups
http://docs.ansible.com/automation-controller/4.3.0/html/administration/containers_instance_groups.html#ag-instance-groups-job-runtime-behavior
http://docs.ansible.com/automation-controller/4.3.0/html/administration/containers_instance_groups.html#ag-instance-groups-control-where-job-runs
http://docs.ansible.com/automation-controller/4.3.0/html/administration/containers_instance_groups.html#ag-instance-groups-control-where-job-runs
https://docs.ansible.com/ansible/latest/user_guide/playbooks_tags.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_tags.html

Automation Controller User Guide, Release Automation Controller 4.3.0

3. Options: Specify options for launching this template, if necessary.

• Privilege Escalation: If checked, you enable this playbook to run as an administrator. This is the equivalent of
passing the --become option to the ansible-playbook command.

• Provisioning Callbacks: If checked, you enable a host to call back to automation controller via the REST
API and invoke the launch of a job from this job template. Refer to Provisioning Callbacks for additional
information.

• Enable Webhook: Turns on the ability to interface with a predefined SCM system web service that is used to
launch a job template. Currently supported SCM systems are GitHub and GitLab.

If you enable webhooks, other fields display, prompting for additional information:

• Webhook Service: Select which service to listen for webhooks from

• Webhook URL: Automatically populated with the URL for the webhook service to POST
requests to.

• Webhook Key: Generated shared secret to be used by the webhook service to sign pay-
loads sent to automation controller. This must be configured in the settings on the web-
hook service in order for automation controller to accept webhooks from this service.

• Webhook Credential: Optionally, provide a GitHub or GitLab personal access token
(PAT) as a credential to use to send status updates back to the webhook service. Before
you can select it, the credential must exist. See Credential Types to create one.

For additional information on setting up webhooks, see Working with Webhooks.

• Concurrent Jobs: If checked, you are allowing jobs in the queue to run simultaneously if not
dependent on one another. Check this box if you want to run job slices simultaneously. Refer to
Automation Controller Capacity Determination and Job Impact for additional information.

• Enable Fact Storage: When checked, automation controller will store gathered facts for all hosts
in an inventory related to the job running.

20.1. Create a Job Template 193

Automation Controller User Guide, Release Automation Controller 4.3.0

4. When you have completed configuring the details of the job template, click Save.

Saving the template does not exit the job template page but advances to the Job Template Details tab for viewing.
After saving the template, you can click Launch to launch the job, or click Edit to add or change the attributes of the
template, such as permissions, notifications, view completed jobs, and add a survey (if the job type is not a scan). You
must first save the template prior to launching, otherwise, the Launch button remains grayed-out.

20.1. Create a Job Template 194

Automation Controller User Guide, Release Automation Controller 4.3.0

You can verify the template is saved when the newly created template appears on the Templates list view.

20.2 Add Permissions

1. In the Access tab, click the Add button.

2. Select a user or team to add and click Next

3. Select one or more users or teams from the list by clicking the check box(es) next to the name(s) to add them as
members and click Next.

20.2. Add Permissions 195

Automation Controller User Guide, Release Automation Controller 4.3.0

In this example, two users have been selected to be added.

4. Select the role(s) you want the selected user(s) or team(s) to have. Be sure to scroll down for a complete list of
roles. Different resources have different options available.

20.2. Add Permissions 196

Automation Controller User Guide, Release Automation Controller 4.3.0

5. Click the Save button to apply the roles to the selected user(s) or team(s) and to add them as members.

The Add Users/Teams window closes to display the updated roles assigned for each user and team.

To remove roles for a particular user, click the disassociate (x) button next to its resource.

20.2. Add Permissions 197

Automation Controller User Guide, Release Automation Controller 4.3.0

This launches a confirmation dialog, asking you to confirm the disassociation.

20.3 Work with Notifications

Clicking the Notifications tab allows you to review any notification integrations you have setup and their statuses, if
they have ran.

Use the toggles to enable or disable the notifications to use with your particular template. For more detail, see Enable
and Disable Notifications.

If no notifications have been set up, click the Add button to create a new notification. Refer to Notification Types for
additional details on configuring various notification types and extended messaging.

20.3. Work with Notifications 198

Automation Controller User Guide, Release Automation Controller 4.3.0

20.4 View Completed Jobs

The Completed Jobs tab provides the list of job templates that have ran. Click Expanded to view details of each job,
including its status, ID, and name; type of job, time started and completed, who started the job; and which template,
inventory, project, and credential were used. You can filter the list of completed jobs using any of these criteria.

Sliced jobs that display on this list are labeled accordingly, with the number of sliced jobs that have run:

20.4. View Completed Jobs 199

Automation Controller User Guide, Release Automation Controller 4.3.0

20.5 Scheduling

Access the schedules for a particular job template from the Schedules tab.

20.5.1 Schedule a Job Template

To schedule a job template run, click the Schedules tab.

• If schedules are already set up; review, edit, or enable/disable your schedule preferences.

• If schedules have not been set up, refer to Schedules for more information.

If Prompt on Launch was selected for the Credentials field, and you create or edit scheduling information for your
job template, a Prompt button displays at the bottom of the Schedules form. You will not be able to remove the default
machine credential in the Prompt dialog without replacing it with another machine credential before you can save it.
Below is an example of such a message:

Note: To able to set extra_vars on schedules, you must select Prompt on Launch for Variables on the job
template, or a configure and enable a survey on the job template, then those answered survey questions become
extra_vars.

20.6 Surveys

Job types of Run or Check will provide a way to set up surveys in the Job Template creation or editing screens. Surveys
set extra variables for the playbook similar to ‘Prompt for Extra Variables’ does, but in a user-friendly question and
answer way. Surveys also allow for validation of user input. Click the Survey tab to create a survey.

Use cases for surveys are numerous. An example might be if operations wanted to give developers a “push to stage”
button they could run without advanced Ansible knowledge. When launched, this task could prompt for answers to
questions such as, “What tag should we release?”

Many types of questions can be asked, including multiple-choice questions.

20.5. Scheduling 200

Automation Controller User Guide, Release Automation Controller 4.3.0

20.6.1 Create a Survey

To create a survey:

1. Click the Survey tab and click the Add button.

2. A survey can consist of any number of questions. For each question, enter the following information:

• Question: The question to ask the user

• Description: (optional) A description of what’s being asked of the user.

• Answer Variable Name: The Ansible variable name to store the user’s response in. This is the variable to be
used by the playbook. Variable names cannot contain spaces.

• Answer Type: Choose from the following question types.

– Text: A single line of text. You can set the minimum and maximum length (in characters) for this answer.

– Textarea: A multi-line text field. You can set the minimum and maximum length (in characters) for this
answer.

– Password: Responses are treated as sensitive information, much like an actual password is treated. You
can set the minimum and maximum length (in characters) for this answer.

– Multiple Choice (single select): A list of options, of which only one can be selected at a time. Enter the
options, one per line, in the Multiple Choice Options box.

– Multiple Choice (multiple select): A list of options, any number of which can be selected at a time. Enter
the options, one per line, in the Multiple Choice Options box.

– Integer: An integer number. You can set the minimum and maximum length (in characters) for this answer.

– Float: A decimal number. You can set the minimum and maximum length (in characters) for this answer.

• Required: Whether or not an answer to this question is required from the user.

• Minimum length and Maximum length: Specify if a certain length in the answer is required.

• Default answer: The default answer to the question. This value is pre-filled in the interface and is used if the
answer is not provided by the user.

3. Once you have entered the question information, click Save to add the question.

The survey question displays in the Survey list. For any question, you can click to edit the question, or check
the box next to each question and click Delete to delete the question, or use the toggle button at the top of the screen
to enable or disable the survey prompt(s).

20.6. Surveys 201

Automation Controller User Guide, Release Automation Controller 4.3.0

If you have more than one survey question, use the Edit Order button to rearrange the order of the questions by
clicking and dragging on the grid icon.

4. To add more questions, click the Add button to add additional questions.

20.6.2 Optional Survey Questions

The Required setting on a survey question determines whether the answer is optional or not for the user interacting
with it.

Behind the scenes, optional survey variables can be passed to the playbook in extra_vars, even when they aren’t
filled in.

• If a non-text variable (input type) is marked as optional, and is not filled in, no survey extra_var is passed to
the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length > 0, no
survey extra_var is passed to the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length === 0,
that survey extra_var is passed to the playbook, with the value set to an empty string (“”).

20.6. Surveys 202

Automation Controller User Guide, Release Automation Controller 4.3.0

20.7 Launch a Job Template

A major benefit of automation controller is the push-button deployment of Ansible playbooks. You can easily configure
a template to store all parameters you would normally pass to the ansible-playbook on the command line–not just the
playbooks, but the inventory, credentials, extra variables, and all options and settings you can specify on the command
line.

Easier deployments drive consistency, by running your playbooks the same way each time, and allow you to delegate
responsibilities–even users who aren’t Ansible experts can run playbooks written by others.

Launch a job template by any of the following ways:

• Access the job template list from the Templates menu on the left navigation bar or while in the Job Template

Details view, scroll to the bottom to access the button from the list of templates.

• While in the Job Template Details view of the job template you want to launch, click Launch.

A job may require additional information to run. The following data may be requested at launch:

• Credentials that were setup

• The option Prompt on Launch is selected for any parameter

• Passwords or passphrases that have been set to Ask

• A survey, if one has been configured for the job templates

• Extra variables, if requested by the job template

Note: If a job has user-provided values, then those are respected upon relaunch. If the user did not specify a value,
then the job uses the default value from the job template. Jobs are not relaunched as-is. They are relaunched with the
user prompts re-applied to the job template.

Below is an example job launch that prompts for Job Tags, and runs the example survey created in Surveys.

20.7. Launch a Job Template 203

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: Providing values on one tab, and going back to a previous tab, and then continuing on to the next tab will result
in having to re-provide values on the rest of the tabs. Make sure you fill in the tabs in the order the prompts appear to
avoid this.

Along with any extra variables set in the job template and survey, automation controller automatically adds
the following variables to the job environment. Also note, awx_``* variables are defined by
the system and cannot be overridden. Variables about the job context, like
``awx_job_template_name are not affected if they are set in extra_vars.

• awx_job_id: The Job ID for this job run

• awx_job_launch_type: The description to indicate how the job was started:

– manual: Job was started manually by a user.

– relaunch: Job was started via relaunch.

– callback: Job was started via host callback.

– scheduled: Job was started from a schedule.

– dependency: Job was started as a dependency of another job.

– workflow: Job was started from a workflow job.

– sync: Job was started from a project sync.

– scm: Job was created as an Inventory SCM sync.

• awx_job_template_id: The Job Template ID that this job run uses

• awx_job_template_name: The Job Template name that this job uses

• awx_project_revision: The revision identifier for the source tree that this particular job uses (it is also
the same as the job’s field scm_revision)

• awx_project_scm_branch: The configured default project SCM branch for the project the job template
uses

• awx_job_scm_branch If the SCM Branch is overwritten by the job, the value is shown here

20.7. Launch a Job Template 204

Automation Controller User Guide, Release Automation Controller 4.3.0

• awx_user_email: The user email of the controller user that started this job. This is not available for callback
or scheduled jobs.

• awx_user_first_name: The user’s first name of the controller user that started this job. This is not avail-
able for callback or scheduled jobs.

• awx_user_id: The user ID of the controller user that started this job. This is not available for callback or
scheduled jobs.

• awx_user_last_name: The user’s last name of the controller user that started this job. This is not available
for callback or scheduled jobs.

• awx_user_name: The user name of the controller user that started this job. This is not available for callback
or scheduled jobs.

• awx_schedule_id: If applicable, the ID of the schedule that launched this job

• awx_schedule_name: If applicable, the name of the schedule that launched this job

• awx_workflow_job_id: If applicable, the ID of the workflow job that launched this job

• awx_workflow_job_name: If applicable, the name of the workflow job that launched this job. Note this is
also the same as the workflow job template.

• awx_inventory_id: If applicable, the ID of the inventory this job uses

• awx_inventory_name: If applicable, the name of the inventory this job uses

For compatibility, all variables are also given an “awx” prefix, for example, awx_job_id.

Upon launch, automation controller automatically redirects the web browser to the Job Status page for this job under
the Jobs tab.

Note: You can re-launch the most recent job from the list view to re-run on all hosts or just failed hosts in the specified
inventory. Refer to Jobs in the Automation Controller User Guide for more detail.

When slice jobs are running, job lists display the workflow and job slices, as well as a link to view their details
individually.

20.7. Launch a Job Template 205

Automation Controller User Guide, Release Automation Controller 4.3.0

20.8 Copy a Job Template

If you choose to copy Job Template, it does not copy any associated schedule, notifications, or permissions. Schedules
and notifications must be recreated by the user or admin creating the copy of the Job Template. The user copying the
Job Template will be granted the admin permission, but no permissions are assigned (copied) to the Job Template.

1. Access the job template list from the Templates menu on the left navigation bar or while in the Job Template
Details view, scroll to the bottom to access it from the list of templates.

2. Click the button associated with the template you want to copy.

The new template with the name of the template from which you copied and a timestamp displays in the list of
templates.

3. Click to open the new template and click Edit.

4. Replace the contents of the Name field with a new name, and provide or modify the entries in the other fields to
complete this page.

5. Click Save when done.

20.9 Scan Job Templates

Scan jobs are no longer supported starting with automation controller 3.2. This system tracking feature was used as
a way to capture and store facts as historical data. Facts are now stored in the controller via fact caching. For more
information, see Fact Caching.

If you have Job Template Scan Jobs in your system prior to automation controller 3.2, they have been converted to
type run (like normal job templates) and retained their associated resources (i.e. inventory, credential). Job Template
Scan Jobs that do not have a related project are assigned a special playbook by default, or you can specify a project
with your own scan playbook. A project was created for each organization that points to https://github.com/ansible/

20.8. Copy a Job Template 206

https://github.com/ansible/tower-fact-modules
https://github.com/ansible/tower-fact-modules

Automation Controller User Guide, Release Automation Controller 4.3.0

tower-fact-modules and the Job Template was set to the playbook, https://github.com/ansible/tower-fact-modules/
blob/master/scan_facts.yml.

20.9.1 Fact Scan Playbooks

The scan job playbook, scan_facts.yml, contains invocations of three fact scan modules - packages, ser-
vices, and files, along with Ansible’s standard fact gathering. The scan_facts.yml playbook file looks like the
following:

- hosts: all
vars:
scan_use_checksum: false
scan_use_recursive: false

tasks:
- scan_packages:
- scan_services:
- scan_files:

paths: '{{ scan_file_paths }}'
get_checksum: '{{ scan_use_checksum }}'
recursive: '{{ scan_use_recursive }}'

when: scan_file_paths is defined

The scan_files fact module is the only module that accepts parameters, passed via extra_vars on the scan job
template.

scan_file_paths: '/tmp/'
scan_use_checksum: true
scan_use_recursive: true

• The scan_file_paths parameter may have multiple settings (such as /tmp/ or /var/log).

• The scan_use_checksum and scan_use_recursive parameters may also be set to false or omitted.
An omission is the same as a false setting.

Scan job templates should enable become and use credentials for which become is a possibility. You can enable
become by checking the Enable Privilege Escalation from the Options menu:

20.9.2 Supported OSes for scan_facts.yml

If you use the scan_facts.yml playbook with use fact cache, ensure that your OS is supported:

• Red Hat Enterprise Linux 5, 6, & 7

• Ubuntu 16.04 (Support for Unbuntu is deprecated and will be removed in a future release)

• OEL 6 & 7

• SLES 11 & 12

• Debian 6, 7, 8

• Fedora 22, 23, 24

• Amazon Linux 2016.03

20.9. Scan Job Templates 207

https://github.com/ansible/tower-fact-modules
https://github.com/ansible/tower-fact-modules
https://github.com/ansible/tower-fact-modules/blob/master/scan_facts.yml
https://github.com/ansible/tower-fact-modules/blob/master/scan_facts.yml

Automation Controller User Guide, Release Automation Controller 4.3.0

• Windows Server 2008 and later

Note that some of these operating systems may require initial configuration in order to be able to run python and/or
have access to the python packages (such as python-apt) that the scan modules depend on.

20.9.3 Pre-scan Setup

The following are examples of playbooks that configure certain distributions so that scan jobs can be run against them.

Bootstrap Ubuntu (16.04)

- name: Get Ubuntu 16, and on ready
hosts: all
sudo: yes
gather_facts: no

tasks:

- name: install python-simplejson
raw: sudo apt-get -y update
raw: sudo apt-get -y install python-simplejson
raw: sudo apt-get install python-apt

Bootstrap Fedora (23, 24)

- name: Get Fedora ready
hosts: all
sudo: yes
gather_facts: no

tasks:

- name: install python-simplejson
raw: sudo dnf -y update
raw: sudo dnf -y install python-simplejson
raw: sudo dnf -y install rpm-python

20.9.4 Custom Fact Scans

A playbook for a custom fact scan is similar to the example of the Fact Scan Playbook above. As an example, a
playbook that only uses a custom scan_foo Ansible fact module would look like this:

scan_custom.yml:

- hosts: all
gather_facts: false
tasks:
- scan_foo:

scan_foo.py:

20.9. Scan Job Templates 208

Automation Controller User Guide, Release Automation Controller 4.3.0

def main():
module = AnsibleModule(

argument_spec = dict())

foo = [
{

"hello": "world"
},
{

"foo": "bar"
}

]
results = dict(ansible_facts=dict(foo=foo))
module.exit_json(**results)

main()

To use a custom fact module, ensure that it lives in the /library/ subdirectory of the Ansible project used in the
scan job template. This fact scan module is very simple, returning a hard-coded set of facts:

[
{

"hello": "world"
},
{

"foo": "bar"
}

]

Refer to the Module Provided ‘Facts’ section of the Ansible documentation for more information.

20.10 Fact Caching

Automation controller can store and retrieve facts on a per-host basis through an Ansible Fact Cache plugin. This
behavior is configurable on a per-job template basis. Fact caching is turned off by default but can be enabled to
serve fact requests for all hosts in an inventory related to the job running. This allows you to use job templates with
--limit while still having access to the entire inventory of host facts. A global timeout setting that the plugin
enforces per-host, can be specified (in seconds) through the Jobs settings menu:

20.10. Fact Caching 209

http://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html#module-provided-facts

Automation Controller User Guide, Release Automation Controller 4.3.0

Upon launching a job that uses fact cache (use_fact_cache=True), the controller will store all
ansible_facts associated with each host in the inventory associated with the job. The Ansible Fact
Cache plugin that ships with automation controller will only be enabled on jobs with fact cache enabled
(use_fact_cache=True).

When a job that has fact cache enabled (use_fact_cache=True) finishes running, the controller will restore all
records for the hosts in the inventory. Any records with update times newer than the currently stored facts per-host
will be updated in the database.

New and changed facts will be logged via the controller’s logging facility. Specifically, to the system_tracking
namespace or logger. The logging payload will include the fields:

• host_name

• inventory_id

• ansible_facts

where ansible_facts is a dictionary of all Ansible facts for host_name in the controller inventory,
inventory_id.

Note: If a hostname includes a forward slash (/), fact cache will not work for that host. If you have an inventory with
100 hosts and one host has a / in the name, 99 of those hosts will still collect facts.

20.10. Fact Caching 210

Automation Controller User Guide, Release Automation Controller 4.3.0

20.10.1 Benefits of Fact Caching

Fact caching saves a significant amount of time over running fact gathering. If you have a playbook in a job that
runs against a thousand hosts and forks, you could easily spend 10 minutes gathering facts across all of those hosts.
But if you run a job on a regular basis, the first run of it caches these facts and the next run will just pull them from
the database. This cuts the runtime of jobs against large inventories, including Smart Inventories, by an enormous
magnitude.

Note: Do not modify the ansible.cfg file to apply fact caching. Custom fact caching could conflict with the
controller’s fact caching feature. It is recommended to use the fact caching module that comes with automation
controller. Fact caching is not supported for isolated nodes.

You can choose to use cached facts in your job by enabling it in the Options field of the Job Templates window.

To clear facts, you need to run the Ansible clear_facts meta task. Below is an example playbook that uses the
Ansible clear_facts meta task.

- hosts: all
gather_facts: false
tasks:
- name: Clear gathered facts from all currently targeted hosts
meta: clear_facts

You can find the API endpoint for fact caching at:

http://<controller server name>/api/v2/hosts/x/ansible_facts

20.11 Utilizing Cloud Credentials

Cloud Credentials can be used when syncing a respective cloud inventory. Cloud Credentials may also be associated
with a Job Template and included in the runtime environment for use by a playbook. Cloud Credentials currently
supported:

• OpenStack

• Amazon Web Services

• Google

• Azure

• VMware

20.11. Utilizing Cloud Credentials 211

http://docs.ansible.com/ansible/latest/modules/meta_module.html#examples

Automation Controller User Guide, Release Automation Controller 4.3.0

20.11.1 OpenStack

The sample playbook below invokes the nova_compute Ansible OpenStack cloud module and requires creden-
tials to do anything meaningful, and specifically requires the following information: auth_url, username,
password, and project_name. These fields are made available to the playbook via the environmental vari-
able OS_CLIENT_CONFIG_FILE, which points to a YAML file written by the controller based on the contents of
the cloud credential. This sample playbook loads the YAML file into the Ansible variable space.

OS_CLIENT_CONFIG_FILE example:

clouds:
devstack:
auth:

auth_url: http://devstack.yoursite.com:5000/v2.0/
username: admin
password: your_password_here
project_name: demo

Playbook example:

- hosts: all
gather_facts: false
vars:
config_file: "{{ lookup('env', 'OS_CLIENT_CONFIG_FILE') }}"
nova_tenant_name: demo
nova_image_name: "cirros-0.3.2-x86_64-uec"
nova_instance_name: autobot
nova_instance_state: 'present'
nova_flavor_name: m1.nano

nova_group:
group_name: antarctica
instance_name: deceptacon
instance_count: 3

tasks:
- debug: msg="{{ config_file }}"
- stat: path="{{ config_file }}"

register: st
- include_vars: "{{ config_file }}"

when: st.stat.exists and st.stat.isreg

- name: "Print out clouds variable"
debug: msg="{{ clouds|default('No clouds found') }}"

- name: "Setting nova instance state to: {{ nova_instance_state }}"
local_action:

module: nova_compute
login_username: "{{ clouds.devstack.auth.username }}"
login_password: "{{ clouds.devstack.auth.password }}"

20.11. Utilizing Cloud Credentials 212

Automation Controller User Guide, Release Automation Controller 4.3.0

20.11.2 Amazon Web Services

Amazon Web Services cloud credentials are exposed as the following environment variables during playbook execu-
tion (in the job template, choose the cloud credential needed for your setup):

• AWS_ACCESS_KEY_ID

• AWS_SECRET_ACCESS_KEY

All of the AWS modules will implicitly use these credentials when run via the controller without having to set the
aws_access_key_id or aws_secret_access_key module options.

20.11.3 Google

Google cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• GCE_EMAIL

• GCE_PROJECT

• GCE_CREDENTIALS_FILE_PATH

All of the Google modules will implicitly use these credentials when run via the controller without having to set the
service_account_email, project_id, or pem_file module options.

20.11.4 Azure

Azure cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• AZURE_SUBSCRIPTION_ID

• AZURE_CERT_PATH

All of the Azure modules implicitly use these credentials when run via the controller without having to set the
subscription_id or management_cert_path module options.

20.11.5 VMware

VMware cloud credentials are exposed as the following environment variables during playbook execution (in the job
template, choose the cloud credential needed for your setup):

• VMWARE_USER

• VMWARE_PASSWORD

• VMWARE_HOST

The sample playbook below demonstrates usage of these credentials:

- vsphere_guest:
vcenter_hostname: "{{ lookup('env', 'VMWARE_HOST') }}"
username: "{{ lookup('env', 'VMWARE_USER') }}"
password: "{{ lookup('env', 'VMWARE_PASSWORD') }}"
guest: newvm001
from_template: yes
template_src: linuxTemplate

(continues on next page)

20.11. Utilizing Cloud Credentials 213

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

cluster: MainCluster
resource_pool: "/Resources"
vm_extra_config:

folder: MyFolder

20.12 Provisioning Callbacks

Provisioning callbacks are a feature of Automation Controller that allow a host to initiate a playbook run against
itself, rather than waiting for a user to launch a job to manage the host from the Automation Controller console.
Please note that provisioning callbacks are only used to run playbooks on the calling host. Provisioning callbacks are
meant for cloud bursting (i.e. new instances with a need for client to server communication for configuration (such as
transmitting an authorization key)), not to run a job against another host. This provides for automatically configuring
a system after it has been provisioned by another system (such as AWS auto-scaling, or a OS provisioning system
like kickstart or preseed) or for launching a job programmatically without invoking the Automation Controller API
directly. The Job Template launched only runs against the host requesting the provisioning.

Frequently this would be accessed via a firstboot type script, or from cron.

To enable callbacks, check the Provisioning Callbacks checkbox in the Job Template. This displays the Provisioning
Callback URL for this job template.

Note: If you intend to use Automation Controller’s provisioning callback feature with a dynamic inventory, Update
on Launch should be set for the inventory group used in the Job Template.

Callbacks also require a Host Config Key, to ensure that foreign hosts with the URL cannot request configuration.
Please provide a custom value for Host Config Key. The host key may be reused across multiple hosts to apply this
job template against multiple hosts. Should you wish to control what hosts are able to request configuration, the key
may be changed at any time.

To callback manually via REST, look at the callback URL in the UI, which is of the form:

https://<CONTROLLER_SERVER_NAME>/api/v2/job_templates/7/callback/

The ‘7’ in this sample URL is the job template ID in Automation Controller.

The request from the host must be a POST. Here is an example using curl (all on a single line):

curl -k -f -i -H 'Content-Type:application/json' -XPOST -d '{"host_config_key":
↪→"redhat"}' \

https://<CONTROLLER_SERVER_NAME>/api/v2/job_templates/7/callback/

The requesting host must be defined in your inventory for the callback to succeed. If Automation Controller fails to
locate the host either by name or IP address in one of your defined inventories, the request is denied. When running

20.12. Provisioning Callbacks 214

Automation Controller User Guide, Release Automation Controller 4.3.0

a Job Template in this way, the host initiating the playbook run against itself must be in the inventory. If the host is
missing from the inventory, the Job Template will fail with a “No Hosts Matched” type error message.

Note: If your host is not in inventory and Update on Launch is set for the inventory group, Automation Con-
troller attempts to update cloud based inventory source before running the callback.

Successful requests result in an entry on the Jobs tab, where the results and history can be viewed.

While the callback can be accessed via REST, the suggested method of using the callback is to use one of the exam-
ple scripts that ships with Automation Controller - /usr/share/awx/request_tower_configuration.
sh (Linux/UNIX) or /usr/share/awx/request_tower_configuration.ps1 (Windows). Usage is de-
scribed in the source code of the file by passing the -h flag, as shown below:

./request_tower_configuration.sh -h
Usage: ./request_tower_configuration.sh <options>

Request server configuration from Ansible Tower.

OPTIONS:
-h Show this message
-s Controller server (e.g. https://ac.example.com) (required)
-k Allow insecure SSL connections and transfers
-c Host config key (required)
-t Job template ID (required)
-e Extra variables

This script has some intelligence, it knows how to retry commands and is therefore a more robust way to use callbacks
than a simple curl request. As written, the script retries once per minute for up to ten minutes.

Note: Please note that this is an example script. You should edit this script if you need more dynamic behavior when
detecting failure scenarios, as any non-200 error code may not be a transient error requiring retry.

Most likely you will use callbacks with dynamic inventory in Automation Controller, such as pulling cloud inventory
from one of the supported cloud providers. In these cases, along with setting Update On Launch, be sure to configure
an inventory cache timeout for the inventory source, to avoid hammering of your Cloud’s API endpoints. Since the
request_tower_configuration.sh script polls once per minute for up to ten minutes, a suggested cache
invalidation time for inventory (configured on the inventory source itself) would be one or two minutes.

While we recommend against running the request_tower_configuration.sh script from a cron job, a sug-
gested cron interval would be perhaps every 30 minutes. Repeated configuration can be easily handled by scheduling
in Automation Controller, so the primary use of callbacks by most users is to enable a base image that is bootstrapped
into the latest configuration upon coming online. To do so, running at first boot is a better practice. First boot
scripts are just simple init scripts that typically self-delete, so you would set up an init script that called a copy of the
request_tower_configuration.sh script and make that into an autoscaling image.

20.12. Provisioning Callbacks 215

Automation Controller User Guide, Release Automation Controller 4.3.0

20.12.1 Passing Extra Variables to Provisioning Callbacks

Just as you can pass extra_vars in a regular Job Template, you can also pass them to provisioning callbacks. To
pass extra_vars, the data sent must be part of the body of the POST request as application/json (as the content
type). Use the following JSON format as an example when adding your own extra_vars to be passed:

'{"extra_vars": {"variable1":"value1","variable2":"value2",...}}'

You can also pass extra variables to the Job Template call using curl, such as is shown in the following example:

root@localhost:~$ curl -f -H 'Content-Type: application/json' -XPOST \
-d '{"host_config_key": "redhat", "extra_vars": "{\"foo\": \"bar\"}"}

↪→' \
https://<CONTROLLER_SERVER_NAME>/api/v2/job_templates/7/callback

For more information, refer to Launching Jobs with Curl.

20.13 Extra Variables

Note: extra_vars passed to the job launch API are only honored if one of the following is true:

• They correspond to variables in an enabled survey

• ask_variables_on_launch is set to True

When you pass survey variables, they are passed as extra variables (extra_vars) within the controller. This can be
tricky, as passing extra variables to a job template (as you would do with a survey) can override other variables being
passed from the inventory and project.

For example, say that you have a defined variable for an inventory for debug = true. It is entirely possible that
this variable, debug = true, can be overridden in a job template survey.

To ensure that the variables you need to pass are not overridden, ensure they are included by redefining them in the
survey. Keep in mind that extra variables can be defined at the inventory, group, and host levels.

If specifying the ALLOW_JINJA_IN_EXTRA_VARS parameter, refer to the Controller Tips and Tricks section of the
Automation Controller Administration Guide to configure it in the Jobs Settings screen of the controller UI.

Note: The Job Template extra variables dictionary is merged with the Survey variables.

Here are some simplified examples of extra_vars in YAML and JSON formats:

The configuration in YAML format:

launch_to_orbit: true
satellites:

- sputnik
- explorer
- satcom

The configuration in JSON format:

20.13. Extra Variables 216

http://docs.ansible.com/automation-controller/4.3.0/html/administration/tipsandtricks.html#launch-jobs-curl
http://docs.ansible.com/automation-controller/4.3.0/html/administration/tipsandtricks.html#ag-tips-jinja-extravars

Automation Controller User Guide, Release Automation Controller 4.3.0

{
"launch_to_orbit": true,
"satellites": ["sputnik", "explorer", "satcom"]

}

The following table notes the behavior (hierarchy) of variable precedence in automation controller as it compares to
variable precedence in Ansible.

Automation Controller Variable Precedence Hierarchy (last listed wins)

20.13.1 Relaunching Job Templates

Instead of manually relaunching a job, a relaunch is denoted by setting launch_type to relaunch. The relaunch
behavior deviates from the launch behavior in that it does not inherit extra_vars.

Job relaunching does not go through the inherit logic. It uses the same extra_vars that were calculated for the job
being relaunched.

For example, say that you launch a Job Template with no extra_varswhich results in the creation of a Job called j1.
Next, say that you edit the Job Template and add in some extra_vars (such as adding "{ "hello": "world"
}").

Relaunching j1 results in the creation of j2, but because there is no inherit logic and j1 had no extra_vars, j2 will
not have any extra_vars.

To continue upon this example, if you launched the Job Template with the extra_vars you added after the creation
of j1, the relaunch job created (j3) will include the extra_vars. And relaunching j3 results in the creation of j4,
which would also include extra_vars.

20.13. Extra Variables 217

CHAPTER

TWENTYONE

JOB SLICING

A sliced job refers to the concept of a distributed job. Distributed jobs are used for running a job across a very
large number of hosts, allowing you to run multiple ansible-playbooks, each on a subset of an inventory, that can be
scheduled in parallel across a cluster.

By default, Ansible runs jobs from a single control instance. For jobs that do not require cross-host orchestration,
job slicing takes advantage of automation controller’s ability to distribute work to multiple nodes in a cluster. Job
slicing works by adding a Job Template field job_slice_count, which specifies the number of jobs into which to
slice the Ansible run. When this number is greater than 1, automation controller will generate a workflow from a job
template instead of a job. The inventory will be distributed evenly amongst the slice jobs. The workflow job is then
started, and proceeds as though it were a normal workflow. When launching a job, the API will return either a job
resource (if job_slice_count = 1) or a workflow job resource. The corresponding User Interface will redirect
to the appropriate screen to display the status of the run.

21.1 Job slice considerations

Consider the following when setting up job slices:

• A sliced job creates a workflow job, and then that creates jobs.

• A job slice consists of a job template, an inventory, and a slice count.

• When executed, a sliced job splits each inventory into a number of “slice size” chunks. It then queues jobs of
ansible-playbook runs on each chunk of the appropriate inventory. The inventory fed into ansible-playbook is a
pared-down version of the original inventory that only contains the hosts in that particular slice. The completed
sliced job that displays on the Jobs list are labeled accordingly, with the number of sliced jobs that have run:

• These sliced jobs follow normal scheduling behavior (number of forks, queuing due to capacity, assignation to
instance groups based on inventory mapping).

218

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: Job slicing is intended to scale job executions horizontally. Enabling job slicing on a job template divides an
inventory to be acted upon in the number of slices configured at launch time and then starts a job for each slice.

It is expected that the number of slices will be equal to or less than the number of controller nodes. Setting an extremely
high number of job slices (e.g., thousands), while allowed, can cause performance degradation as the job scheduler is
not designed to schedule simultaneously thousands of workflow nodes, which are what the sliced jobs become.

• Sliced job templates with prompts and/or extra variables behave the same as standard job templates, applying all
variables and limits to the entire set of slice jobs in the resulting workflow job. However, when passing a limit
to a Sliced Job, if the limit causes slices to have no hosts assigned, those slices will fail, causing the overall job
to fail.

• A job slice job status of a distributed job is calculated in the same manner as workflow jobs; failure if there are
any unhandled failures in its sub-jobs.

Warning: Any job that intends to orchestrate across hosts (rather than just applying changes to individual hosts)
should not be configured as a slice job. Any job that does, may fail, and automation controller will not attempt to
discover or account for playbooks that fail when run as slice jobs.

21.2 Job slice execution behavior

When jobs are sliced, they can run on any node and some may not run at the same time (insufficient capacity in the
system, for example). When slice jobs are running, job details display the workflow and job slice(s) currently running,
as well as a link to view their details individually.

By default, job templates are not normally configured to execute simultaneously (allow_simultaneous must
be checked in the API or Enable Concurrent Jobs in the UI). Slicing overrides this behavior and implies
allow_simultaneous even if that setting is unchecked. See Job Templates for information on how to specify
this, as well as the number of job slices on your job template configuration.

The Job Templates section provides additional detail on performing the following operations in the User Interface:

• Launch workflow jobs with a job template that has a slice number greater than one

21.2. Job slice execution behavior 219

Automation Controller User Guide, Release Automation Controller 4.3.0

• Cancel the whole workflow or individual jobs after launching a slice job template

• Relaunch the whole workflow or individual jobs after slice jobs finish running

• View the details about the workflow and slice jobs after a launching a job template

• Search slice jobs specifically after you create them (see subsequent section, Search job slices)

21.3 Search job slices

To make it easier to find slice jobs, use the Search functionality to apply a search filter to:

• job lists to show only slice jobs

• job lists to show only parent workflow jobs of job slices

• job templates lists to only show job templates that produce slice jobs

To show only slice jobs in job lists, as with most cases, you can filter either on the type (jobs here) or unified_jobs:

/api/v2/jobs/?job_slice_count__gt=1

To show only parent workflow jobs of job slices:

/api/v2/workflow_jobs/?job_template__isnull=false

To show only job templates that produce slice jobs:

/api/v2/job_templates/?job_slice_count__gt=1

21.3. Search job slices 220

CHAPTER

TWENTYTWO

WORKFLOWS

Workflows allow you to configure a sequence of disparate job templates (or workflow templates) that may or may not
share inventory, playbooks, or permissions. However, workflows have ‘admin’ and ‘execute’ permissions, similar to
job templates. A workflow accomplishes the task of tracking the full set of jobs that were part of the release process
as a single unit.

Job or workflow templates are linked together using a graph-like structure called nodes. These nodes can be jobs,
project syncs, or inventory syncs. A template can be part of different workflows or used multiple times in the same
workflow. A copy of the graph structure is saved to a workflow job when you launch the workflow.

The example below shows a workflow that contains all three, as well as a workflow job template:

As the workflow runs, jobs are spawned from the node’s linked template. Nodes linking to a job template which
has prompt-driven fields (job_type, job_tags, skip_tags, limit) can contain those fields, and will not be
prompted on launch. Job templates with promptable credential and/or inventory, WITHOUT defaults, will not be
available for inclusion in a workflow.

22.1 Workflow scenarios and considerations

Consider the following scenarios for building workflows:

• A root node is set to ALWAYS by default and it not editable.

221

Automation Controller User Guide, Release Automation Controller 4.3.0

• A node can have multiple parents and children may be linked to any of the states of success, failure, or always.
If always, then the state is neither success or failure. States apply at the node level, not at the workflow job
template level. A workflow job will be marked as successful unless it is canceled or encounters an error.

• If you remove a job or workflow template within the workflow, the node(s) previously connected to those deleted,
automatically get connected upstream and retains its edge type as in the example below:

• You could have a convergent workflow, where multiple jobs converge into one. In this scenario, any of the jobs
or all of them must complete before the next one runs, as shown in the example below:

22.1. Workflow scenarios and considerations 222

Automation Controller User Guide, Release Automation Controller 4.3.0

In the example provided, automation controller runs the first two job templates in parallel. When they both finish and
succeed as specified, the 3rd downstream (convergence node), will trigger.

• Prompts for inventory and surveys will apply to workflow nodes in workflow job templates.

• If you launch from the API, running a get command displays a list of warnings and highlights missing compo-
nents. The basic workflow for a workflow job template is illustrated below.

• It is possible to launch several workflows simultaneously, and set a schedule for when to launch them. You can
set notifications on workflows, such as when a job completes, similar to that of job templates.

Note: Job slicing is intended to scale job executions horizontally. Enabling job slicing on a job template divides an
inventory to be acted upon in the number of slices configured at launch time and then starts a job for each slice.

It is expected that the number of slices will be equal to or less than the number of controller nodes. Setting an extremely
high number of job slices (e.g., thousands), while allowed, can cause performance degradation as the job scheduler is
not designed to schedule simultaneously thousands of workflow nodes, which are what the sliced jobs become.

• You can build a recursive workflow, but if automation controller detects an error, it will stop at the time the
nested workflow attempts to run.

• Artifacts gathered in jobs in the sub-workflow will be passed to downstream nodes.

• An inventory can be set at the workflow level, or prompt for inventory on launch.

• When launched, all job templates in the workflow that have ask_inventory_on_launch=true will use
the workflow level inventory.

• Job templates that do not prompt for inventory will ignore the workflow inventory and run against their own
inventory.

22.1. Workflow scenarios and considerations 223

Automation Controller User Guide, Release Automation Controller 4.3.0

• If a workflow prompts for inventory, schedules and other workflow nodes may provide the inventory.

• In a workflow convergence scenario, set_stats data will be merged in an undefined way, so it is recom-
mended that you set unique keys.

22.2 Extra Variables

Also similar to job templates, workflows use surveys to specify variables to be used in the playbooks in the workflow,
called extra_vars. Survey variables are combined with extra_vars defined on the workflow job template, and saved to
the workflow job extra_vars. extra_vars in the workflow job are combined with job template variables when spawning
jobs within the workflow.

Workflows utilize the same behavior (hierarchy) of variable precedence as Job Templates with the exception of three
additional variables. Refer to the Variable Precedence Hierarchy in the Extra Variables section of the Job Templates
chapter of this guide. The three additional variables include:

Workflows included in a workflow will follow the same variable precedence - they will only inherit variables if they
are specifically prompted for, or defined as part of a survey.

In addition to the workflow extra_vars, jobs and workflows ran as part of a workflow can inherit variables in the
artifacts dictionary of a parent job in the workflow (also combining with ancestors further upstream in its branch).
These can be defined by the set_stats Ansible module.

If you use the set_stats module in your playbook, you can produce results that can be consumed downstream by
another job, for example, notify users as to the success or failure of an integration run. In this example, there are two
playbooks that can be combined in a workflow to exercise artifact passing:

• invoke_set_stats.yml: first playbook in the workflow:

- hosts: localhost

tasks:
- name: "Artifact integration test results to the web"

local_action: 'shell curl -F "file=@integration_results.txt" https://file.io'
register: result

- name: "Artifact URL of test results to Workflows"
set_stats:

data:
integration_results_url: "{{ (result.stdout|from_json).link }}"

• use_set_stats.yml: second playbook in the workflow

- hosts: localhost

(continues on next page)

22.2. Extra Variables 224

https://docs.ansible.com/ansible/latest/modules/set_stats_module.html

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

tasks:
- name: "Get test results from the web"

uri:
url: "{{ integration_results_url }}"
return_content: true

register: results

- name: "Output test results"
debug:

msg: "{{ results.content }}"

The set_stats module processes this workflow as follows:

1. The contents of an integration results (example: integration_results.txt below) is first uploaded to the web.

the tests are passing!

2. Through the invoke_set_stats playbook, set_stats is then invoked to artifact the URL of the uploaded
integration_results.txt into the Ansible variable “integration_results_url”.

3. The second playbook in the workflow consumes the Ansible extra variable “integration_results_url”. It calls
out to the web using the uri module to get the contents of the file uploaded by the previous Job Template Job.
Then, it simply prints out the contents of the gotten file.

Note: For artifacts to work, keep the default setting, per_host = False in the set_stats module.

22.3 Workflow States

The workflow job can have the following states (no Failed state):

• Waiting

• Running

• Success (finished)

• Cancel

• Error

• Failed

In the workflow scheme, canceling a job cancels the branch, while canceling the workflow job cancels the entire
workflow.

22.3. Workflow States 225

Automation Controller User Guide, Release Automation Controller 4.3.0

22.4 Role-Based Access Controls

To edit and delete a workflow job template, you must have the admin role. To create a workflow job template, you
must be an organization admin or a system admin. However, you can run a workflow job template that contains job
templates you don’t have permissions for. Similar to projects, organization admins can create a blank workflow and
then grant an ‘admin_role’ to a low-level user, after which they can go about delegating more access and building the
graph. You must have execute access to a job template to add it to a workflow job template.

Other tasks such as the ability to make a duplicate copy and re-launch a workflow can also be performed, depending on
what kinds of permissions are granted to a particular user. Generally, you should have permissions to all the resources
used in a workflow (like job templates) before relaunching or making a copy.

For more information on performing the tasks described in this section, refer to the Administration Guide.

22.4. Role-Based Access Controls 226

http://docs.ansible.com/automation-controller/4.3.0/html/administration/index.html#ag-start

CHAPTER

TWENTYTHREE

WORKFLOW JOB TEMPLATES

A workflow job template links together a sequence of disparate resources that accomplishes the task of tracking the
full set of jobs that were part of the release process as a single unit. These resources may include:

• job templates

• workflow templates

• project syncs

• inventory source syncs

The Templates menu opens a list of the workflow and job templates that are currently available. The default view
is collapsed (Compact), showing the template name, template type, and the statuses of the jobs that ran using that
template, but you can click Expanded to view more information. This list is sorted alphabetically by name, but you
can sort by other criteria, or search by various fields and attributes of a template. From this screen, you can launch

(), edit (), and copy () a workflow job template.

Only workflow templates have the Workflow Visualizer icon () as a shortcut for accessing the workflow editor.

Note: Workflow templates can be used as building blocks for another workflow template. Many parameters in a
workflow template allow you to enable Prompt on Launch that can be modified at the workflow job template level,
and do not affect the values assigned at the individual workflow template level. For instructions, see the Workflow
Visualizer section.

227

Automation Controller User Guide, Release Automation Controller 4.3.0

23.1 Create a Workflow Template

To create a new workflow job template:

1. Click the button then select Workflow Template from
the menu list.

2. Enter the appropriate details into the following fields:

Note: If a field has the Prompt on launch checkbox selected, launching the workflow template, or when the workflow
template is used within another workflow template, it will prompt for the value for that field upon launch. Most
prompted values will override any values set in the workflow job template; exceptions are noted below.

23.1. Create a Workflow Template 228

Automation Controller User Guide, Release Automation Controller 4.3.0

Field Options Prompt on Launch
Name Enter a name for the job. N/A
Description Enter an arbitrary description as appropriate (op-

tional).
N/A

Organization Choose the organization to be used with this tem-
plate from the organizations available to the cur-
rently logged in user.

N/A

Inventory Optionally choose the inventory to be used with this
template from the inventories available to the cur-
rently logged in user.

Yes

Limit A host pattern to further constrain the list of hosts
managed or affected by the playbook. Multiple pat-
terns can be separated by colons (:). As with core
Ansible, a:b means “in group a or b”, a:b:&c
means “in a or b but must be in c”, and a:!b means
“in a, and definitely not in b”. For more informa-
tion and examples refer to Patterns in the Ansible
documentation.

Yes

Source con-
trol branch

Select a branch for the workflow. This branch is ap-
plied to all workflow job template nodes that prompt
for a branch.

Yes

Labels
• Optionally supply labels that describe this

workflow job template, such as “dev” or
“test”. Labels can be used to group and filter
workflow job templates and completed jobs in
the display.

• Labels are created when they are added to the
workflow template. Labels are associated to
a single Organization using the Project that
is provided in the workflow template. Mem-
bers of the Organization can create labels on
a workflow template if they have edit permis-
sions (such as an admin role).

• Once the workflow template is saved, the la-
bels appear in the WFJT’s Details view.

• Click the () beside a label to remove it.
When a label is removed, it is no longer asso-
ciated with that particular workflow template,
but it will remain associated with any other
jobs or job templates that reference it.

• Labels are only applied to the workflow tem-
plates not the job template nodes that are used
in the workflow.

• Yes. If selected, even if a de-
fault value is supplied, you will be
prompted upon launch to supply ad-
ditional labels if needed.

• You will not be able to delete existing

labels - clicking () only removes
the newly added labels, not existing
default labels.

Variables
• Pass extra command line variables to the play-

book. This is the “-e” or “–extra-vars” com-
mand line parameter for ansible-playbook
that is documented in the Ansible documen-
tation at Passing Variables on the Command
Line.

• Provide key/value pairs using either YAML
or JSON. These variables have a maximum
value of precedence and overrides other vari-
ables specified elsewhere. An example value
might be:

git_branch: production
release_version: 1.5

• Yes. If you want to be able to spec-
ify extra_vars on a schedule, you
must select Prompt on Launch for
Variables on the workflow job tem-
plate, or a enable a survey on the
workflow job template, then those
answered survey questions become
extra_vars.

• For more information about extra
variables, refer to Extra Variables.

Job Tags Begin typing and selecting the Create x drop-down
to specify which parts of the playbook should be ex-
ecuted. For more information and examples refer to
Tags in the Ansible documentation.

Yes

Skip Tags Begin typing and selecting the Create x drop-down
to specify certain tasks or parts of the playbook to
skip. For more information and examples refer to
Tags in the Ansible documentation.

Yes

23.1. Create a Workflow Template 229

http://docs.ansible.com/intro_patterns.html
http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line
http://docs.ansible.com/playbooks_variables.html#passing-variables-on-the-command-line
https://docs.ansible.com/ansible/latest/user_guide/playbooks_tags.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_tags.html

Automation Controller User Guide, Release Automation Controller 4.3.0

3. Options: Specify options for launching this workflow job template, if necessary.

• Check Enable Webhooks to turn on the ability to interface with a predefined SCM system web service that is
used to launch a workflow job template. Currently supported SCM systems are GitHub and GitLab.

If you enable webhooks, other fields display, prompting for additional information:

• Webhook Service: Select which service to listen for webhooks from

• Webhook Credential: Optionally, provide a GitHub or GitLab personal access token
(PAT) as a credential to use to send status updates back to the webhook service. Before
you can select it, the credential must exist. See Credential Types to create one.

Upon Save, additional fields populate and the Workflow Visualizer automatically opens.

• Webhook URL: Automatically populated with the URL for the webhook service to POST
requests to.

• Webhook Key: Generated shared secret to be used by the webhook service to sign pay-
loads sent to automation controller. This must be configured in the settings on the web-
hook service in order for automation controller to accept webhooks from this service.

For additional information on setting up webhooks, see Working with Webhooks.

• Check Enable Concurrent Jobs to allow simultaneous runs of this workflow. Refer to Automation
Controller Capacity Determination and Job Impact for additional information.

4. When you have completed configuring the workflow template, click Save.

Saving the template exits the workflow template page and the Workflow Visualizer opens to allow you to build a work-
flow. See the Workflow Visualizer section for further instructions. Otherwise, you may close the Workflow Visualizer
to return to the Details tab of the newly saved template in order to review, edit, add permissions, notifications, sched-
ules, and surveys, or view completed jobs and build a workflow template at a later time. Alternatively, you can click
Launch to launch the workflow, but you must first save the template prior to launching, otherwise, the Launch button
remains grayed-out. Also, note the Notifications tab is present only after the template has been saved.

23.1. Create a Workflow Template 230

Automation Controller User Guide, Release Automation Controller 4.3.0

23.2 Work with Permissions

Clicking on Access allows you to review, grant, edit, and remove associated permissions for users as well as team
members.

Click the Add button to create new permissions for this workflow template by following the prompts to assign them
accordingly.

23.3 Work with Notifications

Clicking on Notifications allows you to review any notification integrations you have setup. The Notifications tab is
present only after the template has been saved.

Use the toggles to enable or disable the notifications to use with your particular template. For more detail, see Enable
and Disable Notifications.

If no notifications have been set up, see Create a Notification Template for detail.

Refer to Notification Types for additional details on configuring various notification types.

23.2. Work with Permissions 231

Automation Controller User Guide, Release Automation Controller 4.3.0

23.4 View Completed Jobs

The Completed Jobs tab provides the list of workflow templates that have ran. Click Expanded to view the various
details of each job.

From this view, you can click the job ID - name of the workflow job and see its graphical representation. The example
below shows the job details of a workflow job.

The nodes are marked with labels that help you identify them at a glance. See the legend in the Workflow Visualizer
section for more information.

23.5 Work with Schedules

Clicking on Schedules allows you to review any schedules set up for this template.

23.5.1 Schedule a Workflow Template

To schedule a wokflow job template run, click the Schedules tab.

• If schedules are already set up; review, edit, or enable/disable your schedule preferences.

• If schedules have not been set up, refer to Schedules for more information.

If a workflow template used in a nested workflow has a survey, or the Prompt on Launch selected for the inventory
option, the PROMPT button displays next to the SAVE and CANCEL buttons on the schedule form. Clicking the
PROMPT button shows an optional INVENTORY step where you can provide or remove an inventory or skip this
step without any changes.

23.4. View Completed Jobs 232

Automation Controller User Guide, Release Automation Controller 4.3.0

23.6 Surveys

Workflows containing job types of Run or Check provide a way to set up surveys in the Workflow Job Template
creation or editing screens. Surveys set extra variables for the playbook similar to ‘Prompt for Extra Variables’ does,
but in a user-friendly question and answer way. Surveys also allow for validation of user input. Click the Survey tab
to create a survey.

Use cases for surveys are numerous. An example might be if operations wanted to give developers a “push to stage”
button they could run without advanced Ansible knowledge. When launched, this task could prompt for answers to
questions such as, “What tag should we release?”

Many types of questions can be asked, including multiple-choice questions.

23.6.1 Create a Survey

To create a survey:

1. Click the Survey tab to bring up the Add Survey window.

Use the ON/OFF toggle button at the top of the screen to quickly activate or deactivate this survey prompt.

2. A survey can consist of any number of questions. For each question, enter the following information:

• Name: The question to ask the user.

• Description: (optional) A description of what’s being asked of the user.

• Answer Variable Name: The Ansible variable name to store the user’s response in. This is the variable to be
used by the playbook. Variable names cannot contain spaces.

• Answer Type: Choose from the following question types.

– Text: A single line of text. You can set the minimum and maximum length (in characters) for this answer.

– Textarea: A multi-line text field. You can set the minimum and maximum length (in characters) for this
answer.

– Password: Responses are treated as sensitive information, much like an actual password is treated. You
can set the minimum and maximum length (in characters) for this answer.

– Multiple Choice (single select): A list of options, of which only one can be selected at a time. Enter the
options, one per line, in the Multiple Choice Options box.

23.6. Surveys 233

Automation Controller User Guide, Release Automation Controller 4.3.0

– Multiple Choice (multiple select): A list of options, any number of which can be selected at a time. Enter
the options, one per line, in the Multiple Choice Options box.

– Integer: An integer number. You can set the minimum and maximum length (in characters) for this answer.

– Float: A decimal number. You can set the minimum and maximum length (in characters) for this answer.

• Default Answer: Depending on which type chosen, you can supply the default answer to the question. This
value is pre-filled in the interface and is used if the answer is not provided by the user.

• Required: Whether or not an answer to this question is required from the user.

3. Once you have entered the question information, click the Add button to add the question.

A stylized version of the survey is presented in the Preview pane. For any question, you can click on the Edit button
to edit the question, the Delete button to delete the question, and click and drag on the grid icon to rearrange the order
of the questions.

4. Return to the left pane to add additional questions.

5. When done, click Save to save the survey.

23.6.2 Optional Survey Questions

The Required setting on a survey question determines whether the answer is optional or not for the user interacting
with it.

Behind the scenes, optional survey variables can be passed to the playbook in extra_vars, even when they aren’t
filled in.

• If a non-text variable (input type) is marked as optional, and is not filled in, no survey extra_var is passed to
the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length > 0, no
survey extra_var is passed to the playbook.

• If a text input or text area input is marked as optional, is not filled in, and has a minimum length === 0,
that survey extra_var is passed to the playbook, with the value set to an empty string (“”).

23.6. Surveys 234

Automation Controller User Guide, Release Automation Controller 4.3.0

23.7 Workflow Visualizer

The Workflow Visualizer provides a graphical way of linking together job templates, workflow templates, project
syncs, and inventory syncs to build a workflow template. Before building a workflow template, refer to the Workflows
section for considerations associated with various scenarios on parent, child, and sibling nodes.

23.7.1 Build a Workflow

You can set up any combination of two or more of the following node types to build a workflow: Template (Job
Template or Workflow Job Template), Project Sync, Inventory Sync, or Approval. Each node is represented by a
rectangle while the relationships and their associated edge types are represented by a line (or link) that connects them.

1. In the details/edit view of a workflow template, click the Visualizer tab or from the Templates list view, click

the () icon to launch the Workflow Visualizer.

2. Click the button to display a list of nodes to add to your workflow.

23.7. Workflow Visualizer 235

Automation Controller User Guide, Release Automation Controller 4.3.0

3. On the right pane, select the type of node you want to add from the drop-down menu:

If selecting an Approval node, see Approval nodes for further detail.

Selecting a node provides the available valid options associated with it.

Note: If you select a job template that does not have a default inventory when populating a workflow graph, the
inventory of the parent workflow will be used. Though a credential is not required in a job template, you will not be
able to choose a job template for your workflow if it has a credential that requires a password, unless the credential is
replaced by a prompted credential.

4. Once a node is selected, the workflow begins to build, and you must specify the type of action to be taken for
the selected node. This action is also referred to as edge type.

5. If the node is a root node, the edge type defaults to Always and is non-editable.

23.7. Workflow Visualizer 236

Automation Controller User Guide, Release Automation Controller 4.3.0

For subsequent nodes, you can select one of the following scenarios (edge type) to apply to each:

• Always: Continue to execute regardless of success or failure.

• On Success: Upon successful completion, execute the next template.

• On Failure: Upon failure, execute a different template.

6. Select the behavior of the node if it is a convergent node from the Convergence field:

• Any is the default behavior, allowing any of the nodes to complete as specified, before triggering
the next converging node. As long as the status of one parent meets one of those run conditions, an
ANY child node will run. In other words, an ANY node requires all nodes to complete, but only one
node must complete with the expected outcome.

• Choose All to ensure that all nodes complete as specified, before converging and triggering the next
node. The purpose of ALL nodes is to make sure that every parent met it’s expected outcome in
order to run the child node. The workflow checks to make sure every parent behaved as expected in
order to run the child node. Otherwise, it will not run the child node.

If selected, the graphical view will label the node as ALL.

Note: If a node is a root node, or a node that does not have any nodes converging into it, setting the Convergence
rule does not apply, as its behavior is dictated by the action that triggers it.

7. If a job template used in the workflow has Prompt on Launch selected for any of its parameters, a Prompt
button appears, allowing you to change those values at the node level. Use the wizard to change the value(s) in
each of the tabs and click Confirm in the Preview tab.

Likewise, if a workflow template used in the workflow has Prompt on Launch selected for the inventory option, use
the wizard to supply the inventory at the prompt. If the parent workflow has its own inventory, it will override any
inventory that is supplied here.

23.7. Workflow Visualizer 237

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: For workflow job templates with promptable fields that are required, but do not have a default, you must
provide those values when creating a node before the Select button becomes enabled. The two cases that disable the
Select button until a value is provided via the Prompt button: 1) when you select the Prompt on Launch checkbox
in a workflow job template, but do not provide a default, or 2) when you create a survey question that is required but
do not provide a default answer. However, this is NOT the case with credentials. Credentials that require a password
on launch are not permitted when creating a workflow node, since everything needed to launch the node must be
provided when the node is created. So, if a workflow job template prompts for credentials, automation controller
prevents you from being able to select a credential that requires a password.

You must also click Select when the prompt wizard closes in order to apply the changes at that node. Otherwise, any
changes you make will revert back to the values set in the actual job template.

23.7. Workflow Visualizer 238

Automation Controller User Guide, Release Automation Controller 4.3.0

Once the node is created, it is labeled with its job type. A template that is associated with each workflow node will run

based on the selected run scenario as it proceeds. Click the compass () icon to display the legend for each run
scenario and their job types.

23.7. Workflow Visualizer 239

Automation Controller User Guide, Release Automation Controller 4.3.0

8. Hovering over a node allows you to add another node, view info about the node, edit the

node details, edit an existing link , or delete the selected node.

23.7. Workflow Visualizer 240

Automation Controller User Guide, Release Automation Controller 4.3.0

9. When done adding/editing a node, click Select to save any modifications and render it on the graphical view.
For possible ways to build your workflow, see Node building scenarios.

10. When done with building your workflow template, click Save to save your entire workflow template and return
to the new workflow template details page.

Important: Clicking Close on this pane will not save your work, but instead, closes the entire Workflow Visualizer
and you will have to start over.

Approval nodes

Choosing an Approval node requires user intervention in order to advance the workflow. This functions as a means to
pause the workflow in between playbooks so that a user can give approval to continue on to the next playbook in the
workflow, giving the user a specified amount of time to intervene, but also allows the user to continue as quickly as
possible without having to wait on some other trigger.

23.7. Workflow Visualizer 241

Automation Controller User Guide, Release Automation Controller 4.3.0

The default for the timeout is none, but you can specify the length of time before the request expires and automatically
gets denied. After selecting and supplying the information for the approval node, it displays on the graphical view

with a pause () icon next to it.

The approver is anyone who can execute the workflow job template containing the approval nodes, has org admin or
above privileges (for the org associated with that workflow job template), or any user who has the Approve permission
explicitly assigned to them within that specific workflow job template.

23.7. Workflow Visualizer 242

Automation Controller User Guide, Release Automation Controller 4.3.0

If pending approval nodes are not approved within the specified time limit (if an expiration was assigned) or they
are denied, then they are marked as “timed out” or “failed”, respectively, and move on to the next “on fail node” or
“always node”. If approved, the “on success” path is taken. If you try to POST in the API to a node that has already
been approved, denied or timed out, an error message notifies you that this action is redundant, and no further steps
will be taken.

Below shows the various levels of permissions allowed on approval workflows:

23.7. Workflow Visualizer 243

Automation Controller User Guide, Release Automation Controller 4.3.0

Node building scenarios

You can add a sibling node by clicking the on the parent node:

You can insert another node in between nodes by hovering over the line that connects the two until the appears.

Clicking on the automatically inserts the node between the two nodes.

23.7. Workflow Visualizer 244

Automation Controller User Guide, Release Automation Controller 4.3.0

To add a root node to depict a split scenario, click the button again:

At any node where you want to create a split scenario, hover over the node from which the split scenario begins and

click the . This essentially adds multiple nodes from the same parent node, creating sibling nodes:

Note: When adding a new node, the PROMPT button applies to workflow templates as well. Workflow templates
will prompt for inventory and surveys.

If you want to undo the last inserted node, click on another node without making a selection from the right pane. Or,
click Cancel from the right pane.

Below is an example of a workflow that contains all three types of jobs that is initiated by a job template that if it fails
to run, proceed to the project sync job, and regardless of whether that fails or succeeds, proceed to the inventory sync
job.

Remember to refer to the Key at the top of the window to identify the meaning of the symbols and colors associated
with the graphical depiction.

Note: In a workflow with a set of sibling nodes having varying edge types, and you remove a node that has a follow-on
node attached to it, the attached node automatically joins the set of sibling nodes and retains its edge type:

23.7. Workflow Visualizer 245

Automation Controller User Guide, Release Automation Controller 4.3.0

The following ways you can modify your nodes:

• If you want to edit a node, click on the node you want to edit. The right pane displays the current selections.
Make your changes and click Select to apply them to the graphical view.

• To edit the edge type for an existing link (success/failure/always), click on the link. The right pane displays the
current selection. Make your changes and click Save to apply them to the graphical view.

23.7. Workflow Visualizer 246

Automation Controller User Guide, Release Automation Controller 4.3.0

• To add a new link from one node to another, click the link icon that appears on each node. Doing this
highlights the nodes that are possible to link to. These feasible options are indicated by the dotted lines. Invalid
options are indicated by grayed out boxes (nodes) that would otherwise produce an invalid link. The example
below shows the Demo Project as a possible option for the e2e-ec20de52-project to link to, as indicated by the
arrows:

• To remove a link, click the link and click the Unlink button.

This button only appears in the right hand panel if the target or child node has more than one parent. All nodes must
be linked to at least one other node at all times so you must create a new link before removing an old one.

Click the settings icon () to zoom, pan, or reposition the view. Alternatively, you can drag the workflow diagram
to reposition it on the screen or use the scroll on your mouse to zoom.

23.7. Workflow Visualizer 247

Automation Controller User Guide, Release Automation Controller 4.3.0

23.8 Launch a Workflow Template

Launch a workflow template by any of the following ways:

• Access the workflow templates list from the Templates menu on the left navigation bar or while in the workflow

template Details view, scroll to the bottom to access the button from the list of templates.

• While in the Workflow Job Template Details view of the job you want to launch, click Launch.

Along with any extra variables set in the workflow job template and survey, automation controller automatically adds
the same variables as those added for a workflow job template upon launch. Additionally, automation controller
automatically redirects the web browser to the Jobs Details page for this job, displaying the progress and the results.

Events related to approvals on workflows display in the Activity Stream () with detailed information about the
approval requests, if any.

23.9 Copy a Workflow Template

automation controller allows you the ability to copy a workflow template. If you choose to copy a workflow template,
it does not copy any associated schedule, notifications, or permissions. Schedules and notifications must be recreated
by the user or admin creating the copy of the workflow template. The user copying the workflow template will be
granted the admin permission, but no permissions are assigned (copied) to the workflow template.

1. Access the workflow template that you want to copy from the Templates menu on the left navigation bar or
while in the Workflow Job Template Details view, scroll to the bottom to access it from a list of templates.

2. Click the button.

A new template opens with the name of the template from which you copied and a timestamp.

23.8. Launch a Workflow Template 248

Automation Controller User Guide, Release Automation Controller 4.3.0

Select the copied template and replace the contents of the Name field with a new name, and provide or modify the
entries in the other fields to complete this template.

3. Click Save when done.

Note: If a resource has a related resource that you don’t have the right level of permission to, you cannot copy the
resource, such as in the case where a project uses a credential that a current user only has Read access. However,
for a workflow template, if any of its nodes uses an unauthorized job template, inventory, or credential, the workflow
template can still be copied. But in the copied workflow template, the corresponding fields in the workflow template
node will be absent.

23.10 Extra Variables

Note: extra_vars passed to the job launch API are only honored if one of the following is true:

• They correspond to variables in an enabled survey

• ask_variables_on_launch is set to True

When you pass survey variables, they are passed as extra variables (extra_vars). This can be tricky, as passing
extra variables to a workflow template (as you would do with a survey) can override other variables being passed from
the inventory and project.

For example, say that you have a defined variable for an inventory for debug = true. It is entirely possible that
this variable, debug = true, can be overridden in a workflow template survey.

To ensure that the variables you need to pass are not overridden, ensure they are included by redefining them in the
survey. Keep in mind that extra variables can be defined at the inventory, group, and host levels.

The following table notes the behavior (hierarchy) of variable precedence in automation controller as it compares to
variable precedence in Ansible.

Variable Precedence Hierarchy (last listed wins)

23.10. Extra Variables 249

Automation Controller User Guide, Release Automation Controller 4.3.0

23.10. Extra Variables 250

CHAPTER

TWENTYFOUR

INSTANCE GROUPS

An Instance Group provides the ability to group instances in a clustered environment. Additionally, policies dictate
how instance groups behave and how jobs are executed. The following view displays the capacity levels based on
policy algorithms:

For more information about the policy or rules associated with instance groups, see the Instance Groups section of the
Automation Controller Administration Guide.

If you want to connect your instance group to a container, refer to Container Groups for further detail.

For an in-depth discussion on these concepts, refer to the Feature Spotlight: Instance Groups and Isolated Nodes blog.

24.1 Create an instance group

To create a new instance group:

1. Click Instance Groups from the left navigation menu to open the Instance Groups configuration window.

2. Click the Add button and select Create Instance Group.

251

http://docs.ansible.com/automation-controller/4.3.0/html/administration/containers_instance_groups.html#ag-instance-groups
http://docs.ansible.com/automation-controller/4.3.0/html/administration/containers_instance_groups.html#ag-container-groups
https://www.ansible.com/blog/ansible-tower-feature-spotlight-instance-groups-and-isolated-nodes

Automation Controller User Guide, Release Automation Controller 4.3.0

3. Enter the appropriate details into the following fields:

• Name. Names must be unique and must not be named controller.

• Policy Instance Minimum. Enter the minimum number of instances to automatically assign to this group when
new instances come online.

• Policy Instance Percentage. Use the slider to select a minimum percentage of instances to automatically assign
to this group when new instances come online.

Note: Policy Instance fields are not required to create a new instance group. If you do not specify values, then the
Policy Instance Minimum and Policy Instance Percentage default to 0.

4. Click Save.

Once the instance group is successfully created, the Details tab of the newly created instance group remains, which

allows you to review and edit your instance group information. This is the same menu that is opened if the Edit ()
button is clicked from the Instance Group link. You can also edit Instances and review Jobs associated with this
instance group.

24.1. Create an instance group 252

Automation Controller User Guide, Release Automation Controller 4.3.0

24.1.1 Associate instances to an instance group

To associate instances to an instance group:

1. Click the Instances tab of the Instance Group window and click the Add button.

2. Click the checkbox next to one or more available instances from the list to select the instance(s) you want to add
to the instance group.

3. In the following example, the instances added to the instance group displays along with information about their
capacity.

24.1. Create an instance group 253

Automation Controller User Guide, Release Automation Controller 4.3.0

This view also allows you to edit some key attributes associated with the instances in your instance group:

24.1.2 View jobs associated with an instance group

To view the jobs associated with the instance group, click the Jobs tab of the Instance Group window and then click
Expanded to expand the view to show details about each job.

24.1. Create an instance group 254

Automation Controller User Guide, Release Automation Controller 4.3.0

Each job displays the job status, ID, and name; type of job, time started and completed, who started the job; and which
template, inventory, project, and credential were used.

The instances are run in accordance with instance group policies. Refer to Instance Group Policies in the Automation
Controller Administration Guide.

24.1. Create an instance group 255

http://docs.ansible.com/automation-controller/4.3.0/html/administration/containers_instance_groups.html#ag-instance-group-policies

CHAPTER

TWENTYFIVE

JOBS

A job is an instance of automation controller launching an Ansible playbook against an inventory of hosts.

The Jobs link displays a list of jobs and their statuses–shown as completed successfully or failed, or as an active
(running) job. The default view is collapsed (Compact) with the job name, status, job type, and start/finish times, but
you can expand to see more information. You can sort this list by various criteria, and perform a search to filter the
jobs of interest.

256

Automation Controller User Guide, Release Automation Controller 4.3.0

Actions you can take from this screen include viewing the details and standard output of a particular job, relaunching

() jobs, or removing selected jobs. The relaunch operation only applies to relaunches of playbook runs and does
not apply to project/inventory updates, system jobs, workflow jobs, etc.

When a job relaunches, you are directed the Jobs Output screen as the job runs. Clicking on any type of job also takes
you to the Job Output View for that job, where you can filter jobs by various criteria:

• The Stdout option is the default display that shows the job processes and output

• The Event option allows you to filter by the event(s) of interest, such as errors, host failures, host retries, items
skipped, etc. You can include as many events in the filter as necessary.

257

Automation Controller User Guide, Release Automation Controller 4.3.0

• The Advanced option is a refined search that allows you a combination of including or excluding criteria,
searching by key, or by lookup type. For details about using Search, refer to the Search chapter.

25.1 Inventory Sync Jobs

When an inventory sync is executed, the full results automatically display in the Output tab. This shows the same
information you would see if you ran it through the Ansible command line, and can be useful for debugging. The
ANSIBLE_DISPLAY_ARGS_TO_STDOUT is set to False by default for all playbook runs. This matches Ansible’s
default behavior. This does not display task arguments in task headers in the Job Detail interface to avoid leaking cer-
tain sensitive module parameters to stdout. If you wish to restore the prior behavior (despite the security implications),
you can set ANSIBLE_DISPLAY_ARGS_TO_STDOUT to True via the AWX_TASK_ENV configuration setting. For
more details, refer to the ANSIBLE_DISPLAY_ARGS_TO_STDOUT.

The icons at the top right corner of the Output tab allow you to relaunch (), download () the job output, or

delete () the job.

Note: An inventory update can be performed while a related job is running. In cases where you have a big project
(around 10 GB), disk space on /tmp may be an issue.

25.1. Inventory Sync Jobs 258

http://docs.ansible.com/ansible/latest/reference_appendices/config.html#envvar-ANSIBLE_DISPLAY_ARGS_TO_STDOUT

Automation Controller User Guide, Release Automation Controller 4.3.0

25.1.1 Inventory sync details

Access the Details tab to provide details about the job execution.

Notable details of the job executed are:

• Status: Can be any of the following:

– Pending - The inventory sync has been created, but not queued or started yet. Any job, not just inventory
source syncs, will stay in pending until it’s actually ready to be run by the system. Reasons for inventory
source syncs not being ready include dependencies that are currently running (all dependencies must be
completed before the next step can execute), or there is not enough capacity to run in the locations it is
configured to.

– Waiting - The inventory sync is in the queue waiting to be executed.

– Running - The inventory sync is currently in progress.

– Successful - The inventory sync job succeeded.

– Failed - The inventory sync job failed.

• Inventory: The name of the associated inventory group.

• Source: The type of cloud inventory.

• Inventory Source Project: The project used as the source of this inventory sync job.

• Execution Environment: The execution environment used.

• Execution node: The node used to execute the job.

• Instance Group: The name of the instance group used with this job (controller is the default instance group).

By clicking on these items, where appropriate, you can view the corresponding job templates, projects, and other
objects.

25.1. Inventory Sync Jobs 259

Automation Controller User Guide, Release Automation Controller 4.3.0

25.2 SCM Inventory Jobs

When an inventory sourced from an SCM is executed, the full results automatically display in the Output tab. This
shows the same information you would see if you ran it through the Ansible command line, and can be useful for

debugging. The icons at the top right corner of the Output tab allow you to relaunch (), download () the job

output, or delete () the job.

25.2.1 SCM inventory details

Access the Details tab to provide details about the job execution and its associated project.

Notable details of the job executed are:

• Status: Can be any of the following:

– Pending - The SCM job has been created, but not queued or started yet. Any job, not just SCM jobs, will
stay in pending until it’s actually ready to be run by the system. Reasons for SCM jobs not being ready
include dependencies that are currently running (all dependencies must be completed before the next step
can execute), or there is not enough capacity to run in the locations it is configured to.

25.2. SCM Inventory Jobs 260

Automation Controller User Guide, Release Automation Controller 4.3.0

– Waiting - The SCM job is in the queue waiting to be executed.

– Running - The SCM job is currently in progress.

– Successful - The last SCM job succeeded.

– Failed - The last SCM job failed.

• Job Type: SCM jobs display Source Control Update.

• Project: The name of the project.

• Project Status: Indicates whether the associated project was successfully updated.

• Revision: Indicates the revision number of the sourced project that was used in this job.

• Execution Environment: Specifies the execution environment used to run this job.

• Execution Node: Indicates the node on which the job ran.

• Instance Group: Indicates the instance group on which the job ran, if specified.

• Job Tags: Tags show the various job operations executed.

By clicking on these items, where appropriate, you can view the corresponding job templates, projects, and other
objects.

25.3 Playbook Run Jobs

When a playbook is executed, the full results automatically display in the Output tab. This shows the same information
you would see if you ran it through the Ansible command line, and can be useful for debugging.

The events summary captures a tally of events that were run as part of this playbook:

• the number of times this playbook has ran in the Plays field

• the number of tasks associated with this playbook in the Tasks field

• the number of hosts associated with this playbook in the Hosts field

• the amount of time it took to complete the playbook run in the Elapsed field

25.3. Playbook Run Jobs 261

Automation Controller User Guide, Release Automation Controller 4.3.0

The icons next to the events summary allow you to relaunch (), download () the job output, or delete ()
the job.

The host status bar runs across the top of the Output view. Hover over a section of the host status bar and the number
of hosts associated with that particular status displays.

The output for a Playbook job is also accessible after launching a job from the Jobs tab of its Job Templates page.

Clicking on the various line item tasks in the output, you can view its host details.

25.3.1 Search

Use Search to look up specific events, hostnames, and their statuses. To filter only certain hosts with a particular status,
specify one of the following valid statuses:

• OK: the playbook task returned “Ok”.

• Changed: the playbook task actually executed. Since Ansible tasks should be written to be idempotent, tasks
may exit successfully without executing anything on the host. In these cases, the task would return Ok, but not
Changed.

• Failed: the task failed. Further playbook execution was stopped for this host.

• Unreachable: the host was unreachable from the network or had another fatal error associated with it.

• Skipped: the playbook task was skipped because no change was necessary for the host to reach the target state.

• Rescued: introduced in Ansible 2.8, this shows the tasks that failed and then executes a rescue section.

• Ignored: introduced in Ansible 2.8, this shows the tasks that failed and have ignore_errors: yes con-
figured.

These statuses also display at bottom of each Stdout pane, in a group of “stats” called the Host Summary fields.

25.3. Playbook Run Jobs 262

Automation Controller User Guide, Release Automation Controller 4.3.0

The example below shows a search with only unreachable hosts.

For more details about using the Search, refer to the Search chapter.

The standard output view displays all the events that occur on a particular job. By default, all rows are expanded so

that all the details are displayed. Use the collapse-all button () to switch to a view that only contains the headers

for plays and tasks. Click the () button to view all lines of the standard output.

Alternatively, you can display all the details of a specific play or task by clicking on the arrow icons next to them.
Click an arrow from sideways to downward to expand the lines associated with that play or task. Click the arrow back
to the sideways position to collapse and hide the lines.

Things to note when viewing details in the expand/collapse mode:

• Each displayed line that is not collapsed has a corresponding line number and start time.

• An expand/collapse icon is at the start of any play or task after the play or task has completed.

25.3. Playbook Run Jobs 263

Automation Controller User Guide, Release Automation Controller 4.3.0

• If querying for a particular play or task, it will appear collapsed at the end of its completed process.

• In some cases, an error message will appear, stating that the output may be too large to display. This occurs
when there are more than 4000 events. Use the search and filter for specific events to bypass the error.

Click on a line of an event from the Standard Out pane and a Host Events dialog displays in a separate window. This
window shows the host that was affected by that particular event.

Note: Upgrading to the latest versions of Ansible Automation Platform involves progressively migrating all historical
playbook output and events. This migration process is gradual, and happens automatically in the background after
installation is complete. Installations with very large amounts of historical job output (tens, or hundreds of GB of
output) may notice missing job output until migration is complete. Most recent data will show up at the top of the
output, followed by older events. Migrating jobs with a large amount of events may take longer than jobs with a
smaller amount.

25.3.2 Host Details

The Host Details dialog shows information about the host affected by the selected event and its associated play and
task:

• the Host

• the Status

• the type of run in the Play field

• the type of Task

• if applicable, the Ansible Module for the task, and any arguments for that module

To view the results in JSON format, click on the JSON tab. To view the output of the task, click the Standard Out.
To view errors from the output, click Standard Error.

25.3.3 Playbook run details

Access the Details tab to provide details about the job execution.

25.3. Playbook Run Jobs 264

Automation Controller User Guide, Release Automation Controller 4.3.0

Notable details of the job executed are:

• Status: Can be any of the following:

– Pending - The playbook run has been created, but not queued or started yet. Any job, not just playbook
runs, will stay in pending until it is actually ready to be run by the system. Reasons for playbook runs not
being ready include dependencies that are currently running (all dependencies must be completed before
the next step can execute), or there is not enough capacity to run in the locations it is configured to.

– Waiting - The playbook run is in the queue waiting to be executed.

– Running - The playbook run is currently in progress.

– Successful - The last playbook run succeeded.

– Failed - The last playbook run failed.

• Job Template: The name of the job template from which this job was launched.

• Inventory: The inventory selected to run this job against.

• Project: The name of the project associated with the launched job.

• Project Status: The status of the project associated with the launched job.

• Playbook: The playbook used to launch this job.

• Execution Environment: The name of the execution environment used in this job.

• Container Group: The name of the container group used in this job.

• Credentials: The credential(s) used in this job.

• Extra Variables: Any extra variables passed when creating the job template are displayed here.

25.3. Playbook Run Jobs 265

Automation Controller User Guide, Release Automation Controller 4.3.0

By clicking on these items, where appropriate, you can view the corresponding job templates, projects, and other
objects.

25.4 Automation Controller Capacity Determination and Job Impact

This section describes how to determine capacity for instance groups and its impact to your jobs. For container groups,
see Container capacity limits in the Automation Controller Administration Guide.

The automation controller capacity system determines how many jobs can run on an instance given the amount of
resources available to the instance and the size of the jobs that are running (referred to as Impact). The algorithm used
to determine this is based entirely on two things:

• How much memory is available to the system (mem_capacity)

• How much CPU is available to the system (cpu_capacity)

Capacity also impacts Instance Groups. Since Groups are made up of instances, likewise, instances can be assigned to
multiple groups. This means that impact to one instance can potentially affect the overall capacity of other Groups.

Instance Groups (not instances themselves) can be assigned to be used by jobs at various levels (see Clustering). When
the Task Manager is preparing its graph to determine which group a job will run on, it will commit the capacity of an
Instance Group to a job that hasn’t or isn’t ready to start yet.

Finally, in smaller configurations, if only one instance is available for a job to run, the Task Manager will allow that
job to run on the instance even if it pushes the instance over capacity. This guarantees that jobs themselves won’t get
stuck as a result of an under-provisioned system.

Therefore, Capacity and Impact is not a zero-sum system relative to jobs and instances/Instance Groups.

For information on sliced jobs and their impact to capacity, see Job slice execution behavior.

25.4.1 Resource determination for capacity algorithm

The capacity algorithms are defined in order to determine how many forks a system is capable of running simultane-
ously. This controls how many systems Ansible itself will communicate with simultaneously. Increasing the number
of forks a automation controller system is running will, in general, allow jobs to run faster by performing more work in
parallel. The trade-off is that this will increase the load on the system, which could cause work to slow down overall.

Automation controller can operate in two modes when determining capacity. mem_capacity (the default) will allow
you to over-commit CPU resources while protecting the system from running out of memory. If most of your work is
not CPU-bound, then selecting this mode will maximize the number of forks.

Memory relative capacity

mem_capacity is calculated relative to the amount of memory needed per fork. Taking into account the overhead for
internal components, this comes out to be about 100MB per fork. When considering the amount of memory available
to Ansible jobs, the capacity algorithm will reserve 2GB of memory to account for the presence of other services. The
algorithm formula for this is:

(mem - 2048) / mem_per_fork

As an example:

(4096 - 2048) / 100 == ~20

25.4. Automation Controller Capacity Determination and Job Impact 266

http://docs.ansible.com/automation-controller/4.3.0/html/administration/containers_instance_groups.html#ag-container-capacity
http://docs.ansible.com/automation-controller/4.3.0/html/administration/clustering.html#ag-clustering

Automation Controller User Guide, Release Automation Controller 4.3.0

Therefore, a system with 4GB of memory would be capable of running 20 forks. The value mem_per_fork can be
controlled by setting the settings value (or environment variable) SYSTEM_TASK_FORKS_MEM, which defaults to
100.

CPU relative capacity

Often, Ansible workloads can be fairly CPU-bound. In these cases, sometimes reducing the simultaneous workload
allows more tasks to run faster and reduces the average time-to-completion of those jobs.

Just as the mem_capacity algorithm uses the amount of memory need per fork, the cpu_capacity algorithm
looks at the amount of CPU resources is needed per fork. The baseline value for this is 4 forks per core. The algorithm
formula for this is:

cpus * fork_per_cpu

For example, a 4-core system:

4 * 4 == 16

The value fork_per_cpu can be controlled by setting the settings value (or environment variable)
SYSTEM_TASK_FORKS_CPU which defaults to 4.

25.4.2 Capacity job impacts

When selecting the capacity, it’s important to understand how each job type affects capacity.

It’s helpful to understand what forks mean to Ansible: https://www.ansible.com/blog/ansible-performance-tuning (see
the section on “Know Your Forks”).

The default forks value for Ansible is 5. However, if automation controller knows that you’re running against fewer
systems than that, then the actual concurrency value will be lower.

When a job is run, automation controller will add 1 to the number of forks selected to compensate for the Ansible
parent process. So if you are running a playbook against 5 systems with a forks value of 5, then the actual forks value
from the perspective of Job Impact will be 6.

Impact of job types in automation controller

Jobs and Ad-hoc jobs follow the above model, forks + 1. If you set a fork value on your job template, your job capacity
value will be the minimum of the forks value supplied, and the number of hosts that you have, plus one. The plus one
is to account for the parent Ansible process.

Instance capacity determines which jobs get assigned to any specific instance. Jobs and ad hoc commands use more
capacity if they have a higher forks value.

Other job types have a fixed impact:

• Inventory Updates: 1

• Project Updates: 1

• System Jobs: 5

If you don’t set a forks value on your job template, your job will use Ansible’s default forks value of five. Even though
Ansible defaults to five forks, it will use fewer if your job has fewer than five hosts. In general, setting a forks value
higher than what the system is capable of could cause trouble by running out of memory or over-committing CPU. So,
the job template fork values that you use should fit on the system. If you have playbooks using 1000 forks but none

25.4. Automation Controller Capacity Determination and Job Impact 267

https://www.ansible.com/blog/ansible-performance-tuning

Automation Controller User Guide, Release Automation Controller 4.3.0

of your systems individually has that much capacity, then your systems are undersized and at risk of performance or
resource issues.

Selecting the right capacity

Selecting a capacity out of the CPU-bound or the memory-bound capacity limits is, in essence, selecting between the
minimum or maximum number of forks. In the above examples, the CPU capacity would allow a maximum of 16
forks while the memory capacity would allow 20. For some systems, the disparity between these can be large and
often times you may want to have a balance between these two.

The instance field capacity_adjustment allows you to select how much of one or the other you want to consider.
It is represented as a value between 0.0 and 1.0. If set to a value of 1.0, then the largest value will be used. The above
example involves memory capacity, so a value of 20 forks would be selected. If set to a value of 0.0 then the smallest
value will be used. A value of 0.5 would be a 50/50 balance between the two algorithms which would be 18:

16 + (20 - 16) * 0.5 == 18

To view or edit the capacity in the user interface, select the Instances tab of the Instance Group.

25.5 Job branch overriding

Projects specify the branch, tag, or reference to use from source control in the scm_branch field. These are repre-
sented by the values specified in the Project Details fields as shown.

25.5. Job branch overriding 268

Automation Controller User Guide, Release Automation Controller 4.3.0

Projects have the option to “Allow Branch Override”. When checked, project admins can delegate branch selection to
the job templates that use that project (requiring only project use_role).

25.5.1 Source tree copy behavior

Every job run has its own private data directory. This directory contains a copy of the project source tree for the given
scm_branch the job is running. Jobs are free to make changes to the project folder and make use of those changes
while it is still running. This folder is temporary and is cleaned up at the end of the job run.

If Clean is checked, automation controller discards modified files in its local copy of the repository through use of the
force parameter in its respective Ansible modules pertaining to git or Subversion.

25.5.2 Project revision behavior

Typically, during a project update, the revision of the default branch (specified in the SCM Branch field of the project)
is stored when updated, and jobs using that project will employ this revision. Providing a non-default SCM Branch
(not a commit hash or tag) in a job, the newest revision is pulled from the source control remote immediately before
the job starts. This revision is shown in the Source Control Revision field of the job and its respective project update.

25.5. Job branch overriding 269

https://docs.ansible.com/ansible/latest/modules/git_module.html#parameters
https://docs.ansible.com/ansible/latest/modules/subversion_module.html#parameters

Automation Controller User Guide, Release Automation Controller 4.3.0

Consequently, offline job runs are impossible for non-default branches. To be sure that a job is running a static version
from source control, use tags or commit hashes. Project updates do not save the revision of all branches, only the
project default branch.

The SCM Branch field is not validated, so the project must update to assure it is valid. If this field is provided or
prompted for, the Playbook field of job templates will not be validated, and you will have to launch the job template
in order to verify presence of the expected playbook.

25.5.3 Git Refspec

The SCM Refspec field specifies which extra references the update should download from the remote. Examples are:

1. refs/*:refs/remotes/origin/*: fetches all references, including remotes of the remote

2. refs/pull/*:refs/remotes/origin/pull/* (GitHub-specific): fetches all refs for all pull requests

3. refs/pull/62/head:refs/remotes/origin/pull/62/head: fetches the ref for that one GitHub
pull request

For large projects, you should consider performance impact when using the 1st or 2nd examples here.

The SCM Refspec parameter affects the availability of the project branch, and can allow access to references not
otherwise available. The examples above allow the user to supply a pull request from the SCM Branch, which would
not be possible without the SCM Refspec field.

The Ansible git module fetches refs/heads/* by default. This means that a project’s branches and tags (and
commit hashes therein) can be used as the SCM Branch if SCM Refspec is blank. The value specified in the SCM
Refspec field affects which SCM Branch fields can be used as overrides. Project updates (of any type) will perform
an extra git fetch command to pull that refspec from the remote.

For example: You could set up a project that allows branch override with the 1st or 2nd refspec example –> Use this in
a job template that prompts for the SCM Branch –> A client could launch the job template when a new pull request
is created, providing the branch pull/N/head –> The job template would run against the provided GitGub pull
request reference.

For more information on the Ansible git module, see https://docs.ansible.com/ansible/latest/modules/git_module.html.

25.5. Job branch overriding 270

https://docs.ansible.com/ansible/latest/modules/git_module.html

CHAPTER

TWENTYSIX

WORKING WITH WEBHOOKS

A Webhook provides the ability to execute specified commands between apps over the web. automation controller
currently provides webhook integration with GitHub and GitLab. This section describes the procedure for setting up a
webhook through their respective services.

• GitHub webhook setup

• GitLab webhook setup

• Payload output

The webhook post-status-back functionality for GitHub and GitLab is designed for work only under certain CI events.
Receiving another kind of event will result in messages like the one below in the service log:

awx.main.models.mixins Webhook event did not have a status API endpoint associated,
↪→skipping.

26.1 GitHub webhook setup

Automation controller has the ability to run jobs based on a triggered webhook event coming in. Job status information
(pending, error, success) can be sent back only for pull request events. If you determine you do not want automation
controller to post job statuses back to the webhook service, skip steps 1-2, and go directly to step 3.

1. Optionally generate a personal access token (PAT) for use with automation controller.

a. In the profile settings of your GitHub account, click Settings.

b. At the very bottom of the settings, click <> Developer Settings.

c. In the Developer settings, click Personal access tokens.

d. From the Personal access tokens screen, click Generate new token.

e. When prompted, enter your GitHub account password to continue.

f. In the Note field, enter a brief description about what this PAT will be used for.

g. In the Scope fields, the automation webhook only needs repo scope access, with the exception
of invites. For information about other scopes, click the link right above the table to access the
docs.

271

Automation Controller User Guide, Release Automation Controller 4.3.0

h. Click the Generate Token button.

i. Once the token is generated, make sure you copy the PAT, as it will be used in a later step. You
will not be able to access this token again in GitHub.

2. Use the PAT to optionally create a GitHub credential:

a. Go to your instance, and create a new credential for the GitHub PAT using the above generated
token.

b. Make note of the name of this credential, as it will be used in the job template that posts back to
GitHub.

c. Go to the job template with which you want to enable webhooks, and select the webhook service
and credential you created in the previous step.

26.1. GitHub webhook setup 272

Automation Controller User Guide, Release Automation Controller 4.3.0

d. Click Save. Now your job template is set up to be able to post back to GitHub. An example of
one may look like this:

3. Go to a specific GitHub repo you want to configure webhooks and click Settings.

4. Under Options, click Webhooks.

26.1. GitHub webhook setup 273

Automation Controller User Guide, Release Automation Controller 4.3.0

5. On the Webhooks page, click Add webhook.

6. To complete the Add Webhook page, you need to enable webhooks in a job template (or in a workflow job
template), which will provide you with the following information:

a. Copy the contents of the Webhook URL from the job template, and paste it in the Payload
URL field. GitHub uses this address to send results to.

b. Set the Content type to application/json.

c. Copy the contents of the Webhook Key from the job template above and paste it in the Secret
field.

d. Leave Enable SSL verification selected.

26.1. GitHub webhook setup 274

Automation Controller User Guide, Release Automation Controller 4.3.0

e. Next, you must select the types of events you want to trigger a webhook. Any such event will
trigger the Job or Workflow. In order to have job status (pending, error, success) sent back to
GitHub, you must select Pull requests in the individual events section.

26.1. GitHub webhook setup 275

Automation Controller User Guide, Release Automation Controller 4.3.0

f. Leave Active checked and click Add Webhook.

7. After your webhook is configured, it displays in the list of webhooks active for your repo, along with the ability
to edit or delete it. Click on a webhook, and it brings you to the Manage webhook screen. Scroll to the very
bottom of the screen to view all the delivery attempts made to your webhook and whether they succeeded or
failed.

26.1. GitHub webhook setup 276

Automation Controller User Guide, Release Automation Controller 4.3.0

For more information, refer to the GitHub Webhooks developer documentation.

26.2 GitLab webhook setup

Automation controller has the ability to run jobs based on a triggered webhook event coming in. Job status information
(pending, error, success) can be sent back only for merge request events. If you determine you do not want automation
controller to post job statuses back to the webhook service, skip steps 1-2, and go directly to step 3.

1. Optionally, generate a personal access token (PAT). This token gives automation controller the ability to post
statuses back when we run jobs based on a webhook coming in.

a. In the profile settings of your GitLab account, click Settings.

b. On the sidebar, under User Settings, click Access Tokens.

26.2. GitLab webhook setup 277

https://developer.github.com/webhooks/

Automation Controller User Guide, Release Automation Controller 4.3.0

26.2. GitLab webhook setup 278

Automation Controller User Guide, Release Automation Controller 4.3.0

c. In the Name field, enter a brief description about what this PAT will be used for.

d. Skip the Expires at field unless you want to set an expiration date for your webhook.

e. In the Scopes fields, select the ones applicable to your integration. For automation controller,
API is the only selection necessary.

f. Click the Create personal access token button.

g. Once the token is generated, make sure you copy the PAT, as it will be used in a later step. You
will not be able to access this token again in GitLab.

2. Use the PAT to optionally create a GitLab credential:

a. Go to your instance, and create a new credential for the GitLab PAT using the above generated
token.

b. Make note of the name of this credential, as it will be used in the job template that posts back to
GitHub.

c. Go to the job template with which you want to enable webhooks, and select the webhook service
and credential you created in the previous step.

26.2. GitLab webhook setup 279

Automation Controller User Guide, Release Automation Controller 4.3.0

d. Click Save. Now your job template is set up to be able to post back to GitLab. An example of
one may look like this:

3. Go to a specific GitLab repo you want to configure webhooks and click Settings > Integrations.

26.2. GitLab webhook setup 280

Automation Controller User Guide, Release Automation Controller 4.3.0

4. To complete the Integrations page, you need to enable webhooks in a job template (or in a workflow job tem-
plate), which will provide you with the following information:

a. Copy the contents of the Webhook URL from the job template above, and paste it in the URL field.
GitLab uses this address to send results to.

26.2. GitLab webhook setup 281

Automation Controller User Guide, Release Automation Controller 4.3.0

b. Copy the contents of the Webhook Key from the job template above and paste it in the Secret Token field.

c. Next, you must select the types of events you want to trigger a webhook. Any such event will trigger the
Job or Workflow. In order to have job status (pending, error, success) sent back to GitLab, you must select
Merge request events in the Trigger section.

d. Leave Enable SSL verification selected.

e. Click Add webhook.

5. After your webhook is configured, it displays in the list of Project Webhooks for your repo, along with the
ability to test events, edit or delete the webhook. Testing a webhook event displays the results at the top of the
page whether it succeeded or failed.

For more information, refer to the GitLab webhooks integrations documentation.

26.2. GitLab webhook setup 282

https://docs.gitlab.com/ee/user/project/integrations/webhooks.html

Automation Controller User Guide, Release Automation Controller 4.3.0

26.3 Payload output

The entire payload is exposed as an extra variable. To view the payload information, go to the Jobs Detail view of the
job template that ran with the webhook enabled. In the Extra Variables field of the Details pane, view the payload
output from the awx_webhook_payload variable, as shown in the example below.

26.3. Payload output 283

CHAPTER

TWENTYSEVEN

NOTIFICATIONS

A Notification Template is an instance of a Notification type (Email, Slack, Webhook, etc.) with a name, description,
and a defined configuration.

For example:

• A username, password, server, and recipients are needed for an Email notification template

• The token and a list of channels are needed for a Slack notification template

• The URL and Headers are needed for a Webhook notification template

A Notification is a manifestation of the notification template; for example, when a job fails, a notification is sent using
the configuration defined by the notification template.

At a high level, the typical flow for the notification system works as follows:

• A user creates a notification template to the REST API at the /api/v2/notification_templates end-
point (either through the API or through the UI).

• A user assigns the notification template to any of the various objects that support it (all variants of job templates
as well as organizations and projects) and at the appropriate trigger level for which they want the notification
(started, success, or error). For example a user may wish to assign a particular notification template to trigger
when Job Template 1 fails. In which case, they will associate the notification template with the job template at
/api/v2/job_templates/n/notification_templates_error API endpoint.

• You can set notifications on job start, not just job end. Users and teams are also able to define their own
notifications that can be attached to arbitrary jobs.

27.1 Notification Hierarchy

Notification templates assigned at certain levels will inherit templates defined on parent objects as such:

• Job Templates will use notification templates defined on it as well as inheriting notification templates from the
Project used by the Job Template and from the Organization that it is listed under (via the Project).

• Project Updates will use notification templates defined on the project and will inherit notification templates from
the Organization associated with it

• Inventory Updates will use notification templates defined on the Organization that it is listed under

• Ad-hoc commands will use notification templates defined on the Organization that the inventory is associated
with

284

Automation Controller User Guide, Release Automation Controller 4.3.0

27.2 Workflow

When a job succeeds or fails, the error or success handler will pull a list of relevant notification templates using the
procedure defined above. It will then create a Notification object for each one containing relevant details about the job
and then sends it to the destination (email addresses, slack channel(s), sms numbers, etc). These Notification objects
are available as related resources on job types (jobs, inventory updates, project updates), and also at /api/v2/
notifications. You may also see what notifications have been sent from a notification templates by examining
its related resources.

If a notification fails, it will not impact the job associated to it or cause it to fail. The status of the notification can be
viewed at its detail endpoint (/api/v2/notifications/<n>).

27.3 Create a Notification Template

To create a Notification Template:

1. Click Notifications from the left navigation bar.

2. Click the Add button.

3. Enter the name of the notification and a description in their respective fields, and specify the organization
(required) it belongs to.

4. Choose a type of notification from the Type drop-down menu. Refer to the subsequent sections for additional
information.

5. Once all required information is complete, click Save to add the notification.

27.4 Notification Types

Notification types supported with automation controller:

• Email

• Grafana

• IRC

• Mattermost

• PagerDuty

27.2. Workflow 285

Automation Controller User Guide, Release Automation Controller 4.3.0

• Rocket.Chat

• Slack

• Twilio

• Webhook

– Webhook payloads

Each of these have their own configuration and behavioral semantics and testing them may need to be approached in
different ways. Additionally, you can customize each type of notification down to a specific detail, or a set of criteria
to trigger a notification. See Create custom notifications for more detail on configuring custom notifications. The
following sections will give as much detail as possible on each type of notification.

27.4.1 Email

The email notification type supports a wide variety of SMTP servers and has support for TLS/SSL connections.

You must provide the following details to setup an email notification:

• Host

• Recipient list

• Sender email

• Port

• Timeout (in seconds): allows you to specify up to 120 seconds, the length of time automation controller may
attempt connecting to the email server before giving up.

27.4. Notification Types 286

Automation Controller User Guide, Release Automation Controller 4.3.0

27.4.2 Grafana

Grafana is a fairly straightforward integration. First, create an API Key in the Grafana system (this is the token that is
given to automation controller).

You must provide the following details to setup a Grafana notification:

• Grafana URL: The URL of the Grafana API service, generally http://yourcompany.grafana.com.

• Grafana API Key: The user must first create an API Key in the Grafana system (this is the token that is given to
automation controller).

The other options of note are:

• ID of the Dashboard: When you created an API Key for the Grafana account, you can set up a dashboard with
its own unique ID.

• ID of the Panel: If you added panels and graphs to your Grafana interface, you can specify its ID here.

• Tags for the Annotation: Enter keywords that help identify the type(s) of events(s) of the notification you are
configuring.

• Disable SSL Verification: SSL verification is on by default, but you can choose to turn off verification the
authenticity of the target’s certificate. Environments that use internal or private CA’s should select this option to
disable verification.

27.4.3 IRC

The IRC notification takes the form of an IRC bot that will connect, deliver its messages to channel(s) or individual
user(s), and then disconnect. The notification bot also supports SSL authentication. The bot does not currently support
Nickserv identification. If a channel or user does not exist or is not on-line then the Notification will not fail; the
failure scenario is reserved specifically for connectivity.

Connectivity information is straightforward:

• IRC Server Password (optional): IRC servers can require a password to connect. If the server does not require
one, leave blank

• IRC Server Port: The IRC server Port

27.4. Notification Types 287

http://docs.grafana.org/tutorials/api_org_token_howto/

Automation Controller User Guide, Release Automation Controller 4.3.0

• IRC Server Address: The host name or address of the IRC server

• IRC Nick: The bot’s nickname once it connects to the server

• Destination Channels or Users: A list of users and/or channels to which to send the notification.

• SSL Connection (optional): Should the bot use SSL when connecting

27.4.4 Mattermost

The Mattermost notification type provides a simple interface to Mattermost’s messaging and collaboration workspace.
The parameters that can be specified are:

• Target URL (required): The full URL that will be POSTed to

• Username

• Channel

• Icon URL: specifies the icon to display for this notification

• Disable SSL Verification: Turns off verification of the authenticity of the target’s certificate. Environments that
use internal or private CA’s should select this option to disable verification.

27.4. Notification Types 288

Automation Controller User Guide, Release Automation Controller 4.3.0

27.4.5 PagerDuty

PagerDuty is a fairly straightforward integration. First, create an API Key in the PagerDuty system (this is the token
that is given to automation controller) and then create a “Service” which provides an “Integration Key” that will also
be given to automation controller. The other required options are:

• API Token: The user must first create an API Key in the PagerDuty system (this is the token that is given to
automation controller).

• PagerDuty Subdomain: When you sign up for the PagerDuty account, you receive a unique subdomain to
communicate with. For instance, if you signed up as “testuser”, the web dashboard will be at testuser.
pagerduty.com and you will give the API testuser as the subdomain (not the full domain).

• API Service/Integration Key

• Client Identifier: This will be sent along with the alert content to the pagerduty service to help identify the
service that is using the api key/service. This is helpful if multiple integrations are using the same API key and
service.

27.4. Notification Types 289

https://support.pagerduty.com/docs/generating-api-keys

Automation Controller User Guide, Release Automation Controller 4.3.0

27.4.6 Rocket.Chat

The Rocket.Chat notification type provides an interface to Rocket.Chat’s collaboration and communication platform.
The parameters that can be specified are:

• Target URL (required): The full URL that will be POSTed to

• Username

• Icon URL: specifies the icon to display for this notification

• Disable SSL Verification: Turns off verification of the authenticity of the target’s certificate. Environments that
use internal or private CA’s should select this option to disable verification.

27.4.7 Slack

Slack, a collaborative team communication and messaging tool, is pretty easy to configure.

You must supply the following to setup Slack notifications:

• A Slack app (refer to the Basic App Setup page of the Slack documentation for information on how to create
one)

• A token (refer to Enabling Interactions with Bots and specific details on bot tokens on the Token Types docu-
mentation page)

Once you have a bot/app set up, you must navigate to “Your Apps”, click on the newly-created app and then go to
Add features and functionality, which allows you to configure incoming webhooks, bots, and permissions; as well
as Install your app to your workspace.

You must also invite the notification bot to join the channel(s) in question in Slack. Note that private messages are not
supported.

27.4. Notification Types 290

https://api.slack.com/authentication/basics
https://api.slack.com/bot-users
https://api.slack.com/authentication/token-types#bot

Automation Controller User Guide, Release Automation Controller 4.3.0

27.4.8 Twilio

Twilio service is an Voice and SMS automation service. Once you are signed in, you must create a phone number from
which the message will be sent. You can then define a “Messaging Service” under Programmable SMS and associate
the number you created before with it.

Note that you may need to verify this number or some other information before you are allowed to use it to send to any
numbers. The Messaging Service does not need a status callback URL nor does it need the ability to Process inbound
messages.

Under your individual (or sub) account settings, you will have API credentials. Twilio uses two credentials to deter-
mine which account an API request is coming from. The “Account SID”, which acts as a username, and the “Auth
Token” which acts as a password.

To setup Twilio, provide the following details:

• Account Token

• Source Phone Number (this is the number associated with the messaging service above and must be given in the
form of “+15556667777”)

• Destination SMS number (this will be the list of numbers to receive the SMS and should be the 10-digit phone
number)

• Account SID

27.4. Notification Types 291

Automation Controller User Guide, Release Automation Controller 4.3.0

27.4.9 Webhook

The webhook notification type provides a simple interface to sending POSTs to a predefined web service. automation
controller will POST to this address using application/json content type with the data payload containing all relevant
details in json format. Some web service APIs expect HTTP requests to be in a certain format with certain fields. You
can configure more of the webhook notification in the following ways:

• configure the HTTP method (using POST or PUT)

• body of the outgoing request

• configure authentication (using basic auth)

The parameters for configuring webhooks are:

• Username

• Basic Auth Password

• Target URL (required): The full URL to which the webhook notification will be PUT or POSTed.

• Disable SSL Verification: SSL verification is on by default, but you can choose to turn off verification of the
authenticity of the target’s certificate. Environments that use internal or private CA’s should select this option to
disable verification.

• HTTP Headers (required): Headers in JSON form where the keys and values are strings. For ex-
ample, {"Authentication": "988881adc9fc3655077dc2d4d757d480b5ea0e11",
"MessageType": "Test"}

• HTTP Method (required). Select the method for your webhook:

– POST: Creates a new resource. Also acts as a catch-all for operations that do not fit into the other cate-
gories. It is likely you need to POST unless you know your webhook service expects a PUT.

– PUT: Updates a specific resource (by an identifier) or a collection of resources. PUT can also be used to
create a specific resource if the resource identifier is known beforehand.

27.4. Notification Types 292

Automation Controller User Guide, Release Automation Controller 4.3.0

Webhook payloads

Automation controller sends by default the following data at the webhook endpoint:

job id
name
url
created_by
started
finished
status
traceback
inventory
project
playbook
credential
limit
extra_vars
hosts
http method

An example of a started notifications via webhook message as it is returned by automation controller:

{"id": 38, "name": "Demo Job Template", "url": "https://host/#/jobs/playbook/38",
↪→"created_by": "bianca", "started":
"2020-07-28T19:57:07.888193+00:00", "finished": null, "status": "running", "traceback
↪→": "", "inventory": "Demo Inventory",
"project": "Demo Project", "playbook": "hello_world.yml", "credential": "Demo
↪→Credential", "limit": "", "extra_vars": "{}",
"hosts": {}}POST / HTTP/1.1

27.4. Notification Types 293

Automation Controller User Guide, Release Automation Controller 4.3.0

Automation controller returns by default the following data at the webhook endpoint for a success/fail status:

job id
name
url
created_by
started
finished
status
traceback
inventory
project
playbook
credential
limit
extra_vars
hosts

An example of a success/fail notifications via webhook message as it is returned by automation controller:

{"id": 46, "name": "AWX-Collection-tests-awx_job_wait-long_running-XVFBGRSAvUUIrYKn",
↪→"url": "https://host/#/jobs/playbook/46",
"created_by": "bianca", "started": "2020-07-28T20:43:36.966686+00:00", "finished":
↪→"2020-07-28T20:43:44.936072+00:00", "status": "failed",
"traceback": "", "inventory": "Demo Inventory", "project": "AWX-Collection-tests-awx_
↪→job_wait-long_running-JJSlglnwtsRJyQmw", "playbook":
"fail.yml", "credential": null, "limit": "", "extra_vars": "{\"sleep_interval\": 300}
↪→", "hosts": {"localhost": {"failed": true, "changed": 0,
"dark": 0, "failures": 1, "ok": 1, "processed": 1, "skipped": 0, "rescued": 0,
↪→"ignored": 0}}}

27.5 Create custom notifications

You can customize the text content of each of the Notification Types by enabling the Customize Messages portion at
the bottom of the notifications form using the toggle button.

27.5. Create custom notifications 294

Automation Controller User Guide, Release Automation Controller 4.3.0

27.5. Create custom notifications 295

Automation Controller User Guide, Release Automation Controller 4.3.0

You can provide a custom message for various job events:

• Start

• Success

• Error

• Workflow approved

• Workflow denied

• Workflow running

• Workflow timed out

The message forms vary depending on the type of notification you are configuring. For example, messages for email
and PagerDuty notifications have the appearance of a typical email form with a subject and body, in which case,
automation controller displays the fields as Message and Message Body. Other notification types only expect a
Message for each type of event:

The Message fields are pre-populated with a template containing a top-level variable, job coupled with an attribute,
such as id or name, for example. Templates are enclosed in curly braces and may draw from a fixed set of fields
provided by automation controller, as shown in the pre-populated Messages fields.

This pre-populated field suggests commonly displayed messages to a recipient who is notified of an event. You can,
however, customize these messages with different criteria by adding your own attribute(s) for the job as needed.
Custom notification messages are rendered using Jinja - the same templating engine used by Ansible playbooks.

Messages and message bodies have different types of content:

• messages will always just be strings (one-liners only; new lines are not allowed)

• message bodies will be either a dictionary or block of text:

– the message body for Webhooks and PagerDuty uses dictionary definitions. The default message
body for these is {{ job_metadata }}, you can either leave that as is or provide your own
dictionary

– the message body for email uses a block of text or a multi-line string. The default message body
is:

{{ job_friendly_name }} #{{ job.id }} had status {{ job.status }}, view
↪→details at {{ url }} {{ job_metadata }}

You can tweak this text (leaving {{ job_metadata }} in, or drop {{ job_metadata }}
altogether). Since the body is a block of text, it can really be any string you want.

27.5. Create custom notifications 296

Automation Controller User Guide, Release Automation Controller 4.3.0

{{ job_metadata }} gets rendered as a dictionary containing fields that describe the job being
executed. In all cases, {{ job_metadata }} will include the following fields:

– id

– name

– url

– created_by

– started

– finished

– status

– traceback

Note: At the present time, you cannot query individual fields within {{ job_metadata }}.
When using {{ job_metadata }} in a notification template, all data will be returned.

The resulting dictionary will look something like this:

{"id": 18,
"name": "Project - Space Procedures",
"url": "https://host/#/jobs/project/18",
"created_by": "admin",
"started": "2019-10-26T00:20:45.139356+00:00",
"finished": "2019-10-26T00:20:55.769713+00:00",
"status": "successful",
"traceback": ""

}

If {{ job_metadata }} is rendered in a job, it will include the following additional fields:

– inventory

– project

– playbook

– credential

– limit

– extra_vars

– hosts

The resulting dictionary will look something like:

{"id": 12,
"name": "JobTemplate - Launch Rockets",
"url": "https://host/#/jobs/playbook/12",
"created_by": "admin",
"started": "2019-10-26T00:02:07.943774+00:00",

(continues on next page)

27.5. Create custom notifications 297

Automation Controller User Guide, Release Automation Controller 4.3.0

(continued from previous page)

"finished": null,
"status": "running",
"traceback": "",
"inventory": "Inventory - Fleet",
"project": "Project - Space Procedures",
"playbook": "launch.yml",
"credential": "Credential - Mission Control",
"limit": "",
"extra_vars": "{}",
"hosts": {}

}

If {{ job_metadata }} is rendered in a workflow job, it will include the following additional
field:

– body (this will enumerate all the nodes in the workflow job and includes a description of the
job associated with each node)

The resulting dictionary will look something like this:

{"id": 14,
"name": "Workflow Job Template - Launch Mars Mission",
"url": "https://host/#/workflows/14",
"created_by": "admin",
"started": "2019-10-26T00:11:04.554468+00:00",
"finished": "2019-10-26T00:11:24.249899+00:00",
"status": "successful",
"traceback": "",
"body": "Workflow job summary:

node #1 spawns job #15, \"Assemble Fleet JT\", which finished
↪→with status successful.

node #2 spawns job #16, \"Mission Start approval node\", which
↪→finished with status successful.\n

node #3 spawns job #17, \"Deploy Fleet\", which finished with
↪→status successful."
}

For more detail, refer to Using variables with Jinja2.

Automation controller requires valid syntax in order to retrieve the correct data to display the messages. For a list
of supported attributes and the proper syntax construction, refer to the Supported Attributes for Custom Notifications
section of this guide.

If you create a notification template that uses invalid syntax or references unusable fields, an error message displays
indicating the nature of the error. If you delete a notification’s custom message, the default message is shown in its
place.

Note: If you save the notifications template without editing the custom message (or edit and revert back to the default
values), the Details screen assumes the defaults and will not display the custom message tables. If you edit and save
any of the values, the entire table displays in the Details screen.

27.5. Create custom notifications 298

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#using-variables-with-jinja2

Automation Controller User Guide, Release Automation Controller 4.3.0

27.6 Enable and Disable Notifications

You can select which notifications to notify you when a specific job starts, in addition to notifying you on success or
failure at the end of the job run. Some behaviors to keep in mind:

• if a workflow template (WFJT) has notification on start enabled, and a job template (JT) within that workflow
also has notification on start enabled, you will receive notifications for both

• you can enable notifications to run on many JTs within a WFJT

• you can enable notifications to run on a sliced job template (SJT) start and each slice will generate a notification

• when you enable a notification to run on job start, and that notification gets deleted, the JT continues to run, but
will result in an error message

You can enable notifications on job start, job success, and job failure, or any combination thereof, from the Notifica-
tions tab of the following resources:

• Job Template

• Workflow Template

• Projects (shown in the example below)

• Inventory Source

• Organizations

27.6. Enable and Disable Notifications 299

Automation Controller User Guide, Release Automation Controller 4.3.0

For workflow templates that have approval nodes, in addition to Start, Success, and Failure, you can enable or disable
certain approval-related events:

Refer to Approval nodes for additional detail on working with these types of nodes.

27.7 Configure the host hostname for notifications

In the System Settings, you can replace the default value in the Base URL of the service field with your preferred
hostname to change the notification hostname.

27.7. Configure the host hostname for notifications 300

http://docs.ansible.com/automation-controller/4.3.0/html/administration/configure_tower_in_tower.html#configure-tower-system

Automation Controller User Guide, Release Automation Controller 4.3.0

Refreshing your license also changes the notification hostname. New installations of automation controller should not
have to set the hostname for notifications.

27.7.1 Reset the TOWER_URL_BASE

The primary way that automation controller determines how the base URL (TOWER_URL_BASE) is defined is by
looking at an incoming request and setting the server address based on that incoming request.

Automation controller takes settings values from the database first. If no settings values are found, it falls back to
using the values from the settings files. If a user posts a license by navigating to the automation controller host’s IP
adddress, the posted license is written to the settings entry in the database.

To change the TOWER_URL_BASE if the wrong address has been picked up, navigate to Miscellaneous System
settings from the Settings menu using the DNS entry you wish to appear in notifications, and re-add your license.

27.8 Notifications API

Use the started, success, or error endpoints:

/api/v2/organizations/N/notification_templates_started/
/api/v2/organizations/N/notification_templates_success/
/api/v2/organizations/N/notification_templates_error/

Additionally, the ../../../N/notification_templates_started endpoints have GET and POST ac-
tions for:

• Organizations

• Projects

• Inventory Sources

• Job Templates

• System Job Templates

• Workflow Job Templates

27.8. Notifications API 301

CHAPTER

TWENTYEIGHT

SUPPORTED ATTRIBUTES FOR CUSTOM NOTIFICATIONS

This section describes the list of supported job attributes and the proper syntax for constructing the message text for
notifications. The supported job attributes are:

• allow_simultaneous - (boolean) indicates if multiple jobs can run simultaneously from the JT associated
with this job

• controller_node - (string) the instance that managed the isolated execution environment

• created - (datetime) timestamp when this job was created

• custom_virtualenv - (string) custom virtual environment used to execute job

• description - (string) optional description of the job

• diff_mode - (boolean) if enabled, textual changes made to any templated files on the host are shown in the
standard output

• elapsed - (decimal) elapsed time in seconds that the job ran

• execution_node - (string) node the job executed on

• failed - (boolean) true if job failed

• finished - (datetime) date and time the job finished execution

• force_handlers - (boolean) when handlers are forced, they will run when notified even if a task fails on
that host (note that some conditions - e.g. unreachable hosts - can still prevent handlers from running)

• forks - (int) number of forks requested for job

• id - (int) database id for this job

• job_explanation - (string) status field to indicate the state of the job if it wasn’t able to run and capture
stdout

• job_slice_count - (integer) if run as part of a sliced job, the total number of slices (if 1, job is not part of
a sliced job)

• job_slice_number - (integer) if run as part of a sliced job, the ID of the inventory slice operated on (if not
part of a sliced job, attribute is not used)

• job_tags - (string) only tasks with specified tags will execute

• job_type - (choice) run, check, or scan

• launch_type - (choice) manual, relaunch, callback, scheduled, dependency, workflow, sync, or scm

• limit - (string) playbook execution limited to this set of hosts, if specified

• modified - (datetime) timestamp when this job was last modified

• name - (string) name of this job

302

Automation Controller User Guide, Release Automation Controller 4.3.0

• playbook - (string) playbook executed

• scm_revision - (string) scm revision from the project used for this job, if available

• skip_tags - (string) playbook execution skips over this set of tag(s), if specified

• start_at_task - (string) playbook execution begins at the task matching this name, if specified

• started - (datetime) date and time the job was queued for starting

• status - (choice) new, pending, waiting, running, successful, failed, error, canceled

• timeout - (int) amount of time (in seconds) to run before the task is canceled

• type - (choice) data type for this job

• url - (string) URL for this job

• use_fact_cache - (boolean) if enabled for job, the controller acts as an Ansible Fact Cache Plugin, persist-
ing facts at the end of a playbook run to the database and caching facts for use by Ansible

• verbosity - (choice) 0 through 5 (corresponding to Normal through WinRM Debug)

• host_status_counts (count of hosts uniquely assigned to each status)

– skipped (integer)

– ok (integer)

– changed (integer)

– failures (integer)

– dark (integer)

– processed (integer)

– rescued (integer)

– ignored (integer)

– failed (boolean)

• summary_fields:

– inventory

* id - (integer) database ID for inventory

* name - (string) name of the inventory

* description - (string) optional description of the inventory

* has_active_failures - (boolean) (deprecated) flag indicating whether any hosts in this
inventory have failed

* total_hosts - (deprecated) (int) total number of hosts in this inventory.

* hosts_with_active_failures - (deprecated) (int) number of hosts in this inventory
with active failures

* total_groups - (deprecated) (int) total number of groups in this inventory

* groups_with_active_failures - (deprecated) (int) number of hosts in this inventory
with active failures

* has_inventory_sources - (deprecated) (boolean) flag indicating whether this inventory
has external inventory sources

303

Automation Controller User Guide, Release Automation Controller 4.3.0

* total_inventory_sources - (int) total number of external inventory sources configured
within this inventory

* inventory_sources_with_failures - (int) number of external inventory sources in
this inventory with failures

* organization_id - (id) organization containing this inventory

* kind - (choice) (empty string) (indicating hosts have direct link with inventory) or ‘smart’

– project

* id - (int) database ID for project

* name - (string) name of the project

* description - (string) optional description of the project

* status - (choices) one of new, pending, waiting, running, successful, failed, error, canceled,
never updated, ok, or missing

* scm_type (choice) - one of (empty string), git, hg, svn, insights

– job_template

* id - (int) database ID for job template

* name - (string) name of job template

* description - (string) optional description for the job template

– unified_job_template

* id - (int) database ID for unified job template

* name - (string) name of unified job template

* description - (string) optional description for the unified job template

* unified_job_type - (choice) unified job type (job, workflow_job, project_update, etc.)

– instance_group

* id - (int) database ID for instance group

* name - (string) name of instance group

– created_by

* id - (int) database ID of user that launched the operation

* username - (string) username that launched the operation

* first_name - (string) first name

* last_name - (string) last name

– labels

* count - (int) number of labels

* results - list of dictionaries representing labels (e.g. {“id”: 5, “name”: “database jobs”})

Information about a job can be referenced in a custom notification message using grouped curly braces {{ }}.
Specific job attributes are accessed using dotted notation, for example {{ job.summary_fields.inventory.
name }}. Any characters used in front or around the braces, or plain text, can be added for clarification, such as
‘#’ for job ID and single-quotes to denote some descriptor. Custom messages can include a number of variables
throughout the message:

304

Automation Controller User Guide, Release Automation Controller 4.3.0

{{ job_friendly_name }} {{ job.id }} ran on {{ job.execution_node }} in {{ job.
↪→elapsed }} seconds.

In addition to the job attributes, there are some other variables that can be added to the template:

• approval_node_name - (string) the approval node name

• approval_status - (choice) one of approved, denied, and timed_out

• url - (string) URL of the job for which the notification is emitted (this applies to start, success, fail, and
approval notifications)

• workflow_url - (string) URL to the relevant approval node. This allows the notification recipient to go
to the relevant workflow job page to see what’s going on (i.e., This node can be viewed at: {{
workflow_url }}). In cases of approval-related notifications, both url and workflow_url are the
same.

• job_friendly_name - (string) the friendly name of the job

• job_metadata - (string) job metadata as a JSON string, for example:

{'url': 'https://towerhost/$/jobs/playbook/13',
'traceback': '',
'status': 'running',
'started': '2019-08-07T21:46:38.362630+00:00',
'project': 'Stub project',
'playbook': 'ping.yml',
'name': 'Stub Job Template',
'limit': '',
'inventory': 'Stub Inventory',
'id': 42,
'hosts': {},
'friendly_name': 'Job',
'finished': False,
'credential': 'Stub credential',
'created_by': 'admin'}

305

CHAPTER

TWENTYNINE

SCHEDULES

You can access all your configured schedules by clicking Schedules from the left navigation bar. The schedules list
may be sorted by any of the attributes from each column using the directional arrows. You can also search by name,
date, or the name of the month in which a schedule runs.

Each schedule has a corresponding Actions column that has options to enable/disable that schedule using the ON/OFF

toggle next to the schedule name and to allow editing () of that schedule.

If you are setting up a template, a project, or an inventory source, clicking on the Schedules tab allows you to configure
schedules for these resources. Once schedules are created, they are listed by:

• Name: Clicking the schedule name opens its details

306

Automation Controller User Guide, Release Automation Controller 4.3.0

• Type: Identifies whether the schedule is associated with a source control update or a system-managed job
schedule

• Next Run: The next scheduled run of this task

29.1 Add a new schedule

Schedules can only be created from a template, project, or inventory source, and not directly on the main Schedules
screen itself. To create a new schedule:

1. Click the Schedules tab of the resource you are configuring (template, project, or inventory source).

2. Click the Add button, which opens the Create Schedule window.

3. Enter the appropriate details into the following fields:

• Name (required)

• Start Date (required)

29.1. Add a new schedule 307

Automation Controller User Guide, Release Automation Controller 4.3.0

• Start Time (required)

• Local Time Zone - The entered Start Time should be in this timezone

• Repeat Frequency - Appropriate scheduling options display depending on the frequency you select

The Schedule Details displays when you established a schedule, allowing you to review the schedule settings and a
list of the scheduled occurrences in the selected Local Time Zone.

Caution: Jobs are scheduled in UTC. Repeating jobs that run at a specific time of day may move relative to a
local timezone when Daylight Savings Time shifts occur. The system resolves the local time zone based time to
UTC when the schedule is saved. To ensure your schedules are correctly set, you should set your schedules in UTC
time.

4. Once done, click Save.

You can use the ON/OFF toggle button to stop an active schedule or activate a stopped schedule.

29.1. Add a new schedule 308

Automation Controller User Guide, Release Automation Controller 4.3.0

29.1. Add a new schedule 309

CHAPTER

THIRTY

SETTING UP INSIGHTS REMEDIATIONS

Automation controller supports integration with Red Hat Insights. Once a host is registered with Insights, it will be
continually scanned for vulnerabilities and known configuration conflicts. Each of the found problems may have an
associated fix in the form of an Ansible playbook. Insights users create a maintenance plan to group the fixes and,
ultimately, create a playbook to mitigate the problems. Automation controller tracks the maintenance plan playbooks
via an Insights project. Authentication to Insights via Basic Auth is backed by a special Insights Credential, which
must first be established in automation controller. To ultimately run an Insights Maintenance Plan, you need an Insights
project, and an Insights inventory.

30.1 Create Insights Credential

To create a new credential for use with Insights:

1. Click Credentials from the left navigation bar to access the Credentials page.

2. Click the Add button located in the upper right corner of the Credentials screen.

3. Enter the name of the credential to be used in the Name field.

4. Optionally enter a description for this credential in the Description field.

5. In the Organization field, optionally enter the name of the organization with which the credential is associated,

or click the button and select it from the pop-up window.

6. In the Credential Type field, enter Insights or select it from the drop-down list.

310

Automation Controller User Guide, Release Automation Controller 4.3.0

7. Enter a valid Insights credential in the Username and Password fields. The Insights credential is the user’s Red
Hat Customer Portal account username and password.

30.1. Create Insights Credential 311

https://access.redhat.com
https://access.redhat.com

Automation Controller User Guide, Release Automation Controller 4.3.0

8. Click Save when done.

30.2 Create an Insights Project

To create a new Insights project:

1. Click Projects from the left navigation bar to access the Projects page.

2. Click the Add button located in the upper right corner of the Projects screen.

3. Enter the appropriate details into the required fields, at minimum. Note the following fields requiring specific
Insights-related entries:

• Name: Enter the name for your Insights project.

• Organization: Enter the name of the organization associated with this project, or click the button and
select it from the pop-up window.

• SCM Type: Select Red Hat Insights.

• Upon selecting the SCM type, the Source Details field expands.

4. The Credential field is pre-populated with the Insights credential you previously created. If not, enter the

credential, or click the button and select it from the pop-up window.

5. Click to select the update option(s) for this project from the Options field, and provide any additional values, if

applicable. For information about each option, click the tooltip next to the options.

6. Click Save when done.

All SCM/Project syncs occur automatically the first time you save a new project. However, if you want them to be

updated to what is current in Insights, manually update the SCM-based project by clicking the button under the
project’s available Actions.

This process syncs your Insights project with your Insights account solution. Notice that the status dot beside the name
of the project updates once the sync has run.

30.2. Create an Insights Project 312

Automation Controller User Guide, Release Automation Controller 4.3.0

30.3 Create Insights Inventory

The Insights playbook contains a hosts: line where the value is the hostname that Insights itself knows about, which
may be different than the hostname that Tower knows about. To use an Insights playbook, you will need an Insights
inventory.

To create a new inventory for use with Insights, see Red Hat Insights.

30.4 Remediate Insights Inventory

Remediation of an Insights inventory allows Tower to run Insights playbooks with a single click. This is done by
creating a Job Template to run the Insights remediation.

1. Click Job Templates from the left navigation bar to access the Job Templates page.

2. Create a new Job Template, with the appropriate details into the required fields, at minimum. Note the following
fields requiring specific Insights-related entries:

• Name: Enter the name of your Maintenance Plan.

• Job Type: If not already populated, select Run from the drop-down menu list.

• Inventory: Select the Insights Inventory you previously created.

• Project: Select the Insights project you previously created.

• Playbook: Select a playbook associated with the Maintenance Plan you want to run from the drop-down menu
list.

• Credential: Enter the credential to use for this project or click the button and select it from the pop-up
window. The credential does not have to be an Insights credential.

• Verbosity: Keep the default setting, or select the desired verbosity from the drop-down menu list.

30.3. Create Insights Inventory 313

Automation Controller User Guide, Release Automation Controller 4.3.0

3. Click Save when done.

4. Click the icon to launch the job template.

Once complete, the job results display in the Job Details page.

30.4. Remediate Insights Inventory 314

CHAPTER

THIRTYONE

BEST PRACTICES

31.1 Use Source Control

While automation controller supports playbooks stored directly on the server, best practice is to store your playbooks,
roles, and any associated details in source control. This way you have an audit trail describing when and why you
changed the rules that are automating your infrastructure. Plus, it allows for easy sharing of playbooks with other parts
of your infrastructure or team.

31.2 Ansible file and directory structure

Please review the Ansible Tips and Tricks from the Ansible documentation. If creating a common set of roles to use
across projects, these should be accessed via source control submodules, or a common location such as /opt. Projects
should not expect to import roles or content from other projects.

Note: Playbooks should not use the vars_prompt feature, as automation controller does not interactively allow
for vars_prompt questions. If you must use vars_prompt, refer to and make use of the Surveys functionality.

Note: Playbooks should not use the pause feature of Ansible without a timeout, as automation controller does not
allow for interactively cancelling a pause. If you must use pause, ensure that you set a timeout.

Jobs run use the playbook directory as the current working directory, although jobs should be coded to use the
playbook_dir variable rather than relying on this.

31.3 Use Dynamic Inventory Sources

If you have an external source of truth for your infrastructure, whether it is a cloud provider or a local CMDB, it is best
to define an inventory sync process and use the support for dynamic inventory (including cloud inventory sources).
This ensures your inventory is always up to date.

Note: Edits and additions to Inventory host variables persist beyond an inventory sync as long as
--overwrite_vars is not set.

315

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html

Automation Controller User Guide, Release Automation Controller 4.3.0

31.4 Variable Management for Inventory

Keeping variable data along with the hosts and groups definitions (see the inventory editor) is encouraged, rather
than using group_vars/ and host_vars/. If you use dynamic inventory sources, the controller can sync such
variables with the database as long as the Overwrite Variables option is not set.

31.5 Autoscaling

Using the “callback” feature to allow newly booting instances to request configuration is very useful for auto-scaling
scenarios or provisioning integration.

31.6 Larger Host Counts

Consider setting “forks” on a job template to larger values to increase parallelism of execution runs. For more infor-
mation on tuning Ansible, see the Ansible blog.

31.7 Continuous integration / Continuous Deployment

For a Continuous Integration system, such as Jenkins, to spawn a job, it should make a curl request to a job template.
The credentials to the job template should not require prompting for any particular passwords. Refer to the CLI
documentation for configuration and usage instructions.

31.8 LDAP authentication performance tips

When an LDAP user authenticates, by default, all user-related attributes will be updated in the database on each log
in. In some environments, this operation can be skipped due to performance issues. To avoid it, you can disable the
option AUTH_LDAP_ALWAYS_UPDATE_USER. Refer to the Knowledge Base Article 5823061 for its configuration
and usage instructions. Please note that new users will still be created and get their attributes pushed to the database
on their first login.

Warning: With this option set to False, no changes to LDAP user’s attributes will be updated. Attributes will
only be updated the first time the user is created.

31.4. Variable Management for Inventory 316

http://www.ansible.com/blog/ansible-performance-tuning
https://docs.ansible.com/automation-controller/latest/html/controllercli/usage.html
https://docs.ansible.com/automation-controller/latest/html/controllercli/usage.html
https://access.redhat.com/solutions/5823061

CHAPTER

THIRTYTWO

SECURITY

The following sections will help you gain an understanding of how automation controller handles and lets you control
file system security.

All playbooks are executed via the awx file system user. For running jobs, automation controller offers job isolation
via the use of Linux containers. This projection ensures jobs can only access playbooks, roles, and data from the
Project directory for that job template.

For credential security, users may choose to upload locked SSH keys and set the unlock password to “ask”. You can
also choose to have the system prompt them for SSH credentials or sudo passwords rather than having the system store
them in the database.

32.1 Playbook Access and Information Sharing

Automation controller’s use of automation execution environments and Linux containers prevents playbooks from
reading files outside of their project directory.

By default, the only data exposed to the ansible-playbook process inside the container is the current project being used.

You can customize this in the Job Settings and expose additional directories from the host into the container. Refer the
next section, Isolation functionality and variables for more information.

32.1.1 Isolation functionality and variables

Automation controller uses container technology to isolate jobs from each other. By default, only the current project
is exposed to the container running a job template.

You may find that you need to customize your playbook runs to expose additional directories. To fine tune your usage
of job isolation, there are certain variables that can be set.

By default, automation controller will use the system’s tmp directory (/tmp by default) as its staging area. This can be
changed in the Job Execution Path field of the Jobs settings screen, or in the REST API at /api/v2/settings/
jobs:

AWX_ISOLATION_BASE_PATH = "/opt/tmp"

If there are any additional directories that should specifically be exposed from the host to the container that playbooks
run in, you can specify those in the Paths to Expose to Isolated Jobs field of the Jobs setting scren, or in the REST
API at /api/v2/settings/jobs:

AWX_ISOLATION_SHOW_PATHS = ['/list/of/', '/paths']

317

Automation Controller User Guide, Release Automation Controller 4.3.0

Note: The primary file you may want to add to AWX_ISOLATION_SHOW_PATHS is /var/lib/
awx/.ssh, if your playbooks need to use keys or settings defined there.

The above fields can be found in the Jobs Settings window:

32.1. Playbook Access and Information Sharing 318

Automation Controller User Guide, Release Automation Controller 4.3.0

32.2 Role-Based Access Controls

Role-Based Access Controls (RBAC) are built into automation controller and allow administrators to delegate access to
server inventories, organizations, and more. Administrators can also centralize the management of various credentials,
allowing end users to leverage a needed secret without ever exposing that secret to the end user. RBAC controls allow
the controller to help you increase security and streamline management.

RBACs are easiest to think of in terms of Roles which define precisely who or what can see, change, or delete an
“object” for which a specific capability is being set. RBAC is the practice of granting roles to users or teams.

There are a few main concepts that you should become familiar with regarding automation controller’s RBAC de-
sign–roles, resources, and users. Users can be members of a role, which gives them certain access to any resources
associated with that role, or any resources associated with “descendant” roles.

A role is essentially a collection of capabilities. Users are granted access to these capabilities and the controller’s
resources through the roles to which they are assigned or through roles inherited through the role hierarchy.

Roles associate a group of capabilities with a group of users. All capabilities are derived from membership within a
role. Users receive capabilities only through the roles to which they are assigned or through roles they inherit through
the role hierarchy. All members of a role have all capabilities granted to that role. Within an organization, roles are
relatively stable, while users and capabilities are both numerous and may change rapidly. Users can have many roles.

32.2.1 Role Hierarchy and Access Inheritance

Imagine that you have an organization named “SomeCompany” and want to allow two people, “Josie” and “Carter”,
access to manage all the settings associated with that organization. You should make both people members of the
organization’s admin_role.

Often, you will have many Roles in a system and you will want some roles to include all of the capabilities of
other roles. For example, you may want a System Administrator to have access to everything that an Organization
Administrator has access to, who has everything that a Project Administrator has access to, and so on.

This concept is referred to as the ‘Role Hierarchy’:

32.2. Role-Based Access Controls 319

Automation Controller User Guide, Release Automation Controller 4.3.0

• Parent roles get all capabilities bestowed on any child roles

• Members of roles automatically get all capabilities for the role they are a member of, as well as any child roles.

The Role Hierarchy is represented by allowing Roles to have “Parent Roles”. Any capability that a Role has is
implicitly granted to any parent roles (or parents of those parents, and so on).

Often, you will have many Roles in a system and you will want some roles to include all of the capabilities of
other roles. For example, you may want a System Administrator to have access to everything that an Organization
Administrator has access to, who has everything that a Project Administrator has access to, and so on. We refer to this
concept as the ‘Role Hierarchy’ and it is represented by allowing Roles to have “Parent Roles”. Any capability that a
Role has is implicitly granted to any parent roles (or parents of those parents, and so on). Of course Roles can have
more than one parent, and capabilities are implicitly granted to all parents.

32.2. Role-Based Access Controls 320

Automation Controller User Guide, Release Automation Controller 4.3.0

RBAC controls also give you the capability to explicitly permit User and Teams of Users to run playbooks against
certain sets of hosts. Users and teams are restricted to just the sets of playbooks and hosts to which they are granted
capabilities. And, with automation controller, you can create or import as many Users and Teams as you require–create
users and teams manually or import them from LDAP or Active Directory.

RBACs are easiest to think of in terms of who or what can see, change, or delete an “object” for which a specific
capability is being determined.

32.2.2 Applying RBAC

The following sections cover how to apply automation controller’s RBAC system in your environment.

Editing Users

When editing a user, a automation controller system administrator may specify the user as being either a System
Administrator (also referred to as the Superuser) or a System Auditor.

• System administrators implicitly inherit all capabilities for all objects (read/write/execute) within the automation
controller environment.

• System Auditors implicitly inherit the read-only capability for all objects within the automation controller envi-
ronment.

32.2. Role-Based Access Controls 321

Automation Controller User Guide, Release Automation Controller 4.3.0

Editing Organizations

When editing an organization, system administrators may specify the following roles:

• One or more users as organization administrators

• One or more users as organization auditors

• And one or more users (or teams) as organization members

Users/teams that are members of an organization can view their organization administrator.

Users who are organization administrators implicitly inherit all capabilities for all objects within that automation
controller organization.

Users who are organization auditors implicitly inherit the read-only capability for all objects within that automation
controller organization.

Editing Projects in an Organization

When editing a project in an organization for which they are the administrator, system administrators and organization
administrators may specify:

• One or more users/teams that are project administrators

• One or more users/teams that are project members

• And one or more users/teams that may update the project from SCM, from among the users/teams that are
members of that organization.

Users who are members of a project can view their project administrators.

Project administrators implicitly inherit the capability to update the project from SCM.

Administrators can also specify one or more users/teams (from those that are members of that project) that can use
that project in a job template.

Creating Inventories and Credentials within an Organization

All access that is granted to use, read, or write credentials is now handled through roles. You no longer set the “team”
or “user” for a credential. Instead, you use automation controller’s RBAC system to grant ownership, auditor, or usage
roles.

System administrators and organization administrators may create inventories and credentials within organizations
under their administrative capabilities.

Whether editing an inventory or a credential, System administrators and organization administrators may specify one
or more users/teams (from those that are members of that organization) to be granted the usage capability for that
inventory or credential.

System administrators and organization administrators may specify one or more users/teams (from those that are
members of that organization) that have the capabilities to update (dynamic or manually) an inventory. Administrators
can also execute ad hoc commands for an inventory.

32.2. Role-Based Access Controls 322

Automation Controller User Guide, Release Automation Controller 4.3.0

Editing Job Templates

System administrators, organization administrators, and project administrators, within a project under their adminis-
trative capabilities, may create and modify new job templates for that project.

When editing a job template, administrators (automation controller, organization, and project) can select among the
inventory and credentials in the organization for which they have usage capabilities or they may leave those fields
blank so that they will be selected at runtime.

Additionally, they may specify one or more users/teams (from those that are members of that project) that have ex-
ecution capabilities for that job template. The execution capability is valid regardless of any explicit capabilities the
user/team may have been granted against the inventory or credential specified in the job template.

User View

A user can:

• See any organization or project for which they are a member

• Create their own credential objects which only belong to them

• See and execute any job template for which they have been granted execution capabilities

If a job template a user has been granted execution capabilities on does not specify an inventory or credential, the user
will be prompted at run-time to select among the inventory and credentials in the organization they own or have been
granted usage capabilities.

Users that are job template administrators can make changes to job templates; however, to change to the inventory,
project, playbook, or credentials used in the job template, the user must also have the “Use” role for the project and
inventory currently being used or being set.

32.2.3 Roles

As stated earlier in this documentation, all access that is granted to use, read, or write credentials is now handled
through roles, and roles are defined for a resource.

Built-in roles

The following table lists the RBAC system roles and a brief description of the how that role is defined with regard to
privileges in automation controller.

32.2. Role-Based Access Controls 323

Automation Controller User Guide, Release Automation Controller 4.3.0

System Role What it can do
System Administrator - System wide singleton Manages all aspects of the system
System Auditor - System wide singleton Views all aspects of the system
Ad Hoc Role - Inventory Runs ad hoc commands on an Inventory
Admin Role - Organizations, Teams, Inventory,
Projects, Job Templates

Manages all aspects of a defined Organization, Team, Inven-
tory, Project, or Job Template

Auditor Role - All Views all aspects of a defined Organization, Project, Inven-
tory, or Job Template

Execute Role - Job Templates Runs assigned Job Template
Member Role - Organization, Team Manages all of the settings associated with that Organization

or Team
Read Role - Organizations, Teams, Inventory,
Projects, Job Templates

Views all aspects of a defined Organization, Team, Inventory,
Project, or Job Template

Update Role - Project Updates the Project from the configured source control man-
agement system

Update Role - Inventory Updates the Inventory using the cloud source update system
Owner Role - Credential Owns and manages all aspects of this Credential
Use Role - Credential, Inventory, Project Uses the Credential, Inventory, or Project in a Job Template

A Singleton Role is a special role that grants system-wide permissions. automation controller currently provides two
built-in Singleton Roles but the ability to create or customize a Singleton Role is not supported at this time.

Common Team Roles - “Personas”

Automation controller support personnel typically works on ensuring that the controller is available and manages it a
way to balance supportability and ease-of-use for users. Often, automation controller support will assign “Organization
Owner/Admin” to users in order to allow them to create a new Organization and add members from their team the
respective access needed. This minimizes supporting individuals and focuses more on maintaining uptime of the
service and assisting users who are using automation controller.

Below are some common roles managed by the automation controller Organization:

32.2. Role-Based Access Controls 324

Automation Controller User Guide, Release Automation Controller 4.3.0

System Role
(for Organizations)

Common User
Roles

Description

Owner Team Lead -
Technical Lead

This user has the ability to control
access for other users in their
organization.
They can add/remove and grant
users specific access to projects,
inventories, and job templates.
This user also has the ability to
create/remove/modify any aspect of
an organization’s projects,
templates, inventories, teams, and
credentials.

Auditor Security Engineer -
Project Manager

This account can view all aspects of
the organization in read-only mode.
This may be good for a user who
checks in and maintains
compliance.
This might also be a good role for a
service account who manages or
ships job data from automation
controller to some other data
collector.

Member -
Team

All other users These users by default as an
organization member do not receive
any access to any aspect
of the organization. In order to
grant them access the respective
organization owner needs
to add them to their respective team
and grant them Admin, Execute,
Use, Update, Ad-hoc
permissions to each component of
the organization’s projects,
inventories, and job templates.

Member -
Team “Owner”

Power users -
Lead Developer

Organization Owners can provide
“admin” through the team interface,
over any component
of their organization including
projects, inventories, and job
templates. These users are able
to modify and utilize the respective
component given access.

Member -
Team “Execute”

Developers -
Engineers

This will be the most common and
allows the organization member the
ability to execute
job templates and read permission
to the specific components. This is
permission applies to templates.

Member -
Team “Use”

Developers -
Engineers

This permission applies to an
organization’s credentials,
inventories, and projects.
This permission allows the ability
for a user to the respective
component within their job
template.

Member -
Team “Update”

Developers -
Engineers

This permission applies to projects.
Allows the user to be able to run an
SCM update on a project.

32.2. Role-Based Access Controls 325

Automation Controller User Guide, Release Automation Controller 4.3.0

32.3 Function of roles: editing and creating

A new organization “resource roles” functionality was introduced in automation controller 3.3 that are specific to a
certain resource type - such as workflows. Being a member of such a role usually provides two types of permissions,
in the case of workflows, where a user is given a “workflow admin role” for the organization “Default”:

• this user can create new workflows in the organization “Default”

• user can edit all workflows in the “Default” organization

One exception is job templates, where having the role is irrelevant of creation permission (more details on its own
section).

32.3.1 Independence of resource roles and organization membership roles

Resource-specific organization roles are independent of the organization roles of admin and member. Having the
“workflow admin role” for the “Default” organization will not allow a user to view all users in the organization, but
having a “member” role in the “Default” organization will. The two types of roles are delegated independently of each
other.

Necessary permissions to edit job templates

Users can edit fields not impacting job runs (non-sensitive fields) with a Job Template admin role alone. However, to
edit fields that impact job runs in a job template, a user needs the following:

• admin role to the job template

• use role to related project

• use role to related inventory

An “organization job template admin” role was introduced, but having this role isn’t sufficient by itself to edit a job
template within the organization if the user does not have use role to the project / inventory a job template uses.

In order to delegate full job template control (within an organization) to a user or team, you will need grant the team
or user all 3 organization-level roles:

• job template admin

• project admin

• inventory admin

This will ensure that the user (or all users who are members of the team with these roles) have full access to modify
job templates in the organization. If a job template uses an inventory or project from another organization, the user
with these organization roles may still not have permission to modify that job template. For clarity of managing
permissions, it is best-practice to not mix projects / inventories from different organizations.

32.3. Function of roles: editing and creating 326

Automation Controller User Guide, Release Automation Controller 4.3.0

RBAC permissions

Each role should have a content object, for instance, the org admin role has a content object of the org. To delegate
a role, you need admin permission to the content object, with some exceptions that would result in you being able to
reset a user’s password.

Parent is the organization.

Allow is what this new permission will explicitly allow.

Scope is the parent resource that this new role will be created on. Example: Organization.
project_create_role.

An assumption is being made that the creator of the resource should be given the admin role for that resource. If there
are any instances where resource creation does not also imply resource administration, they will be explicitly called
out.

Here are the rules associated with each admin type:

Project Admin

• Allow: Create, read, update, delete any project

• Scope: Organization

• User Interface: Project Add Screen - Organizations

Inventory Admin

• Parent: Org admin

• Allow: Create, read, update, delete any inventory

• Scope: Organization

• User Interface: Inventory Add Screen - Organizations

Note: As it is with the Use role, if you give a user Project Admin and Inventory Admin, it allows them to create Job
Templates (not workflows) for your organization.

Credential Admin

• Parent: Org admin

• Allow: Create, read, update, delete shared credentials

• Scope: Organization

• User Interface: Credential Add Screen - Organizations

Notification Admin

• Parent: Org admin

• Allow: Assignment of notifications

• Scope: Organization

Workflow Admin

• Parent: Org admin

• Allow: Create a workflow

• Scope: Organization

32.3. Function of roles: editing and creating 327

Automation Controller User Guide, Release Automation Controller 4.3.0

Org Execute

• Parent: Org admin

• Allow: Executing JTs and WFJTs

• Scope: Organization

The following is a sample scenario showing an organization with its roles and which resource(s) each have access to:

32.3. Function of roles: editing and creating 328

CHAPTER

THIRTYTHREE

GLOSSARY

Ad Hoc Refers to running Ansible to perform some quick command, using /usr/bin/ansible, rather than the orchestra-
tion language, which is /usr/bin/ansible-playbook. An example of an ad hoc command might be rebooting 50
machines in your infrastructure. Anything you can do ad hoc can be accomplished by writing a Playbook, and
Playbooks can also glue lots of other operations together.

Callback Plugin Refers to some user-written code that can intercept results from Ansible and do something with
them. Some supplied examples in the GitHub project perform custom logging, send email, or even play sound
effects.

Control Groups Also known as ‘cgroups’, a control group is a feature in the Linux kernel that allows resources to be
grouped and allocated to run certain processes. In addition to assigning resources to processes, cgroups can also
report actual resource usage by all processes running inside of the cgroup.

Check Mode Refers to running Ansible with the --check option, which does not make any changes on the remote
systems, but only outputs the changes that might occur if the command ran without this flag. This is analogous
to so-called “dry run” modes in other systems, though the user should be warned that this does not take into
account unexpected command failures or cascade effects (which is true of similar modes in other systems). Use
this to get an idea of what might happen, but it is not a substitute for a good staging environment.

Container Groups Container Groups are a type of Instance Group that specify a configuration for provisioning a pod
in a Kubernetes or OpenShift cluster where a job is run. These pods are provisioned on-demand and exist only
for the duration of the playbook run.

Credentials Authentication details that may be utilized by the controller to launch jobs against machines, to synchro-
nize with inventory sources, and to import project content from a version control system.

Credential Plugin Python code that contains definitions for an external credential type, its metadata fields, and the
code needed for interacting with a secret management system.

Distributed Job A job that consists of a job template, an inventory, and slice size. When executed, a distributed job
slices each inventory into a number of “slice size” chunks, which are then used to run smaller job slices.

External Credential Type A managed credential type for automation controller used for authenticating with a secret
management system.

Facts Facts are simply things that are discovered about remote nodes. While they can be used in playbooks and
templates just like variables, facts are things that are inferred, rather than set. Facts are automatically discovered
when running plays by executing the internal setup module on the remote nodes. You never have to call the
setup module explicitly, it just runs, but it can be disabled to save time if it is not needed. For the convenience of
users who are switching from other configuration management systems, the fact module also pulls in facts from
the ‘ohai’ and ‘facter’ tools if they are installed, which are fact libraries from Chef and Puppet, respectively.

Forks Ansible and automation controller talk to remote nodes in parallel and the level of parallelism can be set
serveral ways–during the creation or editing of a Job Template, by passing --forks, or by editing the default
in a configuration file. The default is a very conservative 5 forks, though if you have a lot of RAM, you can
easily set this to a value like 50 for increased parallelism.

329

Automation Controller User Guide, Release Automation Controller 4.3.0

Group A set of hosts in Ansible that can be addressed as a set, of which many may exist within a single Inventory.

Group Vars The group_vars/ files are files that live in a directory alongside an inventory file, with an optional
filename named after each group. This is a convenient place to put variables that will be provided to a given
group, especially complex data structures, so that these variables do not have to be embedded in the inventory
file or playbook.

Handlers Handlers are just like regular tasks in an Ansible playbook (see Tasks), but are only run if the Task contains
a “notify” directive and also indicates that it changed something. For example, if a config file is changed then the
task referencing the config file templating operation may notify a service restart handler. This means services
can be bounced only if they need to be restarted. Handlers can be used for things other than service restarts, but
service restarts are the most common usage.

Host A system managed by automation controller, which may include a physical, virtual, cloud-based server, or other
device. Typically an operating system instance. Hosts are contained in Inventory. Sometimes referred to as a
“node”.

Host Specifier Each Play in Ansible maps a series of tasks (which define the role, purpose, or orders of a system) to
a set of systems. This “hosts:” directive in each play is often called the hosts specifier. It may select one system,
many systems, one or more groups, or even some hosts that are in one group and explicitly not in another.

Instance Group A group that contains instances for use in a clustered environment. An instance group provides the
ability to group instances based on policy.

Inventory A collection of hosts against which Jobs may be launched.

Inventory Script A very simple program (or a complicated one) that looks up hosts, group membership for hosts, and
variable information from an external resource–whether that be a SQL database, a CMDB solution, or something
like LDAP. This concept was adapted from Puppet (where it is called an “External Nodes Classifier”) and works
more or less exactly the same way.

Inventory Source Information about a cloud or other script that should be merged into the current inventory group,
resulting in the automatic population of Groups, Hosts, and variables about those groups and hosts.

Job One of many background tasks launched by the controller, this is usually the instantiation of a Job Template; the
launch of an Ansible playbook. Other types of jobs include inventory imports, project synchronizations from
source control, or administrative cleanup actions.

Job Detail The history of running a particular job, including its output and success/failure status.

Job Slice See Distributed Job.

Job Template The combination of an Ansible playbook and the set of parameters required to launch it.

JSON Ansible and automation controller use JSON for return data from remote modules. This allows modules to be
written in any language, not just Python.

Mesh Describes a network comprising of nodes. Communication between nodes is established at the transport layer
by protocols such as TCP, UDP or Unix sockets. See also, node.

Metadata Information for locating a secret in the external system once authenticated. The uses provides this infor-
mation when linking an external credential to a target credential field.

Node A node corresponds to entries in the instance database model, or the /api/v2/instances/
endpoint, and is a machine participating in the cluster / mesh. The unified jobs API re-
ports controller_node and execution_node fields. The execution node is where the job runs, and
the controller node interfaces between the job and server functions.

330

Automation Controller User Guide, Release Automation Controller 4.3.0

Node
Type

Description

Control Nodes that run persistent Ansible Automation Platform services, and delegate jobs to hybrid
and execution nodes

Hybrid Nodes that run persistent Ansible Automation Platform services and execute jobs
Hop Used for relaying across the mesh only
Execu-
tion

Nodes that run jobs delivered from control nodes (jobs submitted from the user’s Ansible au-
tomation)

Notification Template An instance of a notification type (Email, Slack, Webhook, etc.) with a name, description, and
a defined configuration.

Notification A manifestation of the notification template; for example, when a job fails a notification is sent using the
configuration defined by the notification template.

Notify The act of a task registering a change event and informing a handler task that another action needs to be run at
the end of the play. If a handler is notified by multiple tasks, it will still be run only once. Handlers are run in
the order they are listed, not in the order that they are notified.

Organization A logical collection of Users, Teams, Projects, and Inventories. The highest level in the automation
controller object hierarchy is the Organization.

Organization Administrator An automation controller user with the rights to modify the Organization’s membership
and settings, including making new users and projects within that organization. An organization admin can also
grant permissions to other users within the organization.

Permissions The set of privileges assigned to Users and Teams that provide the ability to read, modify, and administer
Projects, Inventories, and other automation controller objects.

Plays A playbook is a list of plays. A play is minimally a mapping between a set of hosts selected by a host specifier
(usually chosen by groups, but sometimes by hostname globs) and the tasks which run on those hosts to define
the role that those systems will perform. There can be one or many plays in a playbook.

Playbook An Ansible playbook. Refer to http://docs.ansible.com/ for more information.

Policy Policies dictate how instance groups behave and how jobs are executed.

Project A logical collection of Ansible playbooks, represented in automation controller.

Roles Roles are units of organization in Ansible and automation controller. Assigning a role to a group of hosts (or a
set of groups, or host patterns, etc.) implies that they should implement a specific behavior. A role may include
applying certain variable values, certain tasks, and certain handlers–or just one or more of these things. Because
of the file structure associated with a role, roles become redistributable units that allow you to share behavior
among playbooks–or even with other users.

Secret Management System A server or service for securely storing and controlling access to tokens, passwords,
certificates, encryption keys, and other sensitive data.

Schedule The calendar of dates and times for which a job should run automatically.

Sliced Job See Distributed Job.

Source Credential An external credential that is linked to the field of a target credential.

Sudo Ansible does not require root logins and, since it is daemonless, does not require root level daemons (which can
be a security concern in sensitive environments). Ansible can log in and perform many operations wrapped in
a sudo command, and can work with both password-less and password-based sudo. Some operations that do
not normally work with sudo (like scp file transfer) can be achieved with Ansible’s copy, template, and fetch
modules while running in sudo mode.

331

http://docs.ansible.com/

Automation Controller User Guide, Release Automation Controller 4.3.0

Superuser An admin of the automation controller server who has permission to edit any object in the system, whether
associated to any organization. Superusers can create organizations and other superusers.

Survey Questions asked by a job template at job launch time, configurable on the job template.

Target Credential A non-external credential with an input field that is linked to an external credential.

Team A sub-division of an Organization with associated Users, Projects, Credentials, and Permissions. Teams provide
a means to implement role-based access control schemes and delegate responsibilities across Organizations.

User An automation controller operator with associated permissions and credentials.

Webhook Webhooks allow communication and information sharing between apps. They are used to respond to
commits pushed to SCMs and launch job templates or workflow templates.

Workflow Job Template A set consisting of any combination of job templates, project syncs, and inventory syncs,
linked together in order to execute them as a single unit.

YAML Ansible and automation controller use YAML to define playbook configuration languages and also variable
files. YAML has a minimum of syntax, is very clean, and is easy for people to skim. It is a good data format for
configuration files and humans, but is also machine readable. YAML is fairly popular in the dynamic language
community and the format has libraries available for serialization in many languages (Python, Perl, Ruby, etc.).

332

CHAPTER

THIRTYFOUR

INDEX

• genindex

333

CHAPTER

THIRTYFIVE

COPYRIGHT © RED HAT, INC.

Ansible, Ansible Automation Platform, Red Hat, and Red Hat Enterprise Linux are trademarks of Red Hat, Inc.,
registered in the United States and other countries.

If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide
a link to the original version.

Third Party Rights

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

The CentOS Project is copyright protected. The CentOS Marks are trademarks of Red Hat, Inc. (“Red Hat”).

Microsoft, Windows, Windows Azure, and Internet Explore are trademarks of Microsoft, Inc.

VMware is a registered trademark or trademark of VMware, Inc.

Amazon Web Services”, “AWS”, “Amazon EC2”, and “EC2”, are trademarks of Amazon Web Services, Inc. or its
affiliates.

OpenStack™ and OpenStack logo are trademarks of OpenStack, LLC.

Chrome™ and Google Compute Engine™ service registered trademarks of Google Inc.

Safari® is a registered trademark of Apple, Inc.

Firefox® is a registered trademark of the Mozilla Foundation.

All other trademarks are the property of their respective owners.

334

INDEX

Symbols
|RHAAP|

inventories, 176
|aap|

inventories, 189
inventory plugins, 189

|at|
credential types, 75

A
access

organizations, 33
activity streams, 20
Ad Hoc, 329
ad hoc commands, 179

inventories, 179
add

execution environment, 107
add execution environment

jobs, 107
add new

inventories, 154
projects, 119
smart inventories, 154

adding new
applications, 102
credentials, 58

adding tokens
applications, 103

admin menu, 25
Amazon Web Services

credential types, 60
inventories, 169, 183

Ansible collections, 133
Ansible Galaxy, 131
Ansible Galaxy integration

features, 3
API bearer token

credential types, 72
API considerations

credential types, 82
API endpoints

notifications, 301
applications

adding new, 102
adding tokens, 103
authentication, 101
create, 102
getting started, 101
tokens, 101, 103

attaching
subscription, 9

attributes
notification, 302

authentication, 101
applications, 101
features, 5

automation
features, 2

Automation Hub, 7
content provider, 7
credential types, 61

autoscaling
best practices, 316

autoscaling flexibility
features, 3

AWS
cloud credentials, 213

aws
inventories, 183
inventory plugins, 183

Azure
KMS, credential, 98

azure
inventories, 186
inventory plugins, 186

B
backup and restore

features, 3
best practices, 315

autoscaling, 316
deployment, continuous, 316
dynamic inventory sources, 315

335

Automation Controller User Guide, Release Automation Controller 4.3.0

file and directory structure, 315
host counts, larger, 316
integration, continuous, 316
ldap, 316
source control, 315
variable inventory management, 316

build
execution environment, 107

C
Callback Plugin, 329
callbacks

extra variables, 216
capacity

jobs, 266
Centrify

credential types, 93
check

job types, 190
Check Mode, 329
cloud credentials

AWS, 213
Google, 213
job templates, 211
MS Azure, 213
OpenStack, 212
VMware, 213

cloud flexibility
features, 3

clustering
features, 6

collections support, 133
components

licenses, 10
configure the controller

settings menu, 25
consume

subscription, 9
Container Groups, 329
Container Registry

credential types, 61
container support

features, 6
content provider

Automation Hub, 7
Control Groups, 329
controller settings menu, 25
create

applications, 102
create template

notifications, 285
creating new

credential types, 84
credential

Azure KMS, 98
CyberArk AIM, 94
CyberArk Conjur, 95
HashiCorp KV, 96
HashiCorp SSH Secrets Engine, 97
MS Azure KMS, 98
plugins, 89
secret management, 89
Thycotic DevOps Secrets Vault, 99
Thycotic Secret Server, 100

credential management
features, 7

Credential Plugin, 329
credential plugins

features, 7
credential types, 59, 81

|at|, 75
Amazon Web Services, 60
API bearer token, 72
API considerations, 82
Automation Hub, 61
Centrify, 93
Container Registry, 61
creating new, 84
Galaxy, 61
GitHub PAT, 62
GitLab PAT, 63
Google Compute Engine, 63
GPG public key, 64
insights, 65
Kubernetes, 72
machine, 66
Microsoft Azure Resource Manager, 69
network, 70
OpenShift, 72
OpenStack, 73
oVirt, 76
Red Hat Satellite, 75
Red Hat Virtualization, 76
rhv, 76
source control, 77
Vault, 79
VMware, 79

Credentials, 329
credentials, 55, 89

adding new, 58
getting started, 56, 83
how they work, 55
Insights, 310
types, 59

custom
fact scan job, 208
notification messages, 302

custom environment

Index 336

Automation Controller User Guide, Release Automation Controller 4.3.0

features, 5
custom fact scans

playbook, 208
system tracking, 208

custom script
inventories, 177

CyberArk AIM, 94
credential, 94

CyberArk Conjur, 95
credential, 95

D
dashboard, 21

host count, 22
job status, 22
jobs tab, 22
main menu, 20
schedule status, 22

DEB files
licenses, 10

deployment, continuous
best practices, 316

distributed
job types, 218

Distributed Job, 329
dynamic inventory sources

best practices, 315

E
Email

notifications types, 285
environment, FIPS

features, 6
evaluation, 8
execution environment, 107

add, 107
build, 107
mount options, 111
system trust store, 111

External Credential Type, 329
extra variables

callbacks, 216
provisioning callbacks, 216
surveys, 216, 224, 249

extra_vars, 216, 249

F
fact cache

features, 4
fact caching

playbook, 209
fact scan job

custom, 208
playbook, 207

fact scan playbook
system tracking, 207

Facts, 329
facts

scan job templates, 209
features, 7

Ansible Galaxy integration, 3
authentication, 5
automation, 2
autoscaling flexibility, 3
backup and restore, 3
cloud flexibility, 3
clustering, 6
container support, 6
credential management, 7
credential plugins, 7
custom environment, 5
environment, FIPS, 6
fact cache, 4
instance groups, 6
inventory plugins, 7
inventory sources, Red Hat

Satellite 6, 5
jobs, distribution, 6
jobs, slicing, 6
limiting, hosts, 7
notifications, 4
OAuth 2 token, 5
OpenStack inventory support, 4
overview, 2
playbooks, Red Hat Insights, 5
real-time playbook, 2
remote command execution, 4
RESTful API, 3
role-based access control, 2
run-time job customization, 5
secret management system, 7
system tracking, 4
UI, 5
user interface, 5
venv, 5
workflows, approval, 6
workflows, convergence nodes, 6
workflows, inventory overrides, 6
workflows, nesting, 6
workflows, pause, 6

file and directory structure
best practices, 315

Forks, 329
forks

jobs, 266
functionality

isolation, 317

Index 337

Automation Controller User Guide, Release Automation Controller 4.3.0

G
Galaxy

credential types, 61
Galaxy support, 131
gce

inventories, 185
inventory plugins, 185

getting started
applications, 101
credentials, 56, 83

Git
source control, 121

git refspec
templates, 270

GitHub
webhooks, 271

GitHub PAT
credential types, 62

GitLab
webhooks, 271

GitLab PAT
credential types, 63

glossary, 329
Google

cloud credentials, 213
Google Compute Engine

credential types, 63
inventories, 170, 185

GPG public key
credential types, 64

Grafana
notifications types, 285

Group, 330
Group Vars, 330
groups

notifications, 284

H
Handlers, 330
HashiCorp KV

credential, 96
HashiCorp Secret Lookup, 96
HashiCorp SSH Secrets Engine, 97

credential, 97
hierarchy

notifications, 284
Host, 330
host count

dashboard, 22
host counts, larger

best practices, 316
Host Specifier, 330
hostname configuration

notifications, 300

how they work
credentials, 55

I
Insights

credentials, 310
inventory, 313
project, 312
projects, 310
source control, 122

insights
credential types, 65

installation bundle
licenses, 10

Instance Group, 330
instance groups, 251

features, 6
integration, continuous

best practices, 316
inventories, 146

|RHAAP|, 176
|aap|, 189
ad hoc commands, 179
add new, 154
Amazon Web Services, 169, 183
aws, 183
azure, 186
custom script, 177
gce, 185
Google Compute Engine, 170, 185
groups, 158
groups; add new, 158
Microsoft Azure Resource Manager,

170, 186
OpenStack, 174, 189
plugins, 153
project-sourced, 167
Red Hat Insights, 173
Red Hat Satellite 6, 172, 188
Red Hat Virtualization, 175, 189
rhv, 189
satellite, 188
scan job templates, 206
smart, 148
vmware, 187
VMware vCenter, 171, 187

Inventory, 330
inventory

Insights, 313
inventory plugins

|aap|, 189
aws, 183
azure, 186
features, 7

Index 338

Automation Controller User Guide, Release Automation Controller 4.3.0

gce, 185
OpenStack, 189
rhv, 189
satellite, 188
templates, 183
vmware, 187

Inventory Script, 330
Inventory Source, 330
inventory source

scheduling, 306
inventory sources

notifications, 284
inventory sources, Red Hat Satellite 6

features, 5
inventory sync

job results, 258
IRC

notifications types, 285
isolation

functionality, 317
troubleshooting, 317
variables, 317

J
Job, 330
job branch

overriding, 268
Job Detail, 330
job results, 257

inventory sync, 258
SCM inventory, 260

Job Slice, 330
job slice, 218
job splitting, 218
job status

dashboard, 22
Job Template, 330
job templates, 190

cloud credentials, 211
job variables, 216
jobs, launching, 203
provisioning callbacks, 214
relaunch, 217
scheduling, 200, 306
survey creation, 201
survey extra variables, 216
survey optional questions, 202
surveys, 200

job templates, hierarchy, 216
job templates, overview, 216
job types

check, 190
distributed, 218
run, 190

scan, 190
slice, 218
splitting, 218

job variables
job templates, 216
workflow templates, 249

jobs, 256
add execution environment, 107
capacity, 266
forks, 266
host events, 264
notifications, 284
results, 257
views, 21

jobs results
playbook run, 261

jobs tab
dashboard, 22

jobs, distribution
features, 6

jobs, launching
job templates, 203
workflow templates, 248

jobs, slicing
features, 6

JSON, 330

K
KMS

credential Azure, 98
Kubernetes

credential types, 72

L
ldap

best practices, 316
license, 7, 8

nodes, 9
trial, 8
troubleshooting, 19
types, 8

license features, 7
license, add manually, 19
license, viewing, 25
licenses

components, 10
DEB files, 10
installation bundle, 10
RPM files, 10

limiting, hosts
features, 7

logging in, 11

Index 339

Automation Controller User Guide, Release Automation Controller 4.3.0

M
machine

credential types, 66
main menu

dashboard, 20
manifest

subscriptions, 16
Mattermost

notifications types, 285
Mesh, 330
Metadata, 330
Microsoft Azure Resource Manager

credential types, 69
inventories, 170, 186

mount options
execution environment, 111

MS Azure
cloud credentials, 213

MS Azure KMS, 98
credential, 98

N
network

credential types, 70
Node, 330
Notification, 331
notification

attributes, 302
notification messages

custom, 302
Notification Template, 331
notifications

API endpoints, 301
create template, 285
features, 4
groups, 284
hierarchy, 284
hostname configuration, 300
inventory sources, 284
jobs, 284
organizations, 36
resetting the TOWER_URL_BASE, 301
template, 284, 285
template workflow, 285
troubleshooting TOWER_URL_BASE, 301
types, 285
types Email, 285
types Grafana, 285
types IRC, 285
types Mattermost, 285
types pagerduty, 285
types Rocket.Chat, 285
types Slack, 285
types Twilio, 285

types Webhook, 285
Notify, 331

O
OAuth 2 token

features, 5
obtain

subscriptions manifest, 16
OpenShift

credential types, 72
OpenStack

cloud credentials, 212
credential types, 73
inventories, 174, 189
inventory plugins, 189

OpenStack inventory support
features, 4

ordering
sorting, 29

Organization, 331
Organization Administrator, 331
organizations, 30

access, 33
notifications, 36
users, 33, 41

overriding
job branch, 268

overview
features, 2

oVirt
credential types, 76

P
pagerduty

notifications types, 285
pair

organizations; teams, 33
payload

webhooks, 271
Permissions, 331
permissions

projects, 125
teams, 50
users, 41

Playbook, 331
playbook

custom fact scans, 208
fact caching, 209
fact scan job, 207
scan job, 206

playbook run
jobs results, 261

playbooks
manage manually, 120

Index 340

Automation Controller User Guide, Release Automation Controller 4.3.0

process isolation, 317
projects, 120–123
sharing access, 317
sharing content, 317
source control, 121–123

playbooks, Red Hat Insights
features, 5

Plays, 331
plugins

credential, 89
inventories, 153

Policy, 331
process isolation

playbooks, 317
Project, 331
project

Insights, 312
signing, 139
validation, 139

project validation, 139
project-sourced

inventories, 167
projects, 117

add new, 119
Insights, 310
permissions, 125
playbooks, 120–123
scheduling, 130, 306
source control update, 124

provisioning callbacks
extra variables, 216
job templates, 214

R
RBAC

security, 319
real-time playbook

features, 2
Red Hat Insights

inventories, 173
Red Hat Satellite

credential types, 75
Red Hat Satellite 6

inventories, 172, 188
Red Hat Virtualization

credential types, 76
inventories, 175, 189

relaunch
job templates, 217

remote archive
source control, 123

remote command execution
features, 4

resetting the TOWER_URL_BASE

notifications, 301
RESTful API

features, 3
rhv

credential types, 76
inventories, 189
inventory plugins, 189

Rocket.Chat
notifications types, 285

role-based access control
features, 2

role-based access controls, 319
Roles, 331
roles

teams, 50
RPM files

licenses, 10
run

job types, 190
run-time job customization

features, 5

S
satellite

inventories, 188
inventory plugins, 188

scan
job types, 190

scan job
playbook, 206

scan job templates
facts, 209
inventories, 206

Schedule, 331
schedule

views, 21
schedule status

dashboard, 22
scheduling

add new, 200, 232
inventory source, 306
job templates, 200, 306
projects, 130, 306
workflow template, 232
workflow templates, 232, 306

SCM
types, 121

SCM inventory
job results, 260

SCM types, 121
searching, 27
secret management

credential, 89
Secret Management System, 331

Index 341

Automation Controller User Guide, Release Automation Controller 4.3.0

secret management system
features, 7

security, 317
RBAC, 319

settings menu
configure the controller, 25
view license, 25

sharing access
playbooks, 317

sharing content
playbooks, 317

signing
project, 139

Slack
notifications types, 285

slice
job types, 218

Sliced Job, 331
smart

inventories, 148
smart inventories

add new, 154
sorting

ordering, 29
source control

best practices, 315
credential types, 77
Git, 121
Insights, 122
remote archive, 123
Subversion, 121

source control update
projects, 124

Source Credential, 331
splitting

job types, 218
subscription

attaching, 9
consume, 9

subscriptions
manifest, 16

subscriptions manifest
obtain, 16

subscriptions, import, 12
Subversion

source control, 121
Sudo, 331
Superuser, 332
support, 7, 8
Survey, 332
survey extra variables

job templates, 216
workflow templates, 249
workflows, 224

surveys
creation, 201, 233
extra variables, 216, 224, 249
job templates, 200
optional questions, 202, 234
workflow templates, 233

system tracking
custom fact scans, 208
fact scan playbook, 207
features, 4
scan job, 190

system trust store
execution environment, 111

T
Target Credential, 332
Team, 332
teams, 47

permissions, 50
roles, 50
users, 41, 49

template
notifications, 284, 285

template workflow
notifications, 285

templates
git refspec, 270
inventory plugins, 183

Thycotic DevOps Secrets Vault, 99
credential, 99

Thycotic Secret Server, 100
credential, 100

token authentication, 101
tokens

applications, 101, 103
trial, 8
troubleshooting

isolation, 317
license, 19

troubleshooting TOWER_URL_BASE
notifications, 301

Twilio
notifications types, 285

types
Email, notifications, 285
Grafana, notifications, 285
IRC, notifications, 285
Mattermost, notifications, 285
notifications, 285
pagerduty, notifications, 285
Rocket.Chat, notifications, 285
SCM, 121
Slack, notifications, 285
Twilio, notifications, 285

Index 342

Automation Controller User Guide, Release Automation Controller 4.3.0

Webhook, notifications, 285

U
UI

features, 5
updates, 8
User, 332
user interface

features, 5
users, 38

organizations, 33, 41
permissions, 41
teams, 41, 49

V
validation

project, 139
variable inventory management

best practices, 316
variable precedence, 216, 249
variables

isolation, 317
Vault

credential types, 79
venv

features, 5
view license

settings menu, 25
views

jobs, 21
schedule, 21

visualizer
workflow, 235

VMware
cloud credentials, 213
credential types, 79

vmware
inventories, 187
inventory plugins, 187

VMware vCenter
inventories, 171, 187

W
Webhook, 332
Webhook

notifications types, 285
webhooks, 271

GitHub, 271
GitLab, 271
payload, 271

workflow
visualizer, 235

Workflow Job Template, 332
workflow job templates, 227

workflow template
scheduling, 232

workflow templates
job variables, 249
jobs, launching, 248
scheduling, 232, 306
survey creation, 233
survey extra variables, 249
survey optional questions, 234
surveys, 233
workflow visualizer, 235

workflow templates, hierarchy, 249
workflow templates, overview, 249
workflow visualizer

workflow templates, 235
workflows, 221

survey extra variables, 224
workflows, approval

features, 6
workflows, convergence nodes

features, 6
workflows, inventory overrides

features, 6
workflows, nesting

features, 6
workflows, pause

features, 6

Y
YAML, 332

Index 343

	Overview
	Real-time Playbook Output and Exploration
	“Push Button” Automation
	Enhanced and Simplified Role-Based Access Control and Auditing
	Cloud & Autoscaling Flexibility
	The Ideal RESTful API
	Backup and Restore
	Ansible Galaxy Integration
	Inventory Support for OpenStack
	Remote Command Execution
	System Tracking
	Integrated Notifications
	Satellite Integration
	Run-time Job Customization
	Red Hat Insights Integration
	Enhanced User Interface
	Custom Virtual Environments
	Authentication Enhancements
	Cluster Management
	Container Platform Support
	Workflow Enhancements
	Job Distribution
	Support for deployment in a FIPS-enabled environment
	Limit the number of hosts per organization
	Inventory Plugins
	Secret Management System
	Automation Hub Integration

	Red Hat Ansible Automation Platform Controller Licensing, Updates, and Support
	Support
	Trial / Evaluation
	Subscription Types
	Node Counting in Licenses
	Attaching Subscriptions
	Ansible Automation Platform Component Licenses

	Logging In
	Import a Subscription
	Obtaining a subscriptions manifest
	Adding a subscription manually

	The User Interface
	Activity Streams
	Views
	Resources and Access
	Administration Menu
	The Settings Menu

	Search
	Searching Tips
	Sort

	Organizations
	Creating a New Organization
	Work with Access
	Work with Notifications

	Users
	Create a User
	Delete a User
	Users - Organizations
	Users - Teams
	Users - Permissions
	Users - Tokens

	Teams
	Create a Team

	Credentials
	Understanding How Credentials Work
	Getting Started with Credentials
	Add a New Credential
	Credential Types

	Custom Credential Types
	Content sourcing from collections
	Backwards-Compatible API Considerations
	Content verification
	Getting Started with Credential Types
	Create a New Credential Type

	Secret Management System
	Configure and link secret lookups

	Applications
	Getting Started with Applications
	Create a new application

	Execution Environments
	Building an Execution Environment
	Use an execution environment in jobs
	Execution environment mount options

	Execution Environment Setup Reference
	Execution environment definition
	ansible-builder build options
	Collection-level metadata

	Projects
	Add a new project
	Updating projects from source control
	Work with Permissions
	Work with Notifications
	Work with Job Templates
	Work with Schedules
	Ansible Galaxy Support
	Collections Support

	Project Signing and Verification
	Prerequisites
	Add a GPG key to Ansible Automation Controller
	Access the ansible-sign CLI utility
	Signing your project
	Verifying your project
	Automate signing

	Inventories
	Smart Inventories
	Inventory Plugins
	Add a new inventory
	Running Ad Hoc Commands

	Supported Inventory Plugin Templates
	Amazon Web Services EC2
	Google Compute Engine
	Microsoft Azure Resource Manager
	VMware vCenter
	Red Hat Satellite 6
	OpenStack
	Red Hat Virtualization
	Red Hat Ansible Automation Platform

	Job Templates
	Create a Job Template
	Add Permissions
	Work with Notifications
	View Completed Jobs
	Scheduling
	Surveys
	Launch a Job Template
	Copy a Job Template
	Scan Job Templates
	Fact Caching
	Utilizing Cloud Credentials
	Provisioning Callbacks
	Extra Variables

	Job Slicing
	Job slice considerations
	Job slice execution behavior
	Search job slices

	Workflows
	Workflow scenarios and considerations
	Extra Variables
	Workflow States
	Role-Based Access Controls

	Workflow Job Templates
	Create a Workflow Template
	Work with Permissions
	Work with Notifications
	View Completed Jobs
	Work with Schedules
	Surveys
	Workflow Visualizer
	Launch a Workflow Template
	Copy a Workflow Template
	Extra Variables

	Instance Groups
	Create an instance group

	Jobs
	Inventory Sync Jobs
	SCM Inventory Jobs
	Playbook Run Jobs
	Automation Controller Capacity Determination and Job Impact
	Job branch overriding

	Working with Webhooks
	GitHub webhook setup
	GitLab webhook setup
	Payload output

	Notifications
	Notification Hierarchy
	Workflow
	Create a Notification Template
	Notification Types
	Create custom notifications
	Enable and Disable Notifications
	Configure the host hostname for notifications
	Notifications API

	Supported Attributes for Custom Notifications
	Schedules
	Add a new schedule

	Setting up Insights Remediations
	Create Insights Credential
	Create an Insights Project
	Create Insights Inventory
	Remediate Insights Inventory

	Best Practices
	Use Source Control
	Ansible file and directory structure
	Use Dynamic Inventory Sources
	Variable Management for Inventory
	Autoscaling
	Larger Host Counts
	Continuous integration / Continuous Deployment
	LDAP authentication performance tips

	Security
	Playbook Access and Information Sharing
	Role-Based Access Controls
	Function of roles: editing and creating

	Glossary
	Index
	Copyright © Red Hat, Inc.
	Index

